2. Semantica proposizionale classica
|
|
|
- Brigida Morini
- 10 anni fa
- Visualizzazioni
Transcript
1 20 1. LINGUAGGIO E SEMANTICA 2. Semantica proposizionale classica Ritorniamo un passo indietro all insieme dei connettivi proposizionali che abbiamo utilizzato nella definizione degli enunciati di L. L insieme C non include certo tutti i connettivi che utilizziamo nel linguaggio naturale 3. Per esempio possiamo pensare a 2 è un numero primo, ma 3 non lo è; benché la strada sia bagnata, non piove da due settimane; Da quando Margherita ha iniziato a studiare logica non è piú la stessa; quello che ho letto sul giornale non può essere vero. Quelli sopra elencati sono chiaramente connettivi proposizionali anche se un momento di riflessione ci mostra una differenza sostanziale tra questi l insieme dei connettivi C. Questi ultimi, infatti hanno la proprietà di essere, come si dice usualmente anche se con brutta espressione, verofunzionali: il valore di verità di un enunciato è una funzione fissa del valore di verità dei suoi componenti. Una semantica (e quindi una logica) i cui connettivi sono verofunzionali si dice composizionale. L importanza di questo concetto, su cui torneremo in chiusura di capitolo, non può davvero essere sovrastimata 4. Esempio 1.12 (Le modalità non sono vero-funzionali). Si considerino i seguenti enunciati: (1) 2+2=4 (2) l Università italiana è gestita peggio di quelle del nord Europa Entrambi gli enunciati sono veri, ma se anteponiamo a entrambi un operatore di necessità, la seconda diventa, ragionevolmente, falsa Condizioni di verità. Dato un linguaggio L possiamo definire le condizioni di verità espresse dai connettivi in C mediante le cosiddette tavole di verità. L idea è quella di considerare tutte le valutazioni possibili su L (colonna di sinistra) e di riportare nella colonna di destra il valore di verità dell enunciato ottenunto componendo le variabili proposizionali mediante i connettivi in C. Per la definizione delle condizioni di verità dei connettivi proposizionali fissiamo L = p, q} 3 Tralasciando quelli che potremmo inventare! 4 In questo principio si trova sicuramente una prima componente del calculemus leibniziano.
2 Negazione. 2. SEMANTICA PROPOSIZIONALE CLASSICA 21 p p La condizione espressa dalla tavola di verità della negazione è che la negazione di una proposizione vera è falsa, e viceversa la negazione di una proposizione falsa è vera Congiunzione. p q p q Le condizioni di verità per la congiunzione non sono affatto controverse: la congiunzione di due proposizioni è vera soltanto se sono veri entrambi i congiunti Disgiunzione. p q q p La disgiunzione di due proposizioni è falsa quando sono false entrambe. Il caso della disgiunzione puó dare luogo ad alcune controversie legate al fatto che nel linguaggio naturale si userebbe spesso la disgiuzione in senso
3 22 1. LINGUAGGIO E SEMANTICA esclusivo 5 L argomento per l interpretazione esclusiva della disgiunzione si regge su considerazioni di tipo pragmatico, chiamando in causa convenzioni tacite e assunzioni implicite sulla competenza linguistica dei parlanti. Dal punto di vista logico, tuttavia, l interpretazione esclusiva della disgiunzione presuppone che tutte le proposizioni espresse nella nostra logica siano mutualmente esclusive. Questo mal si addice al contesto del ragionamento matematico in cui sicuramente vogliamo che un enunciato come 2 è primo o è pari sia vero! Implicazione. p q p q Come nel caso della disgiunzione possiamo giustificare le condizioni per chiedendoci (nel contesto matematico) quando consideriamo un implicazione falsa e possiamo concludere che questo avviene soltanto nel caso in cui l antecedente sia vero e il conseguente falso. Un implicazione che soddisfi queste condizioni di verità viene spesso detta implicazione materiale. Possiamo riassumere le tavole di verità per L come segue 5 Un esempio di tale uso della disgiunzione ricorre in modo insistente nel passo di apertura del Principe: Tutti li stati, tutti e dominii che hanno avuto et hanno imperio sopra li uomini, sono stati e sono o repubbliche o principati. E principati sono o ereditarii, de quali el sangue del loro signore ne sia suto lungo tempo principe, o e sono nuovi. E nuovi, o sono nuovi tutti, come fu Milano a Francesco Sforza, o sono come membri aggiunti allo stato ereditario del principe che li acquista, come è el regno di Napoli al re di Spagna. Sono questi dominii cosí acquistati, o consueti a vivere sotto uno principe, o usi ad essere liberi; et acquistonsi, o con le armi d altri o con le proprie, o per fortuna o per virtú.
