74. Geogebra, per operare dinamicamente con la matematica di Sergio Balsimelli
|
|
|
- Pietro Rizzi
- 9 anni fa
- Visualizzazioni
Transcript
1 74. Geogebra, per operare dinamicamente con la matematica di Sergio Balsimelli Sunto. Geogebra è un software libero e multi-piattaforma, che permette di operare in modo attivo con la matematica (geometria, algebra ed analisi). Con esso è possibile disegnare punti, segmenti, rette, coniche, funzioni e soprattutto è possibile modificarle dinamicamente. Contemporaneamente in una apposita finestra di algebra vengono visualizzate le coordinate dei punti e le misure di segmenti, angoli, perimetri, aree. La finestra dei numeri e quella delle figure interagiscono dinamicamente tra di loro. Di seguito si presentano alcune attività didattiche che si possono svolgere con studenti della scuola secondaria di primo grado. 1. Presentazione del software Geogebra è un software didattico per l'insegnamento della geometria, ma non solo, che fa parte del gruppo di software detti di "geometria dinamica". E' abbastanza simile al più noto Cabri gèomètre. A differenza di quest'ultimo è un software open-source rilasciato sotto licenza GNU GPL (General Public Licence); ossia il software può essere usato, copiato e distribuito liberamente, purché non a scopo di lucro. Si può scaricare dal sito del progetto [1]. Ideatore e principale sviluppatore è Markus Hohenwarter [2] della Florida Atlantic University (USA). Esiste un forum, in più lingue (italiano compreso), dove è possibile scambiare consigli e informazioni [3]. Esistono poi aree Wiki in diverse lingue dove è possibili pubblicare i propri materiali oppure scaricare quelli degli altri. Infine segnalo alcuni usi artistici di Geogebra: il GeoGebra Art Project [4] e le cartoline realizzate dall'i.i.s.s. Vivante di Bari [5]. La differenza sostanziale tra Geogebra e Cabri è che il primo dà una duplice vista degli oggetti: ad ogni espressione nella finestra algebra corrisponde un oggetto nella finestra geometria e viceversa. Geogebra presenta infatti una barra di input che permette di inserire numeri, angoli, vettori, punti, rette e coniche attraverso le coordinate o le loro equazioni. Figura 1. La finestra di Geogebra: a sinistra la finestra Algebra, al centro il foglio da disegno, in basso il campo di inserimento, in alto la Barra dei menu e quella dei comandi(cliccando sulla freccetta in basso a destra di ogni icona si apre un menu a tendina) 54
2 2. Attività per la prima classe della secondaria di primo grado 2.1 Asse di un segmento Dopo aver riportato sugli assi i punti A(-5;6) e B(7;3) scegliere Ic3 Segmento tra due punti e tracciare il segmento AB. Trovare quindi il suo punto medio C scegliendo Ic2 Punto medio o centro e cliccando sul segmento AB; tracciare la perpendicolare al segmento AB passante per C, scegliendo Ic4 Retta perpendicolare e cliccando sul segmento AB e poi sul punto C, individuando l asse di AB. Prendere quindi un punto D sull asse (quando il punto è sulla retta, la retta diventa più scura) e tracciare i segmenti AD e DB. Nella finestra Algebra osservare che i due segmenti hanno la stessa misura e ciò avviene anche spostando D sull asse. Con lo strumento Testo (Ic8) digitare Segmento c= +c e Segmento d= +d, e osservare che i valori dei segmenti c e d rimangono uguali anche spostando D. Cliccare sul punto D e premere il tasto + o della tastiera numerica per farlo scorrere sull asse e osservare l uguaglianza dei due segmenti nella finestra algebra. Con lo strumento Testo, digitare L asse di un segmento è la perpendicolare passante per il punto medio del segmento, ma è anche il luogo dei punti equidistanti dagli estremi del segmento. 2.2 Angoli complementari Disegnare la semiretta AB di origine A esattamente orizzontale e la semiretta AC esattamente verticale. Nella riga di Input digitare α = 30 poi con Ic6 Angolo di data misura cliccare in B, A e digitare α. Disegnare la semiretta AD poi cliccare sull angolo β col tasto destro e scegliere Proprietà Dimensione 100, Mostra etichetta Valore e cliccare infine su Applica. Con lo strumento Ic6 Angolo, cliccare in DAC poi cliccare col tasto destro sull angolo γ e scegliere Proprietà Dimensione 100, Mostra etichetta Valore, Colore rosso e cliccare infine su Applica. Nella Finestra Algebra cliccare su α = 30 col tasto destro e scegliere Mostra oggetto; nello slider che si forma ciccarci col tasto destro e scegliere Proprietà Intervallo max 90 poi cliccare su Applica. Con lo strumento testo digitare: L angolo rosso misura = + γ L angolo verde misura = + β la somma degli angoli γ + β è = + (γ + β). Provare a spostare il punto sullo slider. 55
