SCHEDA OBIETTIVI MINIMI. Materia:MATEMATICA
|
|
|
- Alberto Fontana
- 8 anni fa
- Visualizzazioni
Transcript
1 Pag. 1 di 5 SCHEDA OBIETTIVI MINIMI Materia:MATEMATICA Classi QUARTA A e QUARTA B Spec.: LICEO DELLE SCIENZE APPLICATE a.s: 2016 / Presidente di dipartimento 0 DOC DS Maria Grazia Gillone Sigla( ) Firma Sigla( ) Firma Rev. Redazione/Verifica Approvazione ( ) Sigla Funzione
2 Pag. 2 di 5 SCHEDA OBIETTIVI MINIMI DISCIPLINA MATEMATICA INSEGNANTI DIPARTIMENTO I.T.P TEMA 1 :RETTA Ripasso dei concetti fondamentali correlati alla retta. Conoscendo il grafico determinarne il coefficiente angolare. Data l'equazione della retta, tracciarne il grafico e viceversa. Per quale motivo non esiste il coefficiente angolare delle rette parallele all'asse "y". Equazioni delle rette passanti per un punto assegnato. TEMA 2 : PARABOLA Ascissa del vertice di una parabola ( motivazione intuitiva,considerando il caso in cui esistono intersezioni tra la parabola e l'asse x ). Conoscendo l'ascissa del vertice ( - B / 2A ) è stata dedotta l'ordinata del vertice stesso ( - delta / 4A ) Determinazione delle rette passanti per un punto dato e tangenti ad una parabola assegnata ( caso in cui il punto è esterno alla parabola ).
3 Pag. 3 di 5 TEMA 3 : VETTORI E TRASFORMAZIONI GEOMETRICHE Si chiama vettore l'insieme di tutti i segmenti orientati equipollenti ad un prefissato segmento orientato ; si può considerare come rappresentante del vettore il segmento orientato avente come primo estremo l'origine ; così facendo le coordinate del secondo estremo del segmento rappresentano le componenti " a " e " b " del vettore. Equazioni che permettono di determinare le coordinate del punto P' ( x' ; y ' ) corrispondente di P ( x ; y ) nella traslazione di vettore assegnato. Traslazione inversa. Equazioni che permettono di determinare le coordinate del corrispondente di un punto in una traslazione di vettore assegnato ; traslazione inversa. Data l'equazione di una curva " gamma ", determinazione dell'equazione della curva corrispondente " gamma primo " nella traslazione di vettore "v" assegnato. Procedimento : si considera un generico punto P' ( x, y ) appartenente a " gamma primo ", si determinano le coordinate del punto P, corrispondente di P' nella traslazione inversa, e si impone che tali coordinate del punto "P" soddisfino l'equazione della curva " gamma". Fatto un esempio considerando la curva " gamma" y = x^2 ed una traslazione di vettore assegnato. Determinazione dell'equazione della parabola avente come fuoco il punto F (0, d ) e come direttrice la retta y = - d. Si ottiene l'equazione y = ( 1/ 4d ) x^2. Determinazione dell'equazione della parabola corrispondente di questa nella traslazione di vettore assegnato, avente come componenti l'ascissa del vertice V' e l'ordinata del vertice V', essendo V' il vertice della parabola traslata. L'equazione di quest'ultima è : y = a x^2-2a( ascissa del vertice ) x + a ( ascissa del vertce ) ^2 + ( ordinata del vertice ), essendo a = 1/ (4d). Pertanto è stata ottenuta un'equazione scritta nella forma : y = Ax^2 + Bx + C. Determinazione dell'ascissa e dell ordinata del vertice in funzione di A, di B e di C. Definizione : che cosa significa che un punto P' è il corrispondente di un punto P nella simmetria centrale di centro P zero. Equazioni della simmetria centrale ; equazione della curva gamma primo corrispondente della curva gamma nella simmetria di centro Pzero. Definizione di simmetria assiale ; equazione della simmetria avente come asse la retta x = x zero ; considerando l'equazione y=x^2 è stata determinata l'equazione della curva gamma primo corrispondente nella simmetria di asse x=x zero. Equazioni della simmetria avente come asse la retta che contiene la bisettrice del primo quadrante : sono state ottenute le equazioni x' = y ; y' = x ; queste formule sono state dimostrate considerando un punto " P " situato nel primo quadrante ed utilizzando i criteri di congruenza dei triangoli. Equazioni della simmetria avente come asse la retta che contiene la bisettrice del secondo quadrante. Considerando l equazione di una curva gamma, determinazione dell'equazione della curva "gamma primo" corrispondente nella simmetria avente come asse la retta y= -x.