4 2. SEMANTICA PROPOSIZIONALE CLASSICA 23 p q p p q p q p q Esercizio 18. Scrivere la tavola di verità per la disgiunzione esclusiva Esercizio 19. Assumiamo che la nozione di valutazione sia intesa come valutazione e che per connettivi si intenda connettivi vero-funzionali. (1) Elencare tutti i possibili connettivi unari (2) Quanti sono i connettivi binari? Pur avendo definito le valutazioni proposizionali classice soltanto sull insieme delle variabili proposizionali, siamo generalmente interessati a conoscere i valori di verità degli enunciati (non atomici). Possiamo però mostrare facilmente come le valutazioni proposizionali si estendano in modo univoco a tutto EL. Lemma Le valutazioni v : L 2 si estendono univocamente a EL. Dimostrazione. La dimostrazione procederà per induzione, il cui passo base coincide con la Definizione??. Per il passo induttivo assumiamo che le valutazioni siano definite per EL n e mostriamo che lo sono anche per EL n+1. Sia θ EL n+1. Per definizione EL n+1 = EL n θ, (θ ϕ) θ, ϕ EL n,,, }}. Se θ EL n, allora per ipotesi induttiva v(θ) è definita. EL n+1 \ EL n e abbiamo quattro casi: (1) per θ = ϕ 1 definiamo 1 se v(ϕ1 ) = 0; 0 se v(ϕ 1 ) = 1. (2) per θ = ϕ 1 ϕ 2 definiamo 1 se v(ϕ1 ) = v(ϕ 2 ) = 1; 0 altrimenti. (3) per θ = ϕ 1 ϕ 2 definiamo 0 se v(ϕ1 ) = v(ϕ 2 ) = 0; 1 altrimenti. Altrimenti θ
5 24 1. LINGUAGGIO E SEMANTICA (4) per θ = ϕ 1 ϕ 2 definiamo 0 se v(ϕ1 ) = 1 e v(ϕ 2 ) = 0; 1 altrimenti. Esercizio 20. Immaginate un lungo corridoio con due interruttori per la luce posti alle due estremità, diciamo destra e sinistra. Poniamo: p: l interruttore di destra è sollevato q: l interruttore di sinistra è sollevato r: la luce è accesa Costruire θ EL, con L = p, q, r}, che in questa interpretazione esprima il fatto che la luce è accesa esattamente quando i due interruttori sono nella medesima posizione Il paradosso dottrinale. I principi di bivalenza e composizionalità del calcolo proposizionale classico ci permettono di formalizzare un problema che ha recentemente ricevuto molta attenzione nella teoria della scelta sociale: il problema dell aggregazione dei giudizi. Consideriamo uno scenario in cui tre giudici siano chiamati ad esprimersi su un caso di presunta violazione contrattuale. Fissiamo L = p, q, r} che interpretiamo intuitivamente come segue: p: esiste un contratto valido q: l imputato ha violato il contratto r: l imputato è colpevole se e solo se esiste un contratto valido e l imputato l ha violato Il cosiddetto paradosso dottrinale, che ha generato buona parte dell interesse nel problema dell aggregazione dei giudizi, ha origine dalla seguente valutazione che i tre giudici danno dei seguenti enunciati: p q r (p q) r Giudice A 1 Giudice B Giudice C Maggioranza 0 Il problema da luogo a paradosso dal momento che i tre giudizi sono individualmente consistenti, ma la loro aggregazione secondo la procedura di maggioranza produce un giudizio collettivo inconsistente.
Algebra booleana. Si dice enunciato una proposizione che può essere soltanto vera o falsa.
