log log, inversa: log.
|
|
|
- Raffaello Ambrogio Nanni
- 9 anni fa
- Visualizzazioni
Transcript
1 Università degli Studi di Siena Correzione Prova scritta di Matematica Generale (A.A ) 20 gennaio 2015 Compito ) : ; :, è multiplo di ed è pari; : a volte a volte, ad esempio la coppia ha prodotto non dispari mentre la coppia ha prodotto dispari. Tavola di verità: ) La parola è formata da lettere distinte, i suoi possibili anagrammi sono ; la parola è formata da lettere con la che si ripete volte e la che si ripete volte, i suoi possibili anagrammi sono. ) log log ; log ; ; per determinare l'espressione dell'inversa, posto risulta da cui log log, inversa: log. ) log, quindi log log log ; log. ) :. ; funzione pari, la studiamo solo sul semiasse positivo ed operiamo per simmetria. Segno:, disequazione che non è risolvibile algebricamente, il segno della funzione viene studiato dopo la crescenza e la decrescenza. Intersezioni:. Intersezione con l'asse delle ordinate nel punto. Limiti agli estremi del :, perché per ;, in quanto come sopra risulta e infinitesimi rispetto a per, la funzione non presenta asintoti; Crescenza e decrescenza:. log log. Funzione strettamente crescente in log, strettamente decrescente in log. log log log log, la funzione presenta massimo relativo in e minimo assoluto in log log, dal segno del massimo
2 e del minimo si deduce che la funzione presenta due intersezioni con l'asse delle ascisse una di ascissa inferiore ed una di ascissa superiore a log. Grafico: grafico funzione ,5-1 -0,5 0 0,5 1 1, ) ; per la teoria sugli integrali delle funzioni razionali fratte esistono e tali che ovvero. Posto quindi: log log. 7) Per la formula del differenziale. Posto, e, risulta:,, da cui. 8) Il piano tangente alla superficie ha equazione.,,. Piano tangente: ovvero.
3 Compito ) : a volte a volte, ad esempio se, è un numero pari mentre se, è un numero non pari; :, ad esempio la coppia ; :. Tavola di verità: ) La parola è formata da lettere distinte, i suoi possibili anagrammi sono ; la parola è formata da lettere con la che si ripete volte, i suoi possibili anagrammi sono. log ) log ; log ; ; per determinare l'espressione dell'inversa, posto risulta log da cui log log log, inversa: log log. ) log log, quindi log log log ; log. ) :. ; funzione pari, la studiamo solo sul semiasse positivo ed operiamo per simmetria. Segno:, disequazione che non è risolvibile algebricamente, il segno della funzione viene studiato dopo la crescenza e la decrescenza. Intersezioni:. Intersezione con l'asse delle ordinate nel punto. Limiti agli estremi del :, perché per ;, in quanto come sopra risulta e infinitesimi rispetto a per, la funzione non presenta asintoti; Crescenza e decrescenza:. log log. Funzione strettamente crescente in log, strettamente decrescente in log. log log log log, la funzione presenta massimo
4 relativo in e minimo assoluto in log log, dal segno del massimo e del minimo si deduce che la funzione presenta due intersezioni con l'asse delle ascisse una di ascissa inferiore ed una di ascissa superiore a log. Grafico: grafico funzione 3 2,5 2 1,5 1 0, ,5-1 -0,5 0 0,5 1 1,5 2-0,5 ) ; per la teoria sugli integrali delle funzioni razionali fratte esistono e tali che ovvero. Posto quindi: log log. 7) Per la formula del differenziale. Posto, e, risulta:,, da cui. 8) Il piano tangente alla superficie ha equazione.,,. Piano tangente: ovvero.