4 Pag. 4 di 5 TEMA 4 : GONIOMETRIA E RELAZIONI TRA INSIEMI Definizione di circonferenza goniometrica ; considereremo angoli in posizione normale, cioè aventi il vertice coincidente con l'origine degli assi ed il primo lato coincidente con il semiasse positivo dell'asse x. Come determinare se l'ampiezza di un angolo é positiva o negativa ; definizioni di seno, coseno e tangente di un angolo ; definizione geometrica di tangente di un angolo; sono stati determinati i valori del seno e del coseno degli angoli aventi le seguenti ampiezze espresse in gradi : 0 ;90 ; 180 ; 270. ;360. definizione di relazione come insieme di coppie ordinate; rappresentazione di una relazione tra insiemi con tre diverse modalità; relazioni ovunque definite, univoche, iniettive, suriettive ; funzioni e biiezioni Definizione di relazione inversa ; affinchè la relazione inversa sia univoca, la relazione diretta deve essere iniettiva ; si può ottenere una relazione diretta iniettiva, considerando un diverso insieme " A " di partenza. Per esempio, considerando la funzione y = sen (x), tale relazione diventa iniettiva se si considera come insieme di partenza A = [ - 90 ; + 90 ] e, come insieme di arrivo B = [ -1 ; +1 ]. Consideriamo la funzione y = sen ( x) essendo : A = [ -90 ; +90 ] e B = [ -1 ; +1 ]. La relazione inversa di questa è la funzione y = arcsen(x). Esempio : calcoliamo : y = arcsen ( 1/2 ) ; si ottiene come valore di " y " soltanto " 30 " e NON "150 ( perchè 150 non appartiene ad " A" ). Definizioni delle funzioni. y = arccos x e y = arctg x ( spiegazioni e motivazioni analoghe ). Risoluzione di equazioni goniometriche elementari contenenti una sola delle seguenti funzioni goniometriche : cos x ; sen x ; tg x. risoluzione di equazioni goniometriche elementari contenenti soltanto la funzione "tgx". Equazioni riconducibili ad equazioni goniometriche elementari. Equazioni lineari in seno e coseno ( complete ed incomplete ) risolte utilizzando le formule parametriche. Definizione di radiante ; conoscendo l'ampiezza espressa in gradi determinarne l'ampiezza espressa in radianti e viceversa. Risoluzione di equazioni goniometriche omogenee di secondo grado in seno e coseno ( incomplete e complete ) ; equazioni riconducibili a quelle omogenee di secondo grado in seno e coseno ( equazioni nelle quali compare anche un termine additivo " d " che viene scritto nella forma d ( 1 ) eccetera ). Formule di addizione e sottrazione relative al seno ed al coseno ( dimostrate ). Formule di duplicazione relative al seno ed al coseno. Formula di sottrazione relativa alla tangente ( con dimostrazione). Utilizzando la formula di duplicazione relativa al coseno, sono state dimostrate le formule di bisezione che permettono di determinare cos ( alfa/2 ) e sen( alfa/2 ). Disequazioni goniometriche di primo grado, contenenti la funzione seno oppure la funzione coseno ( risolte utilizzando la circonferenza goniometrica ) ; disequazioni goniometriche di primo grado contenenti la funzione tangente, risolte utilizzando la seguente definizione : tg( x ) = ordinata del punto R, essendo R il punto di intersezione tra il secondo lato dell angolo x e la retta tangente alla circonferenza goniometrica nel punto A ( 1, 0 ). Disequazioni riconducibili a disequazioni di secondo grado contenenti soltanto la funzione cos (x), oppure soltanto la funzione sen(x).
5 Pag. 5 di 5 TEMA 5:TRIGONOMETRIA Risoluzione di un triangolo rettangolo. Teorema della corda (con dimostrazione ) Teorema dei seni (con dimostrazione ) Teorema del coseno (ovvero di Carnot ) Risoluzione di un triangolo qualsiasi. TEMA 6: LOGARITMI La funzione logaritmica. Cambiamento di base del logaritmo. Proprietà dei logaritmi (tre proprietà) (con dimostrazione della proprietà relativa alla somma di logaritmi ). Equazioni logaritmiche. Disequazioni logaritmiche. TEMA 7: ESPONENZIALI Concetti fondamentali relativi alle funzioni esponenziali. Equazioni e disequazioni esponenziali. Torino,16 giugno 2017
I LICEO CLASSICO. Le equazioni e le disequazioni di II grado e di grado superiore
CONOSCENZE indirizzo CLASSICO I LICEO CLASSICO Le equazioni e le disequazioni di II grado e di grado superiore Equazioni di secondo grado incomplete; equazioni di secondo grado complete; formula risolutiva
- le disequazioni di grado superiore al secondo: disequazioni biquadratiche, binomie e trinomie
LICEO ARTISTICO STATALE BRUNO MUNARI, CREMONA Anno scolastico 2011-2012 PROGRAMMA SVOLTO DI MATEMATICA CLASSE IV A Ripasso: le disequazioni e le loro proprietà: (pag. 2, Volume SL 1) - gli intervalli limitati
LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA. PROGRAMMA DI Matematica. Classe IIIB. Anno Scolastico
LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI Matematica Classe IIIB Anno Scolastico 2014-2015 Insegnante: Prof.ssa La Salandra Incoronata 1 DISEQUAZIONI Disequazioni razionali intere di secondo
Anno Scolastico:
LICEO SCIENTIFICO DI STATO "G. BATTAGLINI" TARANTO PROGRAMMA DI MATEMATICA svolto nella Classe III Sezione A. Anno Scolastico: 2012-2013. Docente: Francesco Pantano. 1. Disequazioni. Richiami sulle disequazioni
ISTITUTO TECNICO TECNOLOGICO STATALE G.