3 2.3 Angoli supplementari Disegnare le semirette AB di origine A esattamente orizzontale ed AC dalla parte opposta. Nella riga di Input digitare α = 30 poi con Ic6 Angolo di data misura cliccare in B, A e digitare α. Disegnare la semiretta AD poi cliccare sull angolo β col tasto destro e scegliere Proprietà Dimensione 100, Mostra etichetta Valore e cliccare infine su Applica. Con lo strumento Ic6 Angolo, cliccare in DAC poi cliccare col tasto destro sull angolo γ e scegliere Proprietà Dimensione 100, Mostra etichetta Valore, Colore rosso e cliccare infine su Applica. Nella Finestra Algebra cliccare su α = 30 col tasto destro e scegliere Mostra oggetto; nello slider che si forma ciccarci col tasto destro e scegliere Proprietà Intervallo max 180 poi cliccare su Applica. Con lo strumento testo digitare: L angolo rosso misura = + γ L angolo verde misura = + β la somma degli angoli γ + β è = + (γ + β). Provare a spostare il punto sullo slider. 2.4 Somma degli angoli interni di un triangolo Disegnare con lo strumento Poligono un triangolo a piacere e misurare tutti i suoi angoli ricordando di cliccare sulle coppie di lati seguendo un percorso in senso orario. Con lo strumento Testo digitare quindi: l angolo α misura +α, l angolo β misura +β poi L angolo ν misura + ν ed infine La somma degli angoli interni del triangolo è +(α+β+ν). Provare a spostare i vertici del triangolo ed osservare cosa accade alla misura di ciascun angolo ed alla loro somma. Digitare infine: La somma degli angoli interni di un triangolo vale 180. Formattare il testo colorandolo di rosso a 14 punti. 2.5 Altezze ed ortocentro Disegnare un triangolo ABC e tracciare le altezze relative a ciascun lato (perpendicolare ad AB passante per C..) determinando la loro intersezione D e colorando questo punto di rosso. Cosa accade spostando i vertici del triangolo? In quale caso l altezza rimane all interno, su un vertice o all esterno del triangolo stesso? 56
4 3. Attività per la seconda classe 3.1 Teorema di Pitagora Prendere i punti A(7,11) e B(14,11) e disegnare con lo strumento Ic5 Semicirconferenza per due punti la semicirconferenza di diametro AB. Unire A con B con un segmento e disegnare il triangolo ABC con C preso a piacere sulla semicirconferenza. Che tipo di triangolo è ABC? Nella Finestra Algebra cliccare col tasto destro su a 1 e su c 1 scegliere Rinomina e rinominare a 1 con d e c 1 con e. Dai punti A e C tracciare le perpendicolari al segmento b poi disegnare con Ic5 Circonferenza di dato centro, le circonferenze di centro A e passante per C e di centro C e passante per A. Trovare le intersezioni D ed E tra rette e circonferenze, disegnare il quadrato ACDE colorandolo di rosso. Nascondere rette, circonferenze e semicirconferenza. Disegnare il quadrato di lato BC colorandolo di blu (perpendicolari al lato d condotte da B e da C, circonferenze di centro B e passante per C e di centro C e passante per B trovare le intersezioni F e G e disegnare il quadrato CBGF) e nascondere rette e circonferenze. Ripetere costruendo il quadrato ABIH sul lato e colorandolo di verde. Nascondere rette e circonferenze. Con lo strumento Testo digitare Area del quadrato ACDE= +Q Area del quadrato BGFC= +R Area del quadrato ABIH +S Somma aree quadrati ACDE e BGFC= +(Q +R). Spostare quindi il punto C, cosa si può osservare? Aprire il file Pitagora-vettori e ricostruire il quadrato più grande.aprire i file Dimostrazione Pitagora 1 e Dimostrazione Pitagora 2 e agire sugli slider per dimostrare il teorema. 3.2 Simmetria assiale Tracciare una retta per due punti inclinata a piacere e nella parte superiore disegnare un triangolo ABC. Prendere Ic7 Simmetrico rispetto ad una retta, cliccare dentro al triangolo (viene evidenziato ogni suo lato) e poi sulla retta. Cliccare col tasto destro dentro alla simmetrica ottenuta, scegliere Proprietà colore e cambiare il colore. Provare a spostare i vertici del triangolo ed osservare cosa accade. 57
5 3.3 Simmetria centrale Dopo aver disegnato un quadrilatero, prendere al suo esterno un punto E, scegliere Ic7 Simmetrico rispetto ad un punto, cliccare sul quadrilatero e poi sul punto E. Colorare la figura simmetrica con un colore diverso e provare a spostare i vertici del quadrilatero di partenza. Ripetere l esercizio disegnando un pentagono e poi un esagono. 3.4 Rotazione Disegnare un triangolo ABC e prendere un punto D fuori dello stesso, scegliere Ic7 Ruota intorno ad un punto di un angolo, cliccare sul triangolo e poi sul punto E e nella finestra che si apre digitare il valore dell angolo di rotazione, scegliendo anche il verso della rotazione (Orario o Antiorario). Colorare il triangolo ottenuto con un colore diverso da quello iniziale. Ripetere disegnando e ruotando di un certo numero di gradi a piacere, in senso orario o antiorario, un quadrilatero, un pentagono ed un esagono. 3.5 Traslazione Prendere due punti A e B ed unirli con Ic3 Vettore tra due punti, cliccando in A e poi in B. Disegnare quindi un triangolo e scegliere Ic7 Trasla di un vettore, cliccare dentro al triangolo e poi sul vettore. Colorare il triangolo ottenuto di un colore diverso, unire i vertici corrispondenti con un segmento, cliccare su ciascuno di essi col tasto destro e scegliere Proprietà Stile tratto Tratteggiato osservare poi il loro parallelismo. Provare a spostare il vertice B del vettore, poi ripetere l esercizio disegnando un quadrilatero, un pentagono ed un esagono. 3.6 Antitraslazione Disegnare una retta parallela all asse y e disegnare un triangolo DEC a piacere. Sulla retta prendere un punto F e tracciare il vettore BF. Disegnare quindi il simmetrico del triangolo rispetto alla retta colorandolo di colore rosso. Traslare quindi il triangolo ottenuto del vettore disegnato, colorando di blu. Provare quindi a spostare i vertici del triangolo e poi il vettore (anche sopra al punto B). 58