Algebra booleana Nel lavoro di programmazione capita spesso di dover ricorrere ai principi della logica degli enunciati e occorre conoscere i concetti di base dell algebra delle proposizioni. L algebra
Anno 1. Definizione di Logica e operazioni logiche
Anno 1 Definizione di Logica e operazioni logiche 1 Introduzione In questa lezione ci occuperemo di descrivere la definizione di logica matematica e di operazioni logiche. Che cos è la logica matematica?
Dall italiano al linguaggio della logica proposizionale
Dall italiano al linguaggio della logica proposizionale Dall italiano al linguaggio della logica proposizionale Enunciati atomici e congiunzione In questa lezione e nelle successive, vedremo come fare
Alcune nozioni di base di Logica Matematica
Alcune nozioni di base di Logica Matematica Ad uso del corsi di Programmazione I e II Nicola Galesi Dipartimento di Informatica Sapienza Universitá Roma November 1, 2007 Questa é una breve raccolta di
1. PRIME PROPRIETÀ 2
RELAZIONI 1. Prime proprietà Il significato comune del concetto di relazione è facilmente intuibile: due elementi sono in relazione se c è un legame tra loro descritto da una certa proprietà; ad esempio,
x u v(p(x, fx) q(u, v)), e poi
0.1. Skolemizzazione. Ogni enunciato F (o insieme di enunciati Γ) è equisoddisfacibile ad un enunciato universale (o insieme di enunciati universali) in un linguaggio estensione del linguaggio di F (di
Appunti di informatica. Lezione 2 anno accademico 2015-2016 Mario Verdicchio
Appunti di informatica Lezione 2 anno accademico 2015-2016 Mario Verdicchio Sistema binario e logica C è un legame tra i numeri binari (0,1) e la logica, ossia la disciplina che si occupa del ragionamento
ALGEBRA DELLE PROPOSIZIONI
Università di Salerno Fondamenti di Informatica Corso di Laurea Ingegneria Corso B Docente: Ing. Giovanni Secondulfo Anno Accademico 2010-2011 ALGEBRA DELLE PROPOSIZIONI Fondamenti di Informatica Algebra
Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.
DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti
Osservazioni sulla continuità per le funzioni reali di variabile reale
Corso di Matematica, I modulo, Università di Udine, Osservazioni sulla continuità Osservazioni sulla continuità per le funzioni reali di variabile reale Come è noto una funzione è continua in un punto
PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE
Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) PROBABILITÀ -
Ascrizioni di credenza
Ascrizioni di credenza Ascrizioni di credenza Introduzione Sandro Zucchi 2014-15 Le ascrizioni di credenza sono asserzioni del tipo in (1): Da un punto di vista filosofico, i problemi che pongono asserzioni
risulta (x) = 1 se x < 0.
Questo file si pone come obiettivo quello di mostrarvi come lo studio di una funzione reale di una variabile reale, nella cui espressione compare un qualche valore assoluto, possa essere svolto senza necessariamente
Algebra di Boole ed Elementi di Logica
Algebra di Boole ed Elementi di Logica 53 Cenni all algebra di Boole L algebra di Boole (inventata da G. Boole, britannico, seconda metà 8), o algebra della logica, si basa su operazioni logiche Le operazioni
f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da
Data una funzione reale f di variabile reale x, definita su un sottoinsieme proprio D f di R (con questo voglio dire che il dominio di f è un sottoinsieme di R che non coincide con tutto R), ci si chiede