ISTITUTO TECNICO TECNOLOGICO STATALE G. e M. MONTANI FERMO Anno Scolastico 2015/ 16 PROGRAMMA SVOLTO DI MATEMATICA 3 ore settimanali COMPLEMENTI DI MATEMATICA 1 ora settimanale Classe: 3^ INFORMATICA sez.
PROGRAMMA DI MATEMATICA
A.S. 2015/2016 ALGEBRA - Equazioni letterali fratte PROGRAMMA DI MATEMATICA - Disequazioni di 1 grado ad una incognita intere e frazionarie - Sistemi di disequazioni di 1 o grado in una incognita - Sistemi
2ALS. Lavoro estivo in preparazione all esame di settembre per gli studenti con debito formativo in Matematica.
2ALS Lavoro estivo in preparazione all esame di settembre per gli studenti con debito formativo in Matematica. Si consiglia il libro: Matematica-recupero dei debiti formativi e ripasso estivo 2 ISBN 978-88-24741279
Liceo Scientifico Statale Leonardo da Vinci Reggio Calabria. PROGRAMMA DI MATEMATICA Per la classe IV sez.d Anno scolastico 2012/13
Liceo Scientifico Statale Leonardo da Vinci Reggio Calabria PROGRAMMA DI MATEMATICA Per la classe IV sez.d Anno scolastico 2012/13 Modulo 1: Le coniche Geometria elementare retta e circonferenza nel piano
MATEMATICA COMPLEMENTI DI MATEMATICA
ISTITUTO TECNICO TECNOLOGICO STATALE G. e M. MONTANI FERMO Anno Scolastico 2014/ 15 PROGRAMMA SVOLTO DI Disciplina: MATEMATICA Classe di Concorso A047 3 ore settimanali Disciplina: COMPLEMENTI DI MATEMATICA
LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA. PROGRAMMA DI Matematica. Classe IVB. Anno Scolastico
LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI Matematica Classe IVB Anno Scolastico 2014-2015 Insegnante: Prof.ssa La Salandra Incoronata 1 Le coniche nella discussione dei problemi (Richiami)
Programma di Matematica Anno Scolastico 2012/2013 Classe III G
Liceo Scientifico Statale G. BATTAGLINI Corso Umberto I 74100 Taranto Programma di Matematica Anno Scolastico 2012/2013 Classe III G Prof. Paolo Pantano Richiami di Algebra Equazioni e disequazioni Definizioni.
Classe III Aritmetica e Algebra Dati e previsioni Geometria Geometria
Classe III U. D. 1 Equazioni e disequazioni (ripasso) Aritmetica e Algebra Equazioni algebriche numeriche con δ 2. Disequazioni algebriche numeriche con δ 2. Sistemi di equazioni e/o disequazioni algebriche
PROGRAMMA DI MATEMATICA
Classe 2^ sez. A 1. Ripasso Operazioni tra polinomi, prodotti notevoli, equazioni di primo grado intere e frazionarie. Problemi risolvibili con le equazioni di primo grado. 2. Sistemi Sistemi di equazioni
Programma di Matematica Liceo Scientifico A. Romita Classe: 4G a.s.:2015 / 2016
Programma di Matematica Liceo Scientifico A. Romita Classe: 4G a.s.:2015 / 2016 Le funzioni goniometriche La misura degli angoli Gli angoli e la loro ampiezza La misura in gradi La misura i radianti Dai
Programma svolto nell'a.s. 2016/2017 Disciplina: Matematica. Classe: 4D Docente: Prof. Ezio Pignatelli Programma sintetico.
Programma svolto nell'a.s. 2016/2017 Disciplina: Matematica. Classe: 4D Docente: Prof. Ezio Pignatelli Programma sintetico. 1. Funzione esponenziale e logaritmica. a) Riepilogo delle proprietà delle potenze.
ISTITUTO TECNICO NAUTICO SAN GIORGIO. Anno scolastico 2011/12. Classe I Sezione E. Programma di Matematica. Docente: Pasquale Roberta.