6 3.7 Omotetia Disegnare un triangolo a piacere con lo strumento Poligono e prendere un punto D esterno ad esso. Ic7 Dilata oggetto da un punto di un fattore, cliccare sul triangolo, sul punto D e nella finestra che si apre digitare 2. Tracciare le rette che passano il punto D e per ciascun vertice del triangolo, poi provare a spostare il punto D. Ripetere disegnando un quadrilatero e poi un pentagono a piacere. Disegnare un triangolo ed un punto D esterno ad esso. Procedere come in precedenza, ma stavolta nella finestra che si apre digitiamo il valore -2 (si ottiene l omotetia inversa). Provare con un quadrilatero ed un pentagono. 4. Attività per la classe terza 4.1 Primo teorema di Euclide Con lo strumento Ic5 semicirconferenza per due punti, disegnare una semicirconferenza ed unire i punti A e B con un segmento. Individuare sulla semicirconferenza un punto C e tracciare il triangolo ABC (rettangolo perché inscritto in una semicirconferenza). Tracciare le perpendicolari al segmento AC per A e per C poi prendere Circonferenza di dato centro e disegnare le circonferenze di centro A e raggio AC e centro C e raggio CA, individuando le intersezioni D ed E con le rette precedenti. Tracciare il quadrato ACDE e colorarlo con colore diverso dal triangolo. Nascondere le due circonferenze. Tracciare la perpendicolare al segmento AB condotta da C individuando l intersezione F e la perpendicolare ad AB condotta da A. Disegnare la circonferenza di centro A e raggio e AB individuando l intersezione G tra circonferenza e perpendicolare ad AB per A. Da G tracciare la perpendicolare alla retta passante per G e individuare il punto H intersezione della retta passante per G e per CF. Disegnare il rettangolo AFHG e colorarlo diversamente dagli altri. Tracciare il segmento CF e nascondere rette e circonferenze. Digitare con lo strumento Testo Q = +Q + cm 2 e R = +R + cm 2 riportando i valori ottenuti dentro alle rispettive figure, poi cliccando su questi valori col tasto destro scegliere proprietà Punto iniziale legarlo ad una delle lettere di un vertice. Nascondere tutte le rette e le circonferenze e provare quindi a spostare il punto C. 59
7 4.2 Secondo teorema di Euclide Con lo strumento Ic5 semicirconferenza per due punti, disegnare una semicirconferenza passante per A e per B. Individuare sulla semicirconferenza un punto C e tracciare il triangolo ABC. Disegnare la perpendicolare al segmento AB passante per C individuando il punto d incontro D. Tracciare la perpendicolare per C al segmento CD e la parallela a quest ultima per B. Disegnare la circonferenza di centro C e raggio D e la circonferenza di centro D e raggio C individuando le intersezioni F ed E con le due rette disegnate. Disegnare il quadrato CEFD colorandolo di blu (poligono Q) e nascondere le circonferenze. Tracciare la perpendicolare da B ad AB e disegnare le circonferenze di centro B e raggio BD e di centro D e raggio DB individuando le intersezioni G ed H. Dal punto A tracciare la perpendicolare ad AB, e la retta GH e individuare l intersezione J con la retta precedente (perpendicolare per A ad AB). Tracciare il rettangolo ADHJ e colorarlo in modo diverso. Nascondere circonferenze e rette, quindi digitare con lo strumento Testo Area quadrato Q = +Q + cm 2 e Area rettangolo S = +S + cm 2. Come sono le due aree? Cosa accade spostando il punto C? 4.3 La retta Inserire nella riga di input: a=1 e dare Invio b=1 e dare Invio a*x+b e dare Invio Si ottiene la funzione che ha per rappresentazione grafica la retta y=x+1. Tale retta taglia l asse delle y nel punto +1 (ordinata all origine). Proviamo a cambiare tale valore realizzando uno slider: cliccare in b=1, nella Finestra Algebra, col tasto destro e scegliere Mostra oggetto. Cliccare col tasto destro sullo slider e scegliere Proprietà inserendo i valori -10 e 10 in Intervallo e 1 in Incremento. Possiamo osservare che quando b aumenta, la retta taglia l asse y nel punto corrispondente al valore sullo slider, nel semiasse positivo delle y. Quando invece b diminuisce e arriva a 0, la retta passa per l origine degli assi, mentre quando i valori diventano negativi, viene tagliato l asse y nel suo semiasse negativo (fino a -10). 4.4 La parabola Inserire nella riga di input: a=1 e dare Invio y=a*x^2 e dare Invio Realizzare con il valore a uno slider (Intervallo da -10 a 10 Incremento 1). Aumentando il valore di a la parabola si avvicina all asse delle y, quando a=0 si ottiene la retta y=0 (asse delle x) mentre con a < 0 la parabola cambia concavità (guarda verso il basso) e si sposta nel 3 e 4 quadrante. 60
8 4.5 Una cubica Inserire nella riga di input: a=1 e dare Invio f(x)=a*x^3 Realizzare uno slider (Intervallo da -10 a 10 Incremento 1); dando alla a valori positivi crescenti la parabola si avvicina all asse delle y, quando a = 0 si ottiene la retta x= 0, quando la a assume valori negativi il disegno della si sposta nel 2 e 4 quadrante. 4.6 La circonferenza Inserire nella riga di input: a=1 x^2+ y^2 = a^2 Realizzare uno slider (Intervallo da 1 a 10 Incremento 1). Aumentando il valore della a le circonferenze, con centro nell origine, aumentano di raggio. 4.7 Uso di due funzioni e due slider Le funzioni da utilizzare sono y=x 2-4 e y= x-1. Digitare nella riga di input t=1 e dare Invio. Digitare quindi C= (t, t 2-4). Creare con t=1 uno slider regolando l intervallo tra -10 e 10 e l incremento di 0,1. Cliccare col tasto destro sul punto C e selezionare Traccia on. Digitare nella riga di input s=1 e poi D=(s, s-1) e creare con s uno slider con le caratteristiche precedenti. Cliccare col tasto destro sul punto D e selezionare Traccia on, cambiando inoltre il colore della retta. Muovere l uno e l altro slider e osservare cosa si ottiene (intersezioni tra retta e parabola). Sitografia [1] [2] [3] [4] [5] 61