5 Compito ) : a volte a volte, ad esempio se e,, mentre se e, ; :, tutti i multipli di sono pari; :, il quadrato. Tavola di verità: ) La parola è formata da lettere distinte, i suoi possibili anagrammi sono ; la parola è formata da lettere con le,,, che si ripetono volte e la che si ripete volte, i suoi possibili anagrammi sono. ) cos cos ; log cos log ; log ; per determinare l'espressione dell'inversa, posto log risulta log da cui log log, inversa: log. ) log, quindi log log log ; log. ) :. ; funzione pari, la studiamo solo sul semiasse positivo ed operiamo per simmetria. Segno:, disequazione che non è risolvibile algebricamente, il segno della funzione viene studiato dopo la crescenza e la decrescenza. Intersezioni:. Intersezione con l'asse delle ordinate nel punto. Limiti agli estremi del :, perché per ;, in quanto come sopra risulta e infinitesimi rispetto a per, la funzione non presenta asintoti; Crescenza e decrescenza:. log log. Funzione strettamente crescente in log, strettamente decrescente in log log. log log log, la funzione
6 presenta massimo relativo in e minimo assoluto in log log, dal segno del minimo assoluto si deduce che la funzione è strettamente positiva. Grafico: grafico funzione ,8-0,6-0,4-0,2 0 0,2 0,4 0,6 0,8 1 ) ; per la teoria sugli integrali delle funzioni razionali fratte esistono e tali che ovvero. Posto quindi: log log. 7) Per la formula del differenziale. Posto, e, risulta:,, da cui. 8) Il piano tangente alla superficie ha equazione.,,. Piano tangente ovvero.
7 Compito ) :, ad esempio se e, ; : a volte a volte, ad esempio se e,, mentre se e, ; :. Tavola di verità: ) La parola è formata da lettere distinte, i suoi possibili anagrammi sono ; la parola è formata da lettere con le,, che si ripetono volte, i suoi possibili anagrammi sono. log ) log ; cos log cos ; log ; per determinare l'espressione dell'inversa, posto log risulta log da cui log log log, inversa:. ) log, quindi log log log ; log. ) :. ; funzione pari, la studiamo solo sul semiasse positivo ed operiamo per simmetria. Segno:, disequazione che non è risolvibile algebricamente, il segno della funzione viene studiato dopo la crescenza e la decrescenza. Intersezioni:. Intersezione con l'asse delle ordinate nel punto. Limiti agli estremi del :, perché per ;, in quanto come sopra risulta e infinitesimi rispetto a per, la funzione non presenta asintoti; Crescenza e decrescenza:. log log. Funzione strettamente crescente in log, strettamente decrescente in log log. log log log, la funzione presenta massimo relativo in e minimo assoluto in log log, dal segno del minimo assoluto si deduce che la funzione è strettamente positiva. Grafico:
8 grafico funzione 1,2 1 0,8 0,6 0,4 0, ,8-0,6-0,4-0,2 0 0,2 0,4 0,6 0,8 1 ) ; per la teoria sugli integrali delle funzioni razionali fratte esistono e tali che ovvero. Posto quindi: log log. 7) Per la formula del differenziale. Posto, e, risulta:,, da cui. 8) Il piano tangente alla superficie ha equazione.,,. Piano tangente: ovvero.
SYLLABUS DI MATEMATICA Liceo Linguistico Classe III
SYLLABUS DI MATEMATICA Liceo Linguistico Classe III LE EQUAZIONI DI SECONDO GRADO Le equazioni di secondo grado e la loro risoluzione. La formula ridotta. Equazioni pure, spurie e monomie. Le relazioni
SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7
SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 Esercizio. Funzione da studiare: log( 3).. Dominio: dobbiamo richiedere che il denominatore non si annulli e che il logaritmo sia ben definito. Quindi le condizioni
Studio di funzione. numeri.altervista.org
Studio di funzione 1. Determinazione del campo di esistenza CONDIZIONE DI ESISTENZA intera: FUNZIONE RAZIONALE se è del tipo f(x)=p(x) dove P(x) e' un polinomio nella variabile x --------------------------------------------------------------------
PROGRAMMA DI MATEMATICA APPLICATA
PROGRAMMA DI MATEMATICA APPLICATA Classe II A Turismo A.S. 2014/2015 Prof.ssa RUGGIERO ANGELA ISABELLA I NUMERI REALI Radicali: - Riduzione allo stesso indice e semplificazione - Alcune operazioni fra
Matematica 2. Derivate Esercizi. y=sen( x 4 3x) y' =cos(x 4 3x)(4x 3 3) y=logsen( x x) y' = sen(x 4 +3x) cos(x4 +3x)(4x 3 +3)
Matematica 2 Derivate Esercizi y=sen( 4 3) y' =cos( 4 3)(4 3 3) y=logsen( 4 1 3) y' = sen( 4 +3) cos(4 +3)(4 3 +3) y=sen 2 ( 4 3) y' =2sen( 4 3 )cos( 4 3)(4 3 3) Funzioni ad una sola variabile y=f() è
Argomento 7 - Studi di funzioni Soluzioni Esercizi
Argomento 7 - Studi di funzioni Soluzioni Esercizi Sol. E. 7. f() = log + 4 Insieme di definizione : Limiti : 4 log + = + 0 + (confronto tra infiniti in cui prevale la potenza) 4 log + = log = + + + Notiamo
Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006
Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 005/006 Antonella Ballabene SOLUZIONI -14 marzo 006- SCHEMA per lo STUDIO di FUNZIONI 1. Dominio della funzione f)..