Anno scolastico 2011/12 Classe I Sezione E Insiemistica. - Concetto di insieme e rappresentazione di un insieme. - Sottoinsiemi - Principali operazioni fra insiemi: unione, intersezione, complementare
PROGRAMMAZIONE III Geometri. ORGANIZZAZIONE MODULARE (Divisa in unità didattiche) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algebra 30
PROGRAMMAZIONE III Geometri ORGANIZZAZIONE MODULARE (Divisa in unità didattiche) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algebra 30 B Geometria analitica 32 C Goniometria 30 D Trigonometria
ISTITUTO DI ISTRUZIONE SUPERIORE J.C. MAXWELL Data Pag. di PROGRAMMA SVOLTO. Docente : Varano Franco Antonio.
Materia: Matematica. Docente : Varano Franco Antonio. Classe : 3 C Liceo Scientifico, opzione Scienze Applicate. ATTIVITA CONTENUTI PERIODO / DURATA LE ISOMETRIE. LE FUNZIONI. LA RETTA. Le isometrie, la
LICEO SCIENTIFICO STATALE. Matematica. Programma svolto. Testo di riferimento: M. Bergamini - G. Barozzi - A. Trifone
A.S. 2016 2015 17 16 LICEO SCIENTIFICO STATALE " G. Pellecchia" - CASSINO (FR) Classe 3^C 1^C Matematica Programma svolto Docente: Bianchi Angelarita Testo di riferimento: M. Bergamini - G. Barozzi - A.
PROGRAMMA SVOLTO E INDICAZIONI LAVORO ESTIVO. a. s CLASSE IIIC. Insegnante Pellegrino Innocenza. Disciplina MATEMATICA
PROGRAMMA SVOLTO E INDICAZIONI LAVORO ESTIVO a. s. 2016-2017 CLASSE IIIC Insegnante Pellegrino Innocenza Disciplina MATEMATICA PROGRAMMA SVOLTO Equazioni e disequazioni algebriche Ripasso di equazioni
PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA
PROGRAMMAZIONE DISCIPLINARE PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA CLASSE TERZA IPC COMPETENZE 42) Utilizzare le tecniche e le procedure del calcolo aritmetico ed algebrico
Teoria in sintesi 10. Teoria in sintesi 14
Indice L attività di recupero Funzioni goniometriche Teoria in sintesi 0 Obiettivo Calcolare il valore di espressioni goniometriche in seno e coseno Obiettivo Determinare massimo e minimo di funzioni goniometriche
Conoscenze. L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la regola di Ruffini, il teorema. del resto.
Classe: TERZA (Liceo Artistico) Pagina 1 / 2 della Matematica La scomposizione dei polinomi in fattori primi L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la
Istituto Tecnico Nautico San Giorgio - Genova - Anno scolastico PROGRAMMA SVOLTO DI MATEMATICA
Classe: 1 a C Libro di testo: Bergamini Trifone Barozzi Matematica verde vol. 1 ed. Zanichelli Insiemi Definizione di insieme, rappresentazione grafica, tabulare, caratteristica di un insieme Gli insiemi
PROGRAMMAZIONE GENERALE MATEMATICA-INFORMATICA a.s
PROGRAMMAZIONE GENERALE MATEMATICA-INFORMATICA a.s. 2013-2014 GINNASIO CLASSI 4 sez. A-B-C SCIENZE UMANE CLASSI 1 sez. A-B-C-D-E-F Aritmetica e algebra Il primo anno sarà dedicato al passaggio dal calcolo
Programma di Matematica svolto durante l anno scolastico nella classe 2 sez.e
Programma di Matematica svolto durante l anno scolastico 2015-2016 nella classe 2 sez.e ALGEBRA 1) Richiami sul calcolo letterale e sulle equazioni algebriche lineari ad una incognita. 2) Disequazioni
PROGRAMMAZIONE DIDATTICA ANNUALE
PROGRAMMAZIONE DIDATTICA ANNUALE Anno Scolastico: 2013 / 2014 Dipartimento (1) : MATEMATICA Coordinatore (1) : Classe: ROVETTA ROBERTA 3 Indirizzo: Servizi commerciali Ore di insegnamento settimanale:
matematica classe terza Liceo scientifico
LICEO SCIENTIFICO STATALE LEONARDO DA VINCI Anno scolastico 2013/2014 LE COMPETENZE ESSENZIALI CONSIDERATE ACCETTABILI PER LA SUFFICIENZA Si precisa che gli obiettivi indicati sono da raggiungere in relazione
PROGRAMMAZIONE DISCIPLINARE LICEO LINGUISTICO MATEMATICA
PROGRAMMAZIONE DISCIPLINARE PROGRAMMAZIONE DISCIPLINARE LICEO LINGUISTICO MATEMATICA CLASSE TERZA 1. 1. Competenze: le specifiche competenze di base disciplinari previste dalla Riforma (Linee Guida e/o
Programma svolto nell'a.s. 2014/2015. Disciplina: Matematica. Classe: 3D Docente: Prof. Ezio Pignatelli. Programma sintetico.