Intorni Fissato un punto sull' asse reale, si definisce intorno del punto, un intervallo aperto contenente e tutto contenuto in
Intorni Fissato un punto sull' asse reale, si definisce intorno del punto, un intervallo aperto contenente e tutto contenuto in Solitamente si fa riferimento ad intorni simmetrici =, + + Definizione: dato
Algebra e Logica Matematica. Calcolo delle proposizioni Logica del primo ordine
Università di Bergamo Anno accademico 2006 2007 Ingegneria Informatica Foglio Algebra e Logica Matematica Calcolo delle proposizioni Logica del primo ordine Esercizio.. Costruire le tavole di verità per
4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0
Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice
(anno accademico 2008-09)
Calcolo relazionale Prof Alberto Belussi Prof. Alberto Belussi (anno accademico 2008-09) Calcolo relazionale E un linguaggio di interrogazione o e dichiarativo: at specifica le proprietà del risultato
Calcolatori: Algebra Booleana e Reti Logiche
Calcolatori: Algebra Booleana e Reti Logiche 1 Algebra Booleana e Variabili Logiche I fondamenti dell Algebra Booleana (o Algebra di Boole) furono delineati dal matematico George Boole, in un lavoro pubblicato
Capitolo 13: L offerta dell impresa e il surplus del produttore
Capitolo 13: L offerta dell impresa e il surplus del produttore 13.1: Introduzione L analisi dei due capitoli precedenti ha fornito tutti i concetti necessari per affrontare l argomento di questo capitolo:
Schemi delle Lezioni di Matematica Generale. Pierpaolo Montana
Schemi delle Lezioni di Matematica Generale Pierpaolo Montana Al-giabr wa al-mukabalah di Al Khuwarizmi scritto approssimativamente nel 820 D.C. Manuale arabo da cui deriviamo due nomi: Algebra Algoritmo
Ottimizazione vincolata
Ottimizazione vincolata Ricordiamo alcuni risultati provati nella scheda sulla Teoria di Dini per una funzione F : R N+M R M di classe C 1 con (x 0, y 0 ) F 1 (a), a = (a 1,, a M ), punto in cui vale l
G. Pareschi ALGEBRE DI BOOLE. 1. Algebre di Boole
G. Pareschi ALGEBRE DI BOOLE 1. Algebre di Boole Nel file precedente abbiamo incontrato la definizione di algebra di Boole come reticolo: un algebra di Boole e un reticolo limitato, complementato e distributivo.
Funzioni. Funzioni /2
Funzioni Una funzione f è una corrispondenza tra due insiemi A e B che a ciascun elemento di A associa un unico elemento di B. Si scrive: f : A B l'insieme A si chiama il dominio della funzione f, l'insieme
Lezione 9: Cambio di base
Lezione 9: Cambio di base In questa lezione vogliamo affrontare uno degli argomenti piu ostici per lo studente e cioè il cambio di base all interno di uno spazio vettoriale, inoltre cercheremo di capire
Variabili e tipi di dato
Variabili e tipi di dato Tutte le variabili devono essere dichiarate, specificandone il tipo La dichiarazione deve precedere l uso Il tipo è un concetto astratto che esprime: L allocazione di spazio per
Il principio di induzione e i numeri naturali.
Il principio di induzione e i numeri naturali. Il principio di induzione è un potente strumento di dimostrazione, al quale si ricorre ogni volta che si debba dimostrare una proprietà in un numero infinito
Semantica Assiomatica
Semantica Assiomatica Anche nella semantica assiomatica, così come in quella operazionale, il significato associato ad un comando C viene definito specificando la transizione tra stati (a partire, cioè,
Sommario. Definizione di informatica. Definizione di un calcolatore come esecutore. Gli algoritmi.