STUDIO DEL GRAFICO DI UNA FUNZIONE
STUDIO DEL GRAFICO DI UNA FUNZIONE 1 Richiami Teorema 1 (Test di monotonia). Sia f : (a, b) R una funzione derivabile. Allora f è monotona crescente (risp. decrescente) in (a, b) se e solo se f () 0 (risp.
Esame di Matematica - Prima parte A.A Parma, 6 Dicembre 2004
- Prima parte A.A. 2004-2005 Parma, 6 Dicembre 2004 1) [3 punti] Risolvete le seguenti disequazioni: a) x 2 < 36 ; b) 5 x x 2 1. 2) [4 punti] Risolvete le seguenti disequazioni: a) x(2 x)( x 4) < 0 ; b)
Derivata di una funzione
Derivata di una funzione Prof. E. Modica http://www.galois.it [email protected] Il problema delle tangenti Quando si effettua lo studio delle coniche viene risolta una serie di esercizi che richiedono la
x log(x) + 3. f(x) =
Università di Bari, Corso di Laurea in Economia e Commercio Esame di Matematica per l Economia L/Z Dr. G. Taglialatela 03 giugno 05 Traccia dispari Esercizio. Calcolare Esercizio. Calcolare e cos log d
Programmazione per Obiettivi Minimi. Matematica Primo anno
Programmazione per Obiettivi Minimi Matematica Primo anno Saper operare in N, Z e Q. Conoscere e saper applicare le proprietà delle potenze con esponente intero e relativo. Saper operare con i monomi.
UNITÀ DIDATTICA 2 LE FUNZIONI
UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo
ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2006
ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 6 PRBLEMA Si considerino le funzioni f e g determinate da f () log e g () a, essendo a un parametro reale e il logaritmo di base e.. Si discuta,
Elenco moduli Argomenti Strumenti / Testi Letture / Metodi. partecipazione degli alunni. 2 Completamento equazioni e disequazioni.