Programma svolto nell'a.s. 2014/2015. Disciplina: Matematica. Classe: 3D Docente: Prof. Ezio Pignatelli Programma sintetico. 1. Equazioni e disequazioni a) Equazioni e disequazioni di primo e secondo grado.
Liceo Scientifico A. Romita Programma di Matematica Anno scolastico 2016/2017 Prof.ssa Santella Mariagrazia
Liceo Scientifico A. Romita Programma di Matematica Anno scolastico 2016/2017 Prof.ssa Santella Mariagrazia Classe III sez. A Modulo 1 Unità didattica 1 Ripetizione della risoluzione delle equazioni di
SYLLABUS DI MATEMATICA Liceo Linguistico Classe III
SYLLABUS DI MATEMATICA Liceo Linguistico Classe III LE EQUAZIONI DI SECONDO GRADO Le equazioni di secondo grado e la loro risoluzione. La formula ridotta. Equazioni pure, spurie e monomie. Le relazioni
FUNZIONI TRIGONOMETRICHE
FUNZIONI TRIGONOMETRICHE RICHIAMI DI TEORIA Definizione: si dice angolo positivo individuato dalla coppia di semirette r e r' uscenti dal punto O, l'insieme dei punti del piano descritti dai punti di r
Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 2016/2017 Prof.ssa Migliaccio Gabriella CLASSE III
Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 016/017 Prof.ssa Migliaccio Gabriella CLASSE III Gli esercizi vanno svolti e consegnati, anche su un quaderno, il giorno dell esame per il
MATEMATICA: LAVORO ESTIVO CLASSE 3GTscintifico. PROGRAMMA DI MATEMATICA PER IL RECUPERO / AIUTO CLASSE 3GTSCINTIFICO prof.
LICEO CLASSICO L.GALVANI A.S. 2016/17 MATEMATICA: LAVORO ESTIVO CLASSE 3GTscintifico Docente Paola Giacconi PROGRAMMA DI MATEMATICA PER IL RECUPERO / AIUTO CLASSE 3GTSCINTIFICO prof. Paola Giacconi Testo
LICEO SCIENTIFICO STATALE MICHELANGELO CAGLIARI
LICEO SCIENTIFICO STATALE MICHELANGELO CAGLIARI PROGRAMMA DI MATEMATICA CLASSE III B A. S. 2016-2017 PROGRAMMA DI MATEMATICA RICHIAMI su equazioni di primo e secondo grado, sistemi di due equazioni in
Esercizi e problemi sulla parabola
Esercizi e problemi sulla parabola Esercizio 1. Si consideri l'insieme di parabole: con k R, k 1. Γ k : y = (k + 1)x x + k 4 (a) Determinare, per quali k, la parabola passa per l'origine. (b) Determinare,
Nel caso particolare in cui il vertice si trovi nell'origine, la parabola assume la forma: y ˆ ax 2.
LA PARABOLA Rivedi la teoria La parabola e la sua equazione La parabola eá il luogo dei punti del piano che hanno la stessa distanza da un punto fisso chiamato fuoco e da una retta fissa chiamata direttrice.
Funzioni, equazioni e disequazioni esponenziali. Funzioni, equazioni e disequazioni logaritmiche
Liceo Scientifico F. Lussana - Bergamo PROGRAMMA di MATEMATICA Classe 4^ I a.s. 2015/16 - Docente: Marcella Cotroneo Libri di testo : L. Sasso "Nuova Matematica a colori 3" e "Nuova Matematica a colori
PROGRAMMAZIONE DISCIPLINARE PER COMPETENZE
Istituto Statale d'istruzione Superiore R.FORESI LICEO CLASSICO LICEO SCIENTIFICO LICEO SCIENZE UMANE FORESI ISTITUTO PROFESSIONALE PER L INDUSTRIA E L ARTIGIANATO BRIGNETTI ISTITUTO ALBERGHIERO E DELLA
Punti nel piano cartesiano
Punti nel piano cartesiano In un piano consideriamo due rette perpendicolari che chiamiamo x e. Solitamente, disegniamo la retta x (ascisse) orizzontalmente e orientata da sinistra a destra, la retta e
LICEO SCIENTIFICO STATALE ALESSANDRO ANTONELLI
LICEO SCIENTIFICO STATALE ALESSANDRO ANTONELLI Via Toscana, 20 28100 NOVARA 0321 465480/458381 0321 465143 [email protected] http://www.liceoantonelli.novara.it C.F.80014880035 Cod.Mecc.