Geogebra classe 2 Media
Geogebra classe 2 Media A cura del Prof. Sergio Balsimelli [email protected] GEOGEBRA CLASSE 2 Costruzione di figure piane Esercizio n 1: disegno del quadrato dato il lato Disegnare il segmento
Esercizio n 1: disegno del quadrato dato il lato Esercizio n 2: disegno del quadrato dato la diagonale Esercizio n 3: disegno del parallelogramma
GEOGEBRA CLASSE 2 Esercizio n 1: disegno del quadrato dato il lato Disegnare il segmento AB con A(8,4) e B(13,7). Tracciare da A e da B le perpendicolari al segmento AB e con Ic5 Circonferenza di dato
LA GEOMETRIA CON GEOGEBRA (seconda edizione)
La geometria con Geogebra Introduzione 2 SERGIO BALSIMELLI LA GEOMETRIA CON GEOGEBRA (seconda edizione) Esercizi per la scuola secondaria di primo grado e di secondo grado La geometria con Geogebra Introduzione
1. IL CERCHIO COLORATO
1. IL CERCHIO COLORATO Utilizzare l icona per inserire un segmento di data lunghezza Cliccare sul punto (estremo) e scrivere quindi la lunghezza del segmento (10 per esempio) Cliccare col tasto destro
L ANGOLO (2) MISURA DELL ANGOLO Per avere la misura di un angolo, che si chiama ampiezza, si deve ricorrere ad uno strumento: il goniometro.
Geogebra L ANGOLO (2) MISURA DELL ANGOLO Per avere la misura di un angolo, che si chiama ampiezza, si deve ricorrere ad uno strumento: il goniometro. In Geogebra c è un icona che ci permette di misurare
ASSI CARTESIANI: Esercizio n 80: Date le seguenti terne di punti, disegnare il triangolo corrispondente (C3 il perimetro e l area:
ASSI CARTESIANI: Per attivare la visualizzazione degli assi cartesiani scegliere C Mostra gli assi e poi C Griglia, portarsi su un asse e cliccare quando compare la scritta Questi assi. E possibile cambiare
1 La traslazione. 2 La composizione di traslazioni. 3 La rotazione
1 La traslazione Per poter applicare una traslazione ad una generica figura geometrica si deve: ± creare il vettore di traslazione AB mediante il comando Vettore tra due punti; ± cliccare con il mouse
ISTRUZIONI PER INIZIARE
1 ISTRUZIONI PER INIZIARE Questa è la barra di menu: serve per dare tutte le informazioni sui file che devi creare, salvare, ecc. Questa icona serve per chiudere a bordo pagina il file e poi riaprirlo
Costruzioni geometriche. (Teoria pag , esercizi )
Costruzioni geometriche. (Teoria pag. 81-96, esercizi 141-153 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda: due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente
Esercitazione 1. Costruzione dell esagono regolare con squadra e compasso
Esercitazione 1 Costruzione dell esagono regolare con squadra e compasso 1. Inserire due punti, A=(2,0) e B=(2,8). 2. Tracciare il segmento a per A e B. 3. Costruire l asse b del segmento a (sugg. Usare
LA CIRCONFERENZA. Preparazione. Esercizi
IN CLASSE LA CIRCONFERENZA Preparazione Per questi esercizi con GeoGebra dovrai utilizzare i seguenti pulsanti. Leggi sempre le procedure di esecuzione nella zona in alto a destra, accanto alla barra degli
Laboratorio di informatica
Laboratorio di informatica GEOMETRIA DELLO SPAZIO Introduzione a Geogebra 3D La versione 5 di Geogebra prevede anche la possibilità di lavorare in ambiente 3D. Basta aprire Visualizza - Grafici 3D: sullo
Laboratorio di informatica
GEOMETRIA ANALITICA CON GEOGEBRA Oltre che per lo studio della geometria euclidea, come abbiamo fatto lo scorso anno, il software Geogebra (geometria + algebra) può essere utilizzato per lo studio della
Esercizio n 31: Disegno del quadrato
Esercizio n 31: Disegno del quadrato 1 1 metodo Poligono regolare Utilizzando C3 Poligono regolare, cliccare per fissare il centro e poi un vertice. Ruotare (in senso orario si ottiene un poligono convesso,
c) Determina per quali valori di k il segmento BC ha misura 2. 3) Ricava l equazione della spezzata rappresentata in figura
VERIFICHE TERZA C a.s. 2010 2011 1) Sono assegnati i punti A(0; 10) B(8; - 6) C(0; 0). Rappresentali. a) Verifica che il triangolo ABC è isoscele e calcola la sua area b) Tra i punti P che hanno ordinata
Compito di matematica Classe III ASA 23 aprile 2015
Compito di matematica Classe III ASA 3 aprile 015 A. Descrivere mediante un opportuno sistema di disequazioni nelle variabili x e y la parte di piano colorata: A1 A A1: y 1 x + x 1 4 x y 0 A: x 4 + y 9
Primi passi con Geogebra
Primi passi con Geogebra La finestra di GeoGebra - versione 4 A. Aprire l applicazione GeoGebra 1. Sul desktop, fare doppio click sull icona di Geogebra B. Dopo l avvio di GeoGebra La finestra che normalmente
Lezione 6 Richiami di Geometria Analitica
1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata
GEOGEBRA. Nella scuola del Primo Ciclo
GEOGEBRA Nella scuola del Primo Ciclo GEOGEBRA GeoGebra è un software gratuito di matematica dinamica. In questi due incontri saranno utilizzati solo gli strumenti geometrici Con questo software è possibile
1 L'omotetia. 2 Il teorema del rapporto dei perimetri e delle aree di due triangoli simili
1 L'omotetia Per definire un'omotetia bisogna disegnare una generica figura nel piano (nel nostro caso utilizzeremo un triangolo), un punto (il centro dell'omotetia) e un numero (il rapporto k dell'omotetia).