Algoritmi 1 Sommario Definizione di informatica. Definizione di un calcolatore come esecutore. Gli algoritmi. 2 Informatica Nome Informatica=informazione+automatica. Definizione Scienza che si occupa dell
PROCESSO DI INDICIZZAZIONE SEMANTICA
PROCESSO DI INDICIZZAZIONE SEMANTICA INDIVIDUAZIONE DEI TEMI/CONCETTI SELEZIONE DEI TEMI/CONCETTI ESPRESSIONE DEI CONCETTI NEL LINGUAGGIO DI INDICIZZAZIONE TIPI DI INDICIZZAZIONE SOMMARIZZAZIONE INDICIZZAZIONE
Linguaggi del I ordine - semantica. Per dare significato ad una formula del I ordine bisogna specificare
Linguaggi del I ordine - semantica Per dare significato ad una formula del I ordine bisogna specificare Un dominio Un interpretazione Un assegnamento 1 Linguaggi del I ordine - semantica (ctnd.1) Un modello
Dimensione di uno Spazio vettoriale
Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione
OSSERVAZIONI TEORICHE Lezione n. 4
OSSERVAZIONI TEORICHE Lezione n. 4 Finalità: Sistematizzare concetti e definizioni. Verificare l apprendimento. Metodo: Lettura delle OSSERVAZIONI e risoluzione della scheda di verifica delle conoscenze
Lezioni di Matematica 1 - I modulo
Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può
Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Fondamenti di calcolo booleano
Breve introduzione storica Nel 1854, il prof. Boole pubblica un trattato ormai famosissimo: Le leggi del pensiero. Obiettivo finale del trattato è di far nascere la matematica dell intelletto umano, un
Vediamo l Indice Ftse-Mib (dati giornalieri aggiornati alla chiusura del 28 agosto): Volumi e Prezzi 17800 17600
Vediamo cosa ci dice l Analisi Volumetrica alla luce dei recenti movimenti di mercato. Ricordo che questo tipo di analisi (che ho personalmente messo a punto), presuppone che i Volumi abbiano maggior rilevanza
Predicati e Quantificatori
Predicati e Quantificatori Limitazioni della logica proposizionale! Logica proposizionale: il mondo è descritto attraverso proposizioni elementari e loro combinazioni logiche! I singoli oggetti cui si
MATEMATICA DEL DISCRETO elementi di teoria dei grafi. anno acc. 2009/2010
elementi di teoria dei grafi anno acc. 2009/2010 Grafi semplici Un grafo semplice G è una coppia ordinata (V(G), L(G)), ove V(G) è un insieme finito e non vuoto di elementi detti vertici o nodi di G, mentre
LE FUNZIONI A DUE VARIABILI
Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre
INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI
INTRODUZIONE AGLI ALGORITMI Prima di riuscire a scrivere un programma, abbiamo bisogno di conoscere un metodo risolutivo, cioè un metodo che a partire dai dati di ingresso fornisce i risultati attesi.
Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme
G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero
La Logica Proposizionale. (Algebra di Boole)
1 ISTITUTO DI ISTRUZIONE SUPERIORE ANGIOY La Logica Proposizionale (Algebra di Boole) Prof. G. Ciaschetti 1. Cenni storici Sin dagli antichi greci, la logica è intesa come lo studio del logos, che in greco
Funzioni funzione dominio codominio legge argomento variabile indipendente variabile dipendente
Funzioni In matematica, una funzione f da X in Y consiste in: 1. un insieme X detto dominio di f 2. un insieme Y detto codominio di f 3. una legge che ad ogni elemento x in X associa uno ed un solo elemento
CONCETTO DI LIMITE DI UNA FUNZIONE REALE
CONCETTO DI LIMITE DI UNA FUNZIONE REALE Il limite di una funzione è uno dei concetti fondamentali dell'analisi matematica. Tramite questo concetto viene formalizzata la nozione di funzione continua e
Note del corso di Calcolabilità e Linguaggi Formali - Lezione 6
Note del corso di Calcolabilità e Linguaggi Formali - Lezione 6 Alberto Carraro 30 novembre DAIS, Universitá Ca Foscari Venezia http://www.dsi.unive.it/~acarraro 1 Funzioni Turing-calcolabili Finora abbiamo
Interpretazione astratta
Interpretazione astratta By Giulia Costantini (819048) e Giuseppe Maggiore (819050) Contents Interpretazione astratta... 2 Idea generale... 2 Esempio di semantica... 2 Semantica concreta... 2 Semantica
10. Insiemi non misurabili secondo Lebesgue.
10. Insiemi non misurabili secondo Lebesgue. Lo scopo principale di questo capitolo è quello di far vedere che esistono sottoinsiemi di R h che non sono misurabili secondo Lebesgue. La costruzione di insiemi
APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI
APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................
LA TRASMISSIONE DELLE INFORMAZIONI QUARTA PARTE 1
LA TRASMISSIONE DELLE INFORMAZIONI QUARTA PARTE 1 I CODICI 1 IL CODICE BCD 1 Somma in BCD 2 Sottrazione BCD 5 IL CODICE ECCESSO 3 20 La trasmissione delle informazioni Quarta Parte I codici Il codice BCD
Per lo svolgimento del corso risulta particolarmente utile considerare l insieme
1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R
b. Che cosa succede alla frazione di reddito nazionale che viene risparmiata?