Classe 3 Sezione Indirizzo Liceo delle Scienze Applicate
Alessandria, Settembre 2016 Anno scolastico 2016/2017 A Classe 3 Sezione C Indirizzo Liceo delle Scienze Applicate Materia Matematica Docente/i Nome e cognome PierCarlo Barbierato Nome e cognome Firma
Contenuti del programma di Matematica. Classe Terza
Contenuti del programma di Matematica Classe Terza A.S. 2014/2015 Tema Contenuti GEOMETRIA Misura della lunghezza della circonferenza e NEL PIANO area del cerchio. COMLEMENT Equazioni e disequazioni con
LICEO SCIENTIFICO STATALE GOBETTI - SEGRE DI TORINO. Anno scolastico Docente: Professor GILITOS LORENZO
LICEO SCIENTIFICO STATALE GOBETTI SEGRE Via Maria Vittoria n. 39/bis 10123 Torino Tel. 011/817.41.57 011/839.52.19 - Fax 011/839.58.97 e-mail: [email protected] Succursale Via. Giulia di Barolo
PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico
PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico 2015-2016 I numeri naturali rappresentazione dei numeri naturali, le quattro operazioni, multipli e divisori di un numero. Criteri di divisibilità, le
Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classe III C ESERCIZI ESTIVI 2013/14
Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri Classe III C ESERCIZI ESTIVI 013/14 ALUNNO CLASSE ESEGUI TUTTI GLI ESERCIZI SU UN FOGLIO PROTOCOLLO O UN QUADERNO. Ulteriore
CORSO ZERO DI MATEMATICA
UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA GONIOMETRIA E TRIGONOMETRIA Dr. Erasmo Modica [email protected] RADIANTI E CIRCONFERENZA GONIOMETRICA Definizione: Si dice
GEOMETRIA ANALITICA : FORMULARIO. y 2. + y 1
GEOMETRIA ANALITICA : FORMULARIO + x 1 Punto medio d'un segmento, y + y 1 Distanza tra due punti ( - x 1 ) + (y - y 1 ) Condizione di appartenenza di un punto P (x p ;y p ) ad una curva di equazione f(x,y)
Liceo Scientifico F. Lussana Bergamo Programma di MATEMATICA A.S. 2015/2016 Classe 4 A C Prof. Matteo Bonetti. Esponenziali e logaritmi
Liceo Scientifico F. Lussana Bergamo Programma di MATEMATICA A.S. 2015/2016 Classe 4 A C Prof. Matteo Bonetti Esponenziali e logaritmi 1. Richiami sulle proprietà delle potenze; estensione della definizione
ISTITUTO TECNICO DEI TRASPORTI E LOGISTICA
ISTITUTO TECNICO DEI TRASPORTI E LOGISTICA NAUTICO SAN GIORGIO NAUTICO C.COLOMBO PROGRAMMA SVOLTO NELLA CLASSE IAA MATERIA : MATEMATICA INSEGNANTE : PROF. Simona TRESCA Programma di Algebra: U.D. 1 : I
determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si
PROBLEMA Determinare il punto simmetrico di P( ;) rispetto alla retta x y =0 Soluzione Il simmetrico di P rispetto ad una retta r è il punto P che appartiene alla retta passante per P, perpendicolare ad
Terza BM Meccanica. Matematica. Docente
Anno scolastico 2014/ 2015 Classe Sezione Indirizzo Materia Terza BM Meccanica Nome e cognome Rita Demartini Docente Firma Pagina 1 di 7 PERCORSO FORMATIVO E DIDATTICO Modulo n.1: Ripasso equazioni, disequazioni
GONIOMETRIA. sin (x) = PH OP. ctg (x ) = cos (x) = CB sin (x) cosec (x ) = 1 = ON sin (x)
GONIOMETRIA sin (x = PH OP cos (x = OH OP tg (x = sin(x = TA cos(x ctg (x = cos (x = CB sin (x sec (x = 1 = OM cos(x cosec (x = 1 = ON sin (x La tangente si calcola sempre sulla retta verticale passante
LICEO SCIENTIFICO STATALE
LICEO SCIENTIFICO STATALE GALILEO GALILEI PdQ - 7.06 Ediz.: 1 Rev.: 0 Data 02/09/05 Alleg.: D01 PROG. M2 PROCEDURA della QUALITA' Programma Didattico Annuale Anno Scolastico 2012/2013 MATERIA : Matematica
In un triangolo un lato è maggiore della differenza degli altri due, pertanto dal triangolo si ha > dividendo per =1.
