Seconda gara matematica ( ) Soluzioni
|
|
|
- Beata Cocco
- 9 anni fa
- Visualizzazioni
Transcript
1 Seconda gara matematica (9..00) Soluzioni 1. Dato un parallelepipedo solido cioè senza buchi al suo interno formato da 180 cubetti e avente spigoli di lunghezza a, b, c, il numero N di cubetti visibili su tre facce (aventi un vertice comune) è ab+bc+ca a b c+1. Il problema consiste quindi nel minimizzare la quantità N = ab + bc + ca a b c + 1, soggetta alla condizione abc = 180, con a, b, c interi. Una tabulazione delle possibilità, con a b c, è la seguente a b c N Il numero minimo di cubetti visibili è quindi 80. NOTA Un risultato ben noto (proprietà isoperimetriche del cubo) afferma che il parallelepipedo avente la minore superfice totale, per un assegnato volume, è il cubo. In questo caso, r = non è un intero, quindi il risultato non è applicabile; indicare la terna (5, 5, ) come soluzione del problema, perché 1
2 è la più vicina a (r, r, r), non è accettabile senza ulteriori argomentazioni.. Chiamiamo v s la velocità della scala, v 1 quella della prima persona (relativa alla scala, cioè considerata come se la scala fosse ferma), e v la velocità della seconda persona. Sappiamo che v = 3v 1. In figura vediamo rappresentate le velocità e la scala. v v 1 v s n La velocità assoluta della prima persona (ovvero considerata nel sistema di riferimento di chi stia fermo fuori della scala) è v s + v 1 e quella della seconda persona è v s + v. Chiamiamo t 1 il tempo impiegato dalla prima persona a scendere la scala, e t quello impiegato dalla seconda. Allora valgono le seguenti equazioni: (v 1 + v s )t 1 = n (v + v s )t = n v 1 t 1 = 50 v t = 75 v = 3v 1 Risolvendo il sistema si trova n = 100. Infatti si ricavano t 1 = 50/v 1 e t = 75/v, si sostituiscono nelle prime due equazioni, da cui 50v s /v 1 = n 50 75v s /v = n 75
3 e dividendo la prima per la seconda equazione (e usando v = 3v 1 ) si ha 150/75 = (n 50)/(n 75), da cui la soluzione. Soluzione alternativa: Sia t 0 il tempo che la scala impiega a far scomparire un gradino (ovvero v s = 1/t 0 gradini/unità di tempo). Allora mentre la prima persona scende la scala, la scala stessa scende di (n 50) gradini, quindi il tempo impiegato dalla prima persona a scendere la scala è (n 50)t 0. Allo stesso modo la seconda persona impiega (n 75)t 0. Il sistema da risolvere è dunque: da cui n = 100. v 1 (n 50)t 0 = 50 v (n 75)t 0 = 75 v = 3v 1 3. Siano a, a + d, a + d i lati di T (a > 0, d > 0). Dal teorema di Pitagora a + (a + d) = (a + d) si ottiene facilmente (a 3d)(a + d) = 0. Perciò a = 3d, e i lati di T valgono 3d, 4d e 5d. Ora, sia r il raggio della circonferenza inscritta in T. Denotiamo con A, B, C i vertici di T in modo che si abbia AB = 3d, AC = 4d, BC = 5d (fatevi un disegno!). Siano E, F, G (nell ordine) le proiezioni ortogonali sui lati AB, BC, CA del centro della circonferenza inscritta in T. Allora necessariamente AE = AG = r, BF = BE = 3d r e CF = CG = 4d r. Di conseguenza, 5d = BF + CF = 7d r, da cui d = r. q.e.d. 3
4 4. Denotiamo con N il numero totale delle palline. Sia b il numero delle palline bianche (e quindi le palline nere sono N b). L ipotesi sulle probabilità dice che ( N b ) ( b ( N ) = ) ) Con dei facili passaggi equivalenti si ottiene l uguaglianza da cui e infine ( N 43(N b)(n b 1) = 43b(b 1) + 17N(N 1) 43(N b)(n 1) = 17N(N 1) 43b = 13N. Necessariamente N = 43k con k intero positivo in quanto 43 e 13 sono primi tra loro. Dall ipotesi su N si ha che k Ne segue che k vale 3 o 4. Ciò corrisponde a N = 989 o N = 103. Nel primo caso b = 13k = 99 e N b = 90; nel secondo caso b = 13k = 31 e N b = 70. Conclusione: il problema ha due soluzioni: a) 99 palline bianche e 90 palline nere; b) 31 palline bianche e 70 palline nere. 5. Si osservi che i = k se e solo se k i < (k + 1) pertanto #{i : i = k} = k + 1. Quindi k 1 k 1 k 1 H k 1 = i(i + 1) = i + i = j=1 (k 1)k(k 1) j=1 + j=1 k(k 1) e similmente se k n < (k + 1) allora n = k e H n H k 1 = (n k + 1)k = k(k 1) 4k + 1 poiché gli addendi della differenza sono tutti constanti ed uguali k. generale quindi In H n = n ( n 1) 4 n n (n n + 1).