Esercitazione 7 Domande 1. L investimento programmato è pari a 100. Le famiglie decidono di risparmiare una frazione maggiore del proprio reddito e la funzione del consumo passa da C = 0,8Y a C = 0,5Y.
Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi.
Iniziamo con definizione (capiremo fra poco la sua utilità): DEFINIZIONE DI VARIABILE ALEATORIA Una variabile aleatoria (in breve v.a.) X è funzione che ha come dominio Ω e come codominio R. In formule:
Laboratorio di Pedagogia Sperimentale. Indice
INSEGNAMENTO DI LABORATORIO DI PEDAGOGIA SPERIMENTALE LEZIONE III INTRODUZIONE ALLA RICERCA SPERIMENTALE (PARTE III) PROF. VINCENZO BONAZZA Indice 1 L ipotesi -----------------------------------------------------------
Risoluzione. Eric Miotto Corretto dal prof. Silvio Valentini 15 giugno 2005
Risoluzione Eric Miotto Corretto dal prof. Silvio Valentini 15 giugno 2005 1 Risoluzione Introdurremo ora un metodo per capire se un insieme di formule è soddisfacibile o meno. Lo vedremo prima per insiemi
Capitolo 2. Operazione di limite
Capitolo 2 Operazione di ite In questo capitolo vogliamo occuparci dell operazione di ite, strumento indispensabile per scoprire molte proprietà delle funzioni. D ora in avanti riguarderemo i domini A
1 Giochi a due, con informazione perfetta e somma zero
1 Giochi a due, con informazione perfetta e somma zero Nel gioco del Nim, se semplificato all estremo, ci sono due giocatori I, II e una pila di 6 pedine identiche In ogni turno di gioco I rimuove una
Errori più comuni. nelle prove scritte
Errori più comuni nelle prove scritte Gli errori più frequenti, e reiterati da chi sostiene diverse prove, sono innanzi tutto meta-errori, cioè errori che non riguardano tanto l applicazione delle tecniche,
La distribuzione Normale. La distribuzione Normale
La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una
IL SISTEMA INFORMATIVO
LEZIONE 15 DAL MODELLO DELLE CONDIZIONI DI EQUILIBRIO AL MODELLO CONTABILE RIPRESA DEL CONCETTO DI SISTEMA AZIENDALE = COMPLESSO DI ELEMENTI MATERIALI E NO CHE DIPENDONO RECIPROCAMENTE GLI UNI DAGLI ALTRI
Invio SMS. DM Board ICS Invio SMS
Invio SMS In questo programma proveremo ad inviare un SMS ad ogni pressione di uno dei 2 tasti della DM Board ICS. Per prima cosa creiamo un nuovo progetto premendo sul pulsante (Create new project): dove
LE SUCCESSIONI 1. COS E UNA SUCCESSIONE
LE SUCCESSIONI 1. COS E UNA SUCCESSIONE La sequenza costituisce un esempio di SUCCESSIONE. Ecco un altro esempio di successione: Una successione è dunque una sequenza infinita di numeri reali (ma potrebbe
Operazioni sui database
Operazioni sui database Le operazioni nel modello relazionale sono essenzialmente di due tipi: Operazioni di modifica della base di dati (update) Interrogazioni della base di dati per il recupero delle
Algebra di Boole. Le operazioni, nell algebra booleana sono basate su questi tre operatori: AND ( ), OR ( + ),NOT ( )
Algebra di Boole L algebra di Boole prende il nome da George Boole, matematico inglese (1815-1864), che pubblicò un libro nel 1854, nel quale vennero formulati i principi dell'algebra oggi conosciuta sotto
LOGICA PER LA PROGRAMMAZIONE. Franco Turini [email protected]
LOGICA PER LA PROGRAMMAZIONE Franco Turini [email protected] IPSE DIXIT Si consideri la frase: in un dato campione di pazienti, chi ha fatto uso di droghe pesanti ha utilizzato anche droghe leggere. Quali
Introduzione all Information Retrieval
Introduzione all Information Retrieval Argomenti della lezione Definizione di Information Retrieval. Information Retrieval vs Data Retrieval. Indicizzazione di collezioni e ricerca. Modelli per Information
Funzioni in C. Violetta Lonati
Università degli studi di Milano Dipartimento di Scienze dell Informazione Laboratorio di algoritmi e strutture dati Corso di laurea in Informatica Funzioni - in breve: Funzioni Definizione di funzioni
Corso di Informatica
Corso di Informatica Modulo T3 1-Sottoprogrammi 1 Prerequisiti Tecnica top-down Programmazione elementare 2 1 Introduzione Lo scopo di questa Unità è utilizzare la metodologia di progettazione top-down
4. Operazioni elementari per righe e colonne
4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:
Statistica. Lezione 6
Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 6 a.a 011-01 Dott.ssa Daniela Ferrante
1 Applicazioni Lineari tra Spazi Vettoriali
1 Applicazioni Lineari tra Spazi Vettoriali Definizione 1 (Applicazioni lineari) Si chiama applicazione lineare una applicazione tra uno spazio vettoriale ed uno spazio vettoriale sul campo tale che "!$%!