L iperbole L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi. Come si evince del grafico, la differenza delle distanze
PROGRAMMA di MATEMATICA
Liceo Scientifico F. Lussana - Bergamo PROGRAMMA di MATEMATICA Classe 3^ F a.s. 2013/14 - Docente: Marcella Cotroneo Libro di testo : Leonardo Sasso "Nuova Matematica a colori 3" - Petrini Ore settimanali
N.I413R UNI EN ISO 9001:2008
Anno scolastico 2014/ 2015 Classe Sezione Indirizzo Materia Terza AM Meccatronica Matematica Docente Nome e cognome Maria Cavalieri Firma PERCORSO FORMATIVO E DIDATTICO Modulo n.1: equazioni, disequazioni
Classi: 4A inf Sirio Disciplina: MATEMATICA Ore settimanali previste: 3
Classi: 4A inf Sirio Disciplina: MATEMATICA Ore settimanali previste: 3 Titolo unità didattiche in cui è diviso Titolo Modulo il modulo Prerequisiti per l'accesso al modulo 1: Calcolo numerico e letterale,
EQUAZIONI CON PARAMETRO
Trigonometria parte 4 easy matematica Eliana pagina 8 EQUAZIONI CON PARAMETRO Le equazioni parametriche goniometriche possono essere risolte mediante il metodo grafico. Tali equazioni richiedono che nell
Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI
Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI Anno scolastico: 014-015 Classe: 3 H Docente: Paola Zanolo Disciplina: Matematica Ripassare tutto il programma preparando un formulario per
LICEO SCIENTIFICO STATALE FILIPPO LUSSANA - BERGAMO. PROGRAMMA EFFETTIVAMENTE SVOLTO a. s. 2014/15
LICEO SCIENTIFICO STATALE FILIPPO LUSSANA - BERGAMO PROGRAMMA EFFETTIVAMENTE SVOLTO a. s. 2014/15 CLASSE : 3N indirizzo scienze applicate DOCENTE: CAPRI MATTEO MATERIA: MATEMATICA Libro di testo utilizzato:
Funzioni elementari. Tutorial di Barberis Paola - agg grafici con GEOGebra - software open source
Funzioni elementari Proporzionalità diretta e inversa Retta, funzione identità e funzione costante Parabola, funzione quadratica e cubica Funzione omografica Funzione esponenziale e logaritmica Funzioni
LA PARABOLA E LA SUA EQUAZIONE
LA PARABOLA E LA SUA EQUAZIONE Prof. Giovanni Ianne CHE COS È LA PARABOLA DEFINIZIONE Parabola Scegliamo sul piano un punto F e una retta d. Possiamo tracciare sul piano i punti equidistanti da F e da
Programma di Matematica A.S. 2013/14. Classe 1 B odont Insegnante : M.Teresa Di Prizio INSIEMI
Programma di Matematica A.S. 2013/14 Classe 1 B odont Insegnante : M.Teresa Di Prizio INSIEMI Insiemi e sottoinsiemi - Le operazioni fondamentali con gli insiemi - Prodotto cartesiano I NUMERI NATURALI
1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano:
QUESITI 1 PIANO CARTESIANO 1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: a) 6 b) 13/2 c) 12 d) 13 e) 78 2.
Introduzione. Test d ingresso
Indice Introduzione Test d ingresso v vii 1 Insiemi e numeri 1 1.1 Insiemi... 1 1.2 Operazionicongliinsiemi... 3 1.3 Insieminumerici,operazioni... 7 1.4 Potenze... 11 1.5 Intervalli... 12 1.6 Valoreassolutoedistanza...
Programmazione per Obiettivi Minimi. Matematica Primo anno
Programmazione per Obiettivi Minimi Matematica Primo anno Saper operare in N, Z e Q. Conoscere e saper applicare le proprietà delle potenze con esponente intero e relativo. Saper operare con i monomi.