La geometria con il CABRI
La geometria con il CABRI Cabrì è un micromondo dove si "materializzano" gli enti astratti della geometria elementare del piano (punti, rette, angoli, figure) sotto forma di disegni, su "fogli virtuali"
g. Ferrari M. Cerini D. giallongo Piattaforma informatica geometria 3 trevisini EDITORE
g. Ferrari M. Cerini D. giallongo Piattaforma Ma Pia a tematica informatica geometria 3 trevisini EDITORE unità 14 2 UNITÀ14 LE MISURE DI CIRCONFERENZA, CERCHIO E LORO PARTI 1. Relazione tra circonferenza
b) Ricava l equazione della retta che passa per A e che è parallela all asse delle ascisse
Verifiche anno scolastico 2011 2012 1) Riferendoti alla figura ricava l equazione della retta t. a) A è il punto di t che ha ascissa - 1, ricava la sua ordinata. B è il punto di t che ha ordinata 3 ricava
IL PIANO CARTESIANO. Preparazione. Esercizi
IN CLASSE IL PIANO CARTESIANO Preparazione Per questi esercizi con GeoGebra dovrai utilizzare i seguenti pulsanti. Leggi le procedure di esecuzione nella zona in alto a destra, accanto alla barra degli
Gli esercizi assegnati all esame saranno varianti di alcuni degli esercizi seguenti
Gli esercizi assegnati all esame saranno varianti di alcuni degli esercizi seguenti 1.1) Su un piano α (trasparente) sia tracciato un triangolo equilatero. Si consideri un piano β parallelo ad α e raggi
GEOMETRIA. Studio dei luoghi /relazioni tra due variabili. Studio delle figure (nel piano/spazio) Problemi algebrici sulle figure geometriche
GEOMETRIA ANALITICA EUCLIDEA Studio dei luoghi /relazioni tra due variabili Studio delle figure (nel piano/spazio) Funzioni elementari Problemi algebrici sulle figure geometriche Grafici al servizio dell
I quadrilateri Punti notevoli di un triangolo
I quadrilateri Capitolo Quadrilateri 1 erifica per la classe prima COGME............................... ME............................. Quesiti 1.a ero o falso? 1. La somma degli angoli interni di un ottagono
Due rette si dicono INCIDENTI se hanno esattamente un punto in comune, altrimenti si dicono PARALLELE.
Riepilogo di Geometria: Assioma A1 Per tutte le coppie di punti P,Q dell insieme S è assegnato un numero reale (=)> 0, che si dice distanza di P da Q e si indica don d(p,q) 1- Se i punti P,Q sono distinti
Introduzione all uso di Geogebra
Curricolo verticale di Matematica - Progetto SIGMA (dare SIGnificato al fare MAtematica) Laboratorio di geometria a.s 2013/14 Quali poligoni tassellano il piano? Scuola secondaria di primo grado Introduzione
Gli enti geometrici fondamentali
capitolo 1 Gli enti geometrici fondamentali 1. Introduzione 1 2. La geometria euclidea come sistema ipotetico-deduttivo 2 Teoremi e dimostrazioni, 3 3. Postulati di appartenenza 4 4. Postulati di ordinamento
Principali Definizioni e Teoremi di Geometria
Principali Definizioni e Teoremi di Geometria Segmento (definizione) Si dice segmento di estremi A e B l insieme costituito dai punti A e B e da tutti i punti della retta AB compresi tra A e B. Angolo
Costruzioni geometriche. ( Teoria pag , esercizi 141 )
Costruzioni geometriche. ( Teoria pag. 81-96, esercizi 141 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda ; due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente
Testi verifiche 3 C 3 I a. s. 2008/2009
Testi verifiche 3 C 3 I a. s. 2008/2009 1) Sono assegnati i punti A(- 1; 3) C(3; 0) M ;1 a) Ricavare le coordinate del simmetrico di A rispetto a M e indicarlo con B. Verificare che il segmento congiungente
SCHEDA1 PARALLELISMO E PERPENDICOLARITA' FRA RETTE
SCHEDA1 PARALLELISMO E PERPENDICOLARITA' FRA RETTE Controllare la correttezza delle seguenti proprietà, controllandola su un esempio e muovendo dinamicamente gli oggetti costruiti. 1. Per due punti passa
es. 1 Tracciare con le squadre rette parallele e perpendicolari
ESERCIZI es. 1 Tracciare con le squadre rette parallele e perpendicolari es. 2 Data una retta ed un punto A esterno alla retta, tracciare la perpendicolare passante per A es. 3 Data una semiretta con origine
Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze
Test su geometria Domanda 1 Fissato nel piano un sistema di assi cartesiani ortogonali Oxy, il luogo dei punti le cui coordinate (x; y) soddisfano l equazione x y = 1 è costituita da una circonferenza.