Algebra Di Boole. Definiamo ora che esiste un segnale avente valore opposto di quello assunto dalla variabile X.
Algebra Di Boole L algebra di Boole è un ramo della matematica basato sul calcolo logico a due valori di verità (vero, falso). Con alcune leggi particolari consente di operare su proposizioni allo stesso
Appunti sulla Macchina di Turing. Macchina di Turing
Macchina di Turing Una macchina di Turing è costituita dai seguenti elementi (vedi fig. 1): a) una unità di memoria, detta memoria esterna, consistente in un nastro illimitato in entrambi i sensi e suddiviso
Dispense di Filosofia del Linguaggio
Dispense di Filosofia del Linguaggio Vittorio Morato II settimana Gottlob Frege (1848 1925), un matematico e filosofo tedesco, è unanimemente considerato come il padre della filosofia del linguaggio contemporanea.
Test d ipotesi. Statistica e biometria. D. Bertacchi. Test d ipotesi
In molte situazioni una raccolta di dati (=esiti di esperimenti aleatori) viene fatta per prendere delle decisioni sulla base di quei dati. Ad esempio sperimentazioni su un nuovo farmaco per decidere se
Lezione 8. La macchina universale
Lezione 8 Algoritmi La macchina universale Un elaboratore o computer è una macchina digitale, elettronica, automatica capace di effettuare trasformazioni o elaborazioni su i dati digitale= l informazione
Linguaggi. Claudio Sacerdoti Coen 11/04/2011. 18: Semantica della logica del prim ordine. <[email protected]> Universitá di Bologna
Linguaggi 18: Semantica della logica del prim ordine Universitá di Bologna 11/04/2011 Outline Semantica della logica del prim ordine 1 Semantica della logica del prim ordine Semantica
I.I.S. Primo Levi Badia Polesine A.S. 2012-2013
LGEBR DI BOOLE I.I.S. Primo Levi Badia Polesine.S. 2012-2013 Nel secolo scorso il matematico e filosofo irlandese Gorge Boole (1815-1864), allo scopo di procurarsi un simbolismo che gli consentisse di
Matematica generale CTF
Successioni numeriche 19 agosto 2015 Definizione di successione Monotonìa e limitatezza Forme indeterminate Successioni infinitesime Comportamento asintotico Criterio del rapporto per le successioni Definizione
Teoria dei Giochi. Anna Torre
Teoria dei Giochi Anna Torre Almo Collegio Borromeo 26 marzo 2015 email: [email protected] sito web del corso:www-dimat.unipv.it/atorre/borromeo2015.html COOPERAZIONE Esempio: strategie correlate e problema
Indice. 1 Il monitoraggio del progetto formativo --------------------------------------------------------------- 3. 2 di 6
LEZIONE MONITORARE UN PROGETTO FORMATIVO. UNA TABELLA PROF. NICOLA PAPARELLA Indice 1 Il monitoraggio del progetto formativo --------------------------------------------------------------- 3 2 di 6 1 Il
Semantica dei programmi. La semantica dei programmi è la caratterizzazione matematica dei possibili comportamenti di un programma.