Pagina 1 di 5 DISCIPLINA: MATEMATICA E LABORATORIO INDIRIZZO: IGEA CLASSE: IV FM DOCENTE : Cornelio Terreni Elenco moduli Argomenti Strumenti / Testi Letture / Metodi 1 Matematica RIPASSO e COMPLETAMENTO:
Programma svolto a.s. 2017/2018 Classe 1H Materia: Matematica Docente: De Rossi Francesco
Classe 1H Materia: Matematica Docente: De Rossi Francesco - Matematica multimediale. bianco Vol 1 Autori: M. Bergamini, G. Barozzi Casa Editrice: Zanichelli codice ISBN 978888334671 Capitolo 1 Insiemi
Roberto Galimberti MATEMATICA
Docente Materia Classe Roberto Galimberti MATEMATICA 4L Programmazione Preventiva Anno Scolastico 2011-2012 Data 31/12/11 Obiettivi Cognitivi Minimi conoscere la definizione di circonferenza come luogo
Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2
Studio di funzione Copyright c 2009 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione
Esercitazioni di Matematica
Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +
Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 25 Gennaio Studio di Funzione
Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 25 Gennaio 2017 Studio di Funzione 1. Si consideri la funzione reale di variabile reale così definita f() = 2 + 4. (a) Determinare
LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI
Autore: Enrico Manfucci - 6/05/0 LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI PREMESSA Per Studio di funzione si intende disegnare il grafico di una funzione data la sua espressione analitica. Questo significa
Studiamo adesso il comportamento di f(x) alla frontiera del dominio. Si. x 0 lim f(x) = lim. x 2 +
Esercizi del 2//09. Data la funzione f(x) = ln(x 2 2x) (a) trovare il dominio, gli eventuali asintoti e gli intervalli in cui la funzione cresce o decresce. Disegnare il grafico della funzione. (b) Scrivere
Esonero di Analisi Matematica I (A)
Esonero di Analisi Matematica I A) Ingegneria Edile, 7 novembre 00 Michele Campiti) 1. Studiare il seguente ite: x π/ cos x 1 sin x) tan 3 x π ).. Calcolare le seguenti radici quarte: 3i 4 1 + i). Esonero
Esame di Matematica Generale 7 Febbraio Soluzione Traccia E
Esame di Matematica Generale 7 Febbraio 013 - Soluzione Traccia E ESERCIZIO 1. Si consideri la funzione f : R R f(x) = x + 1 x. (a) Determinare il dominio di f ed eventuali simmetrie (3 punti). Dominio.
PROGRAMMA di MATEMATICA A. S. 2015/16 PRIVATISTI CLASSE PRIMA Aritmetica: Gli insiemi numerici N, Z, Q con le operazioni e le proprietà.
CLASSE PRIMA Aritmetica: Gli insiemi numerici N, Z, Q con le operazioni e le proprietà. Utilizzare le procedure del calcolo aritmetico(a mente, per iscritto, a macchina) per calcolare espressioni aritmetiche
Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli x R che verificano le condizioni:
Studi di funzione 5) Studiare la funzione definita da f() = arcsin ( ) + 3 2 +. Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli R che verificano le condizioni: () : +,
ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA
ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA Prova scritta del 6 giugno 2004: soluzioni ESERCIZIO - Data la funzione f) 3 2 4 + 27 + 9 2 ) /3 4 + 27, + 9 si chiede
Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.
Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti
Argomento 7. Studio di funzione
Argomento 7 Studio di funzione Studiare una funzione significa ottenere, mediante strumenti analitici (iti, derivate, ecc.) informazioni utili a disegnare un grafico qualitativo della funzione data. I
Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste
CONCAVITA E CONVESSITA DI UNA FUNZIONE. FLESSI. SCHEMA GENERALE PER LO STUDIO DI FUNZIONE. FUNZIONI RAZIONALI E IRRAZIONALI INTERE E FRATTE. TEOREMA DI DE L HOSPITAL CON APPLICAZIONI AI LIMITI. 1 Concavit{
STUDIO DEL GRAFICO DI UNA FUNZIONE
STUDIO DEL GRAFICO DI UNA FUNZIONE PROF.SSA ROSSELLA PISCOPO 2 di 35 Indice 1 SCHEMA PER LO STUDIO DEL GRAFICO DI FUNZIONE... 4 2 ESEMPI... 11 2.1 2.2 2.3 2.4 2.5 2.6 FUNZIONE ESPONENZIALE... 11 FUNZIONE
LICEO STATALE CARLO TENCA? MILANO
LICEO STATALE CARLO TENCA? MILANO P. I. 80126370156 Cod. Mecc. MIPM11000D Bastioni di Porta Volta,16 20121 Milano Tel. 02.6551606 Fax 02.6554306 C. F. 80126370156 - Cod. Mecc. MIPM11000D Email: [email protected]
TRIGONOMETRIA: DISEQUAZIONI TRIGONOMETRICHE
FACOLTÀ DI INGEGNERIA CORSI DI POTENZIAMENTO - MATEMATICA E LOGICA ANNO ACCADEMICO 008-009 ESERCIZI DI TRIGONOMETRIA: DISEQUAZIONI TRIGONOMETRICHE Esercizio : Risolvere la seguente disequazione >. Svolgimento:
Analisi Matematica 1 Soluzioni prova scritta n. 1
Analisi Matematica Soluzioni prova scritta n Corso di laurea in Matematica, aa 008-009 5 giugno 009 Sia a n la successione definita per ricorrenza: a n+ 3 a n a 3 n, a 3 a n+ 3 a n a 3 n, a 3 a n+ 3 a
LICEO SCIENTIFICO STATALE. Matematica. Programma svolto. Testo di riferimento: M. Bergamini - G. Barozzi - A. Trifone
A.S. 2016 2015 17 16 LICEO SCIENTIFICO STATALE " G. Pellecchia" - CASSINO (FR) Classe 3^C 1^C Matematica Programma svolto Docente: Bianchi Angelarita Testo di riferimento: M. Bergamini - G. Barozzi - A.
Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)
Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se
Diario delle lezioni di Calcolo e Biostatistica (O-Z) - a.a. 2013/14 A. Teta
Diario delle lezioni di Calcolo e Biostatistica (O-Z) - a.a. 2013/14 A. Teta 1. (1/10 Lu.) Generalità sugli insiemi, operazioni di unione, intersezione e prodotto cartesiano. Insiemi numerici: naturali,
PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016
PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016 LE DISEQUAZIONI 1. Le disequazioni di primo e secondo grado 2. Le disequazioni di grado superiore al secondo e le disequazioni fratte
Soluzioni dei problemi della maturità scientifica A.S. 2012/2013
Soluzioni dei problemi della maturità scientifica A.S. / Nicola Gigli Sun-Ra Mosconi June, Problema. Il teorema fondamentale del calcolo integrale garantisce che Quindi f (x) = cos x +. f (π) = cos π +
Verica di Matematica su dominio e segno di una funzione [TEST 1]
Verica di Matematica su dominio e segno di una funzione [TEST 1] 1. Esporre le principali caratteristiche della funzione logaritmica dopo averla denita. y = log a x 2. Spiegare come si calcola il dominio
Programma delle lezioni svolte nel corso CLEM di Matematica Generale, Lettere M-Z, Prof. F. Manzini.
Programma delle lezioni svolte nel corso CLEM di Matematica Generale, Lettere M-Z, Prof. F. Manzini. 1. Generalità sul corso e sulle modalità di esame. Insiemi ed operazioni sugli insiemi. Applicazioni
ESERCIZI SULLO STUDIO DI FUNZIONI
ESERCIZI SULLO STUDIO DI FUNZIONI 0 novembre 206 Esercizi Esercizio n. Si consideri la funzione f(x) = 7 x 2 + 3 Dominio: R Intersezioni con gli assi: Intersezioni con l asse x: { y = 0 y = 7 x 2 + 3.
Esercizi di Matematica. Studio di Funzioni
Esercizi di Matematica Studio di Funzioni CONSIDERAZIONI GENERALI Ad ogni funzione corrisponde un grafico, quindi studiare una funzione significa determinare il suo grafico. Per le conoscenze fin qui acquisite,
ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012
ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 1. Esercizi 3 1. Studiare la seguente funzione FINO alla derivata prima, con tracciamento di grafico ed indicazione
Appunti di Matematica
Appunti di Matematica Studio della funzione irrazionale 9 x 2 f(x) = x 1 Massimo Pasquetto I.P.S.E.O.A. Angelo Berti classe 5AS 23 Settembre 2016 massimo dot pasquetto at infinitum dot it Appunti di Matematica
a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [;
ESERCIZIO - Data la funzione f (x) + x2 2x x 2 5x + 6, si chiede di: a) calcolare il dominio di f ; (2 punti) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire se f ha asintoti
A.A. 2016/17 - Analisi Matematica 1
A.A. 2016/17 - Analisi Matematica 1 Argomenti svolti, libro di testo di riferimento: P. Marcellini, C. Sbordone: Elementi Calcolo. Liguori Editore. O. Bernardi: Temi d esame senza tema. Ed. Libreria Progetto.
CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI
CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI Notiamo che lo studio delle funzioni assegnate f,..., f 4 si riduce a considerare