PROGRAMMA DI MATEMATICA APPLICATA
PROGRAMMA DI MATEMATICA APPLICATA Classe II A Turismo A.S. 2014/2015 Prof.ssa RUGGIERO ANGELA ISABELLA I NUMERI REALI Radicali: - Riduzione allo stesso indice e semplificazione - Alcune operazioni fra
Indice. Prefazione. Fattorizzazione di A + B Fattorizzazione di trinomi particolari 22 2
Prefazione XI Test di ingresso 1 Capitolo 1 Insiemi numerici, intervalli e intorni 5 1.1 Introduzione 5 1.2 Insiemi generici 5 1.2.1 Relazioni e operazioni tra insiemi 7 1.3 Insiemi numerici 8 1.3.1 Rappresentazione
ISTITUTO ISTRUZIONE SUPERIORE A. MARTINI - SCHIO MATEMATICA
ISTITUTO ISTRUZIONE SUPERIORE A. MARTINI - SCHIO LICEO ARTISTICO - Dipartimento di Matematica e Fisica MATEMATICA Finalità della Matematica nel triennio è di proseguire e ampliare il processo di preparazione
Istituto d Istruzione Superiore Francesco Algarotti
Classe: 1 M Docente: Antonio M. Povelato CAPITOLO 1 - Insiemi e numeri naturali Concetti primitivi di insieme e di elemento. Relazioni di appartenenza, inclusione e eguaglianza tra insiemi. Rappresentazione
Appunti di Geometria Analitica. Il sistema di coordinate cartesiane ortogonali nel piano
Appunti di Geometria Analitica In questi brevi appunti, richiameremo alcune nozioni di geometria analitica studiate negli anni precedenti: in particolare, rivedremo il concetto di coordinate cartesiane
Funzioni, equazioni e disequazioni logaritmiche
Liceo Scientifico F. Lussana - Bergamo PROGRAMMA di MATEMATICA Classe 4^ F a.s. 2014/15 - Docente: Marcella Cotroneo Libri di testo : L. Sasso "Nuova Matematica a colori 3" e "Nuova Matematica a colori
Esercizi per le vacanze - Classe 3C Prof. Forieri Claudio. Disequazioni. + 3x. x x x
Esercizi per le vacanze - Classe C Prof. Forieri Claudio Disequazioni Risolvi le seguenti disequazioni: 1. ( 5)( + )( ) > 0. ( + 1) > 0. ( + 5) >. 1 1 1 + + < 0 ( 5)( + ) 5. > 0 1 6. + = 7. 1 > 1 ( + 1)(
LA CIRCONFERENZA La circonferenza è il luogo geometrico dei punti equidistanti da un punto C, detto centro.
Geometria Analitica Le coniche Queste curve si chiamano coniche perché sono ottenute tramite l'intersezione di una superficie conica con un piano. Si possono definire tutte come luoghi geometrici e, di
Testi verifiche 3 C 3 I a. s. 2008/2009
Testi verifiche 3 C 3 I a. s. 2008/2009 1) Sono assegnati i punti A(- 1; 3) C(3; 0) M ;1 a) Ricavare le coordinate del simmetrico di A rispetto a M e indicarlo con B. Verificare che il segmento congiungente
Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classe IIID ESERCIZI ESTIVI 2013/14
Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri Classe IIID ESERCIZI ESTIVI 01/1 ALUNNO CLASSE ESEGUI TUTTI GLI ESERCIZI SU UN FOGLIO PROTOCOLLO O UN QUADERNO. Ulteriore
CLASSE 1 A O.M.T. Anno scolastico 2009/10
CLASSE 1 A O.M.T. Anno scolastico 2009/10 Testo: M.Scovenna A.Moretti - Appunti di Algebra 1 - Ed. Cedam ELEMENTI DI RACCORDO CON LA SCUOLA MEDIA Cap. 1 (da pag.11) Cap. 2 (fino a pag 94) - Ordinamento,
UNITÀ DIDATTICA 2 LE FUNZIONI
UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo
Geometria analitica. coppia di numeri equazione di 2 grado. delle equazioni
1 Geometria analitica La geometria analitica stabilisce una corrispondenza tra il mondo della geometria e il mondo dell'algebra. Ciò significa che gli enti geometrici hanno degli enti corrispondenti nel
Roberto Galimberti MATEMATICA
Docente Materia Classe Roberto Galimberti MATEMATICA 4L Programmazione Preventiva Anno Scolastico 2011-2012 Data 31/12/11 Obiettivi Cognitivi Minimi conoscere la definizione di circonferenza come luogo
SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE
SESSIONE ORDINARIA 007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE PROBLEMA Si consideri la funzione f definita da f ( x) x, il cui grafico è la parabola.. Si trovi il luogo geometrico dei
Par_CircoRiassunto2.notebook. February 27, Conoscenza e comprensione pag. 20 LA PARABOLA
LA PARABOLA Conoscenza e comprensione pag. 20 (SCHEDA RIASSUNTIA) 1) Definisci la parabola come luogo di punti e dai una descrizione delle caratteristiche geometriche di questa curva R. pag. 75: Parabola
LE RETTE PERPENDICOLARI E LE RETTE PARALLELE Le rette perpendicolari Le rette tagliate da una trasversale Le rette parallele
PROGRAMMA DI MATEMATICA Classe prima (ex quarta ginnasio) corso F NUMERI: Numeri per contare: insieme N. I numeri interi: insieme Z. I numeri razionali e la loro scrittura: insieme Q. Rappresentare frazioni
LA PARABOLA E LE SUE APPLICAZIONI Problema 1 Determinare l'equazione della parabola di vertice V( 2;0) e passante per P(0;4).
LA PARABOLA E LE SUE APPLICAZIONI Prolema 1 Determinare l'equazione della paraola di vertice V( 2;0) e passante per P(0;4). y = ax 2 + x + c 1)l'appartenenza del punto P alla paraola, 2)l'appartenenza