2 di quello dela circonferenza data. Scrivere le
PROBLEMA. Raccolta di problemi sulla circonferenza Scritta l equazione della circonferenza con centro in ( ) C e passante per l origine O, si conducano per O la retta a di equazione + y indicando con A
Principali Definizioni e Teoremi di Geometria
Principali Definizioni e Teoremi di Geometria Segmento (definizione) Si dice segmento di estremi A e B l insieme costituito dai punti A e B e da tutti i punti della retta AB compresi tra A e B. Angolo
Test di Matematica di base
Test di Matematica di base Geometria Il rapporto tra la superficie di un quadrato e quella di un triangolo equilatero di eguale lato è a. 4 b. 4 d. [ ] Quali sono le ascisse dei punti della curva di equazione
Scheda di lavoro 1. Isometrie: come ottenerle con GeoGebra
Scheda di lavoro 1. Isometrie: come ottenerle con GeoGebra Esercizio 1. Traslazioni. Per traslare un oggetto di un vettore, bisogna prima definire l oggetto ed il vettore. Consideriamo la retta y = 2x
COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - VE
1 COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - VE Scheda 1: Fondamenti di geometria analitica 1. Determina il punto P dell asse y che forma con A(; ) e B(; ) un triangolo
C C B B. Fig. C4.1 Isometria.
4. Isometrie 4.1 Definizione di isometria Date due figure congruenti è possibile passare da una all altra con una trasformazione. Una trasformazione geometrica in un piano è una funzione biunivoca che
Esercizi riepilogativi sulle coniche verso l esame di stato
Esercizi riepilogativi sulle coniche verso l esame di stato n. 9 pag. 55 Sono date le curve α e β definite dalle seguenti relazioni: α : xy x y + 4 = 0 β : luogo dei punti P (k + ; 1 + k ), k R a) Dopo
GEOGEBRA 4.0. guida introduttiva. Finita l installazione di GeoGebra 4.0 viene creata sul desktop una icona come questa:
GEOGEBRA 4.0 guida introduttiva Finita l installazione di GeoGebra 4.0 viene creata sul desktop una icona come questa: fai doppio clic e si apre una finestra come la seguente. Sotto la barra dei menu a
Angoli al centro e alla circonferenza
Angoli al centro e alla circonferenza angolo al centro se il vertice coincide con il centro del cerchio proprietà ad angoli uguali corrispondono archi uguali A B angolo alla circonferenza se ha il vertice
IL TEOREMA DI PITAGORA
IN CLASSE IL TEOREMA DI PITAGORA Preparazione Per questi esercizi con GeoGebra dovrai utilizzare i seguenti pulsanti. Leggi sempre le procedure di esecuzione nella zona in alto a destra, accanto alla barra
C6. Quadrilateri - Esercizi
C6. Quadrilateri - Esercizi DEFINIZIONI E COSTRUZIONI 1) Dato il seguente quadrilatero completa al posto dei puntini. I lati AB e BC sono I lati AB e CD sono I lati AD e sono consecutivi I lati AD e sono
LA CIRCONFERENZA DEFINIZIONI. Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro.
LA CIRCONFERENZA DEFINIZIONI Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro. Un cerchio è una figura piana formata dai punti di una circonferenza
Verifiche di matematica classe 3 C 2012/2013
Verifiche di matematica classe 3 C 2012/2013 1) È assegnato il punto P 1 (3; 1), calcolare le coordinate dei punti: P 2 simmetrico di P 1 rispetto alla bisettrice del primo e terzo quadrante P 3 simmetrico
LE TRASFORMAZIONI GEOMETRICHE
LE TRASFORMAZIONI GEOMETRICHE LA SIMMETRIA ASSIALE Definizione: il simmetrico P di un punto P, rispetto alla simmetria assiale di asse r gode delle seguenti proprietà: P e P sono equidistanti da r e il
COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - A PT
1 COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - A PT Scheda 1: Fondamenti di geometria analitica 1. Determina il punto P dell asse y che forma con A(; ) e B(; ) un triangolo
trasformazione grafico Cosa si deve fare Esempio goniometrico
trasformazione grafico Cosa si deve fare Esempio goniometrico = cos + b>0 Traslazione verticale b 0 si sposta il grafico verso l alto, oppure l asse orizzontale verso il
ESERCIZI. 1.2 Dire quali dei seguenti insiemi sono vuoti e descriverne il complementare nell insieme dei numeri reali: C:= {x R x 1 3 e x 1 2 };
ESERCIZI. INSIEMISTICA. Sia l insieme dei punti dello spazio, Γ una sfera e N il suo polo nord. Quali delle seguenti relazioni sono corrette? N Γ; N ; Γ ; Γ ; N ; Γ N.. Dire quali dei seguenti insiemi
Nome Cognome. Classe 3D 25 Febbraio Verifica di matematica
Nome Cognome. Classe D Febbraio Verifica di matematica ) Data l equazione: k 6 a) Scrivi per quali valori di k rappresenta un ellisse, precisando per quali valori è una circonferenza b) Scrivi per quali
D2. Problemi sulla retta - Esercizi
D. Problemi sulla retta - Esercizi Per tutti gli esercizi è OBBLIGATORIO tracciare il grafico. 1) Trovare il perimetro del triangolo ABC, con A(1;0), B(-1;1), C(0;-). [ 5 + 10 ) Trovare il perimetro del
Poligoni e triangoli
Poligoni e triangoli Def: I poligoni sono figure geometriche formate da una spezzata chiusa semplice e dalla parte di piano che essa delimita.. I punti A, B, C, D, E sono i vertici del poligono. I segmenti
1. costruzione di un TRIANGOLO ISOSCELE di assegnati lati
LABORATORIO DI GEOMETRIA COSTRUZIONI DI BASE DI POLIGONI 1. costruzione di un TRIANGOLO ISOSCELE di assegnati lati Si costruisce un segmento AB, base del triangolo, ed un segmento CD, lato obliquo. Si
2. Determina l equazione della circonferenza passante per i punti A ( 2; 4), B ( 1; 3) ed avente centro sulla retta di equazione 2x 3y + 2 = 0.