Semantica dei programmi La semantica dei programmi è la caratterizzazione matematica dei possibili comportamenti di un programma. Semantica operazionale: associa ad ogni programma la sequenza delle sue
GRAMMATICA IL MODO CONGIUNTIVO - 1 Osserva i seguenti esempi:
GRAMMATICA IL MODO CONGIUNTIVO - 1 Osserva i seguenti esempi: Sono certo che Carlo è in ufficio perché mi ha appena telefonato. So che Maria ha superato brillantemente l esame. L ho appena incontrata nel
Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria).
Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Aprile 20 Indice Serie numeriche. Serie convergenti, divergenti, indeterminate.....................
CRITERI DI CONVERGENZA PER LE SERIE. lim a n = 0. (1) s n+1 = s n + a n+1. (2) CRITERI PER LE SERIE A TERMINI NON NEGATIVI
Il criterio più semplice è il seguente. CRITERI DI CONVERGENZA PER LE SERIE Teorema(condizione necessaria per la convergenza). Sia a 0, a 1, a 2,... una successione di numeri reali. Se la serie a k è convergente,
SVILUPPO IN SERIE DI FOURIER. Prof. Attampato Daniele
SVILUPPO IN SERIE DI FOURIER Prof. Attampato Daniele SVILUPPO IN SERIE DI UNA FUNZIONE Uno dei problemi più frequenti in matematica è legato alla necessità di approssimare una funzione. Uno degli strumenti
APPUNTI DI MATEMATICA ALGEBRA \ INSIEMISTICA \ TEORIA DEGLI INSIEMI (1)
ALGEBRA \ INSIEMISTICA \ TEORIA DEGLI INSIEMI (1) Un insieme è una collezione di oggetti. Il concetto di insieme è un concetto primitivo. Deve esistere un criterio chiaro, preciso, non ambiguo, inequivocabile,
Prodotto libero di gruppi
Prodotto libero di gruppi 24 aprile 2014 Siano (A 1, +) e (A 2, +) gruppi abeliani. Sul prodotto cartesiano A 1 A 2 definiamo l operazione (x 1, y 1 ) + (x 2, y 2 ) := (x 1 + x 2, y 1 + y 2 ). Provvisto
Applicazioni del calcolo differenziale allo studio delle funzioni
Capitolo 9 9.1 Crescenza e decrescenza in piccolo; massimi e minimi relativi Sia y = f(x) una funzione definita nell intervallo A; su di essa non facciamo, per ora, alcuna particolare ipotesi (né di continuità,
Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:
Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione
Teoria degli insiemi
Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di
Circolare N. 113 del 3 Agosto 2015
Circolare N. 113 del 3 Agosto 2015 Presunzioni, riqualificazioni ed abrogazioni: come vanno gestiti i contratti a progetto e le partite IVA? Gentile cliente, con la presente desideriamo informarla che
Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1
Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato
Algebra Booleana ed Espressioni Booleane
Algebra Booleana ed Espressioni Booleane Che cosa è un Algebra? Dato un insieme E di elementi (qualsiasi, non necessariamente numerico) ed una o più operazioni definite sugli elementi appartenenti a tale
Algoritmi e Strutture Dati
Elementi di Programmazione Dinamica Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino Il problema La CMC produce automobili in uno stabilimento
2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione
Capitolo 2 MATRICI Fra tutte le applicazioni su uno spazio vettoriale interessa esaminare quelle che mantengono la struttura di spazio vettoriale e che, per questo, vengono dette lineari La loro importanza
Epoca k Rata Rk Capitale Ck interessi Ik residuo Dk Ek 0 S 0 1 C1 Ik=i*S Dk=S-C1. n 0 S
L AMMORTAMENTO Gli ammortamenti sono un altra apllicazione delle rendite. Il prestito è un operazione finanziaria caratterizzata da un flusso di cassa positivo (mi prendo i soldi in prestito) seguito da
Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R
Studio di funzione Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R : allo scopo di determinarne le caratteristiche principali.