CLASSE 3^ C LICEO SCIENTIFICO Novembre 01 La circonferenza 1. Ricava l equazione di ciascuna delle circonferenze rappresentate, spiegando in maniera esauriente il procedimento che seguirai, prima di svolgere
PROGRAMMA SVOLTO II LB Matematica 2015/2016
PROGRAMMA SVOLTO II LB Matematica 2015/2016 Sistemi di equazioni lineari: metodo di sostituzione, metodo del confronto, riduzione e Cramer. Cenni a matrici e operazioni con esse. Interpretazione grafica
( ) 2. Determina il resto della divisione fra il polinomio P ( x) 2 2x. 3. Per quale valore del parametro m il polinomio P(
ALGEBRA E ANALITICA. Determina il resto della divisione fra il polinomio P ( ) e il binomio D ( ). [ R ( ) ] + + + ( ) Detto D() il polinomio divisore, Q() il polinomio quoziente, R() il resto, il polinomio
Verifiche anno scolastico 2009/2010 Classi 3 C 3 H
Verifiche anno scolastico 2009/2010 Classi 3 C 3 H 1) Scrivi l equazione della circonferenza γ che ha centro C(- 2; 0) e raggio r = 2 2. Ricava le coordinate dei punti A, B in cui γ interseca l asse delle
Cosa puoi dire del quadrilatero ABCD? Come sono i lati, le diagonali, gli angoli?
Dal parallelogramma al rombo (fase 1 e 2) Fase 1 Disegna due circonferenze concentriche c e c di centro O; disegna su c un punto A e su c un punto B; traccia la retta r passante per i punti A e O, chiama
Problemi sulla circonferenza verso l esame di stato
Problemi sulla circonferenza verso l esame di stato * * * n. 0 pag. 06 a) Scrivi l equazione della circonferenza γ 1 di centro P ; ) e passante per il punto A0; 1). b) Scrivi l equazione della circonferenza
Geometria euclidea. Alessio del Vigna
Geometria euclidea Alessio del Vigna La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione sono il punto,
Liceo Scientifico G. Galilei Trebisacce Anno Scolastico Prova di Matematica : La retta + Pitagora e Euclide Alunno: Classe: 2 B
Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 011-01 Prova di Matematica : La retta + Pitagora e Euclide Alunno: Classe: B 9.03.01 prof. Mimmo Corrado A. Dato il triangolo di vertici: 3, 1 4,
y = [Sol. y 2x = 4x Verifica n.1
Verifica n.1 disegnare curve, con valori assoluti e radicali luoghi geometrici (con retta, parabola, circonferenza) funzione omografica parabola aree (ellisse, segmento parabolico) formule goniometriche:
Liceo Scientifico G. Galilei Trebisacce Anno Scolastico Prova di Matematica : Piano cartesiano e retta Alunno: Classe: 2 C
Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 010-011 Prova di Matematica : Piano cartesiano e retta Alunno: Classe: C 10.03.011 prof. Mimmo Corrado Dato il triangolo di vertici: 6; 3, ; 1, 4;
Circonferenza. Domande, problemi, esercizi. 1) Scrivi un equazione per la circonferenza del disegno
Circonferenza Domande, problemi, esercizi 1) Scrivi un equazione per la circonferenza del disegno 2) Scrivi un equazione per la circonferenza del disegno Circonferenza: esercizi e domande pagina 1 3) Scrivi
Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre
Geometria euclidea Alessio del Vigna Lunedì 15 settembre La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione
COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - A GAT
1 COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - A GAT Scheda 1: Fondamenti di geometria analitica 1. Determina il punto P dell asse y che forma con A(; ) e B(; ) un triangolo
Equivalenza delle figure piane
Capitolo Equivalenza Poligoni equivalenti - erifica per la classe seconda Teoremi di Pitagora ed Euclide COGNOME............................... NOME............................. Classe....................................
punti uniti rette di punti uniti rette unite qual è la trasformazione inversa
3) Dì quali sono i punti uniti, le rette di punti uniti, le rette unite di una a) simmetria centrale b) simmetria assiale c) traslazione d) rotazione e) omotetia Simmetria centrale: si ha un solo punto
LAVORO ESTIVO di MATEMATICA Classi Terze Scientifico Moderno N.B. DA CONSEGNARE ALLA PRIMA LEZIONE DI MATEMATICA DI SETTEMBRE
LAVORO ETIVO di MATEMATICA Classi Terze cientifico Moderno N.B. A CONEGNARE ALLA PRIMA LEZIONE I MATEMATICA I ETTEMBRE PROBLEMI I ALGEBRA APPLICATA ALLA GEOMETRIA ) In un cerchio di raggio r si determini
Quadrilateri. Il Parallelogramma
Il Parallelogramma 2. Fai clic su Ic3 e scegli Retta per due punti : disegna la retta a. 3. Fai clic su Ic2 e scegli Nuovo Punto : fai clic fuori dalla retta a 4. Fai clic su Ic4 e scegli Retta parallela
Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.
Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero
Soluzione verifica scritta dell 8/10/2013
Soluzione verifica scritta dell 8/10/013 * * * Problema n. 1 a) Determinare l equazione della parabola con asse parallelo all asse y, avente il vertice nel punto V ; ) e passante per l origine degli assi
PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi
PIANO CARTESIANO Il piano cartesiano è individuato da due rette perpendicolari (ortogonali) che si incontrano in un punto O detto origine del piano cartesiano. Si fissa sulla retta orizzontale il verso
I TRIANGOLI. Geogebra l Triangoli COSTRUZIONE DEL TRIANGOLO ISOSCELE
I TRIANGOLI COSTRUZIONE DEL TRIANGOLO ISOSCELE Come sai il triangolo isoscele ha due lati della stessa lunghezza. Costruiamo il triangolo isoscele a partire dal lato disuguale. 1. Apri il programma Geogebra
Le proprietà dei poligoni regolari. La similitudine tra figure piane. Il contenuto delle schede della sezione C e della scheda D1.
D3 Le piramidi Che cosa imparerai Che cosa devi sapere Imparerai a costruire vari tipi di piramidi e ne scoprirai un importante proprietà. Le proprietà dei poligoni regolari. La similitudine tra figure
DISTANZA TRA DUE PUNTI NEL PIANO CARTESIANO
Geogebra DISTANZA TRA DUE PUNTI NEL PIANO CARTESIANO 1. Apri il programma Geogebra, assicurati che siano visualizzati gli assi e individua il punto A (0, 0). a. Dove si trova il punto A? b. Individua il
D. 1 Il prodotto di a = 12,37 e b = 25,45
Settembre 005 Aritmetica D. Il prodotto di a =,7 e b = 5,45 A 4, 867 B 4, 65 C 45, 650 D 4, 865 E 4, 8655 D. L inverso del numero numero: A 5 B 5 + 5 C + 5 D E D. I numeri 5 è il,4,5,0,00, si ordinano
FIGURE ISOPERIMETRICHE HANNO LA STESSA AREA?
Stefania Renna 3DL a.s. 2007/2008 FIGURE ISOPERIMETRICHE HANNO LA STESSA AREA? Si è partiti da qui: Due contadini si incontrano in un negozio di ferramenta: devono acquistare entrambi 40 m. di rete metallica
La composizione di isometrie
La composizione di isometrie Quello che è più interessante in una trasformazione geometrica è studiare quali effetti ha sulle figure e soprattutto valutare quali proprietà delle figure di partenza si conservano
Matematica Lezione 4
Università di Cagliari Corso di Laurea in Farmacia Matematica Lezione 4 Sonia Cannas 18/10/2018 Proporzioni Esempio Da un rubinetto di una vasca fuoriescono 60 litri di acqua in 4 minuti. Quanti litri
RECUPERO LE TRASFORMAZIONI GEOMETRICHE NEL PIANO CARTESIANO
RECUPER LE TRSFRMZINI GEMETRICHE NEL PIN CRTESIN La traslazione di punti, rette, parabole secondo un vettore assegnato 1 Data la retta r di equazione 0 e la traslazione secondo il vettore v (; ), scrivi
LA GEOMETRIA EUCLIDEA. Seminario Cidi, Roma 13/05/ prof.ssa Dario Liliana 1
LA GEOMETRIA EUCLIDEA Seminario Cidi, Roma 13/05/2013 - prof.ssa Dario Liliana 1 Le difficoltà degli studenti nell apprendere la geometria nel 1 anno della scuola secondaria Gli argomenti della geometria
x + x + 1 < Compiti vacanze classi 4D
Compiti vacanze classi D Ripassare scomposizioni e prodotti notevoli, metodo di Ruffini, razionalizzazioni, equazioni irrazionali. (Libro di prima e seconda). Recuperare formulario con regole di risoluzione
Esercizi di Elementi di Matematica Corso di laurea in Farmacia
Esercizi di Elementi di Matematica Corso di laurea in Farmacia dott.ssa Marilena Ligabò November 24, 2015 1 Esercizi sulla notazione scientifica Esercizio 1.1. Eseguire il seguente calcolo utilizzando
In un triangolo altezza mediana bisettrice asse Proprietà di angoli e lati di un triangolo
In un triangolo si dice altezza relativa a un lato il segmento di perpendicolare al lato condotta dal vertice opposto. Si dice mediana relativa a un lato il segmento che unisce il punto medio del lato
Laboratorio di informatica
Geometria analitica con Geogebra Oltre che per lo studio della geometria euclidea, come abbiamo fatto lo scorso anno, il software Geogebra (geometria + algebra) può essere utilizzato per lo studio della
Test A Teoria dei numeri e Combinatoria
Test A Teoria dei numeri e Combinatoria Problemi a risposta secca 1. Determinare con quanti zeri termina la scrittura in base 12 del fattoriale di 2002. 2. Determinare quante sono le coppie (x, y) di interi
Progetto Pilota Valutazione della scuola italiana. Anno Scolastico PROVA DI MATEMATICA. Scuola Superiore. Classe Terza.
Ministero dell Istruzione, dell Università e della Ricerca Gruppo di lavoro per la predisposizione degli indirizzi per l attuazione delle disposizioni concernenti la valutazione del servizio scolastico
Poligoni. Enti geometrici fondamentali. Formati dei fogli. Squadratura del foglio
Poligoni Enti geometrici fondamentali Gli enti geometrici fondamentali sono le rette e le curve. I segmenti sono frammenti di retta, mentre gli archi sono frammenti di curva. Un angolo esprime l inclinazione