5 A questo punto è facile vedere che H 195 = H 14 1 = 179 < 00 < 135 = H 15 1 = H 4 ed inoltre per 195 n 4 si ha che H n H 195 è sempre un multiplo di 14, ma 00 H 195 = = 77 non è multiplo di 14, pertanto l equazione proposta non ha soluzione.. La risposta è a + b + c e la dimostrazione si fa in tre passi. Per comodità pensiamo di fissare un sistema di riferimento cartesiano xyz con origine in P, asse x contenente a, e asse z contenente lo spigolo passante per P e parallelo a c. 1. Osserviamo che MCD(a, b, c) = 1 è equivalente al fatto che la diagonale non contenga nessun vertice di cubetti interni.. Analogamente si osserva che essere primi a coppie è equivalente al fatto che la diagonale non intersechi nessuno spigolo di cubetti interni. 3. Per i due punti precedenti la diagonale attraversa tante facce quanti sono i piani, paralleli alle facce esterne, che intersecano il parallelepipedo e sono a coordinate intere. Tali piani sono in numero pari a (a 1)+(b 1)+(c 1) = a + b + c 3 e ogni volta che attraverso una faccia aggiungo 1 al computo dei cubetti attraversati. Ma poiché partiamo già all interno di un cubetto, dobbiamo aggiungere 1 a questo calcolo, ottenendo a + b + c. 7. Mostriamo che a + b ab se e solo se esistono a 1, b 1 primi tra loro e n > 0 tali che { a = na 1 (a 1 + b 1 ) (1) b = nb 1 (a 1 + b 1 ). Notiamo immediatamente che tale scrittura, se esiste è unica, essendo n(a 1 + b 1 ) = MCD(a, b). Si osservi inoltre che l r p primo, n > 0, p n l implica p n r. La condizione (1) è evidentemente sufficiente. 5
6 Viceversa sia a + b ab. Supponiamo dapprima che MCD(a, b) = 1; in tal caso se p è primo e p a + b allora p ab pertanto p a o p b. Ne consegue, poiché p a + b, che p a e p b, ma ciò è assurdo. Sia ora k = MCD(a, b) e sia a 1 = a/k e b 1 := b/k. Evidentemente a 1 + b 1 ka 1 b 1. Essendo a 1 e b 1 primi tra loro, se p è primo tale che p r a 1 + b 1 allora p r k, pertanto a 1 + b 1 k da cui l asserto. A questo punto le soluzioni possono essere costruite scegliendo opportunamente la terna (a 1, b 1, n). La prima limitazione viene dal fatto che (a 1 + b 1 ) a + b 100 da cui a 1 + b Le coppie (a 1, b 1 ) candidate (con a 1 b 1 ) sono (1, i), i = 1,..., 9, (, i), i = 3, 5, 7, (3, 4), (3, 5), (4, 5) da cui le coppie (a, b) (n, n), n = 1,..., 5 (3n, n), n = 1,..., 8 (4n, 1n), n = 1,..., 4 (5, 0), (10, 40), (, 30) (7, 4), (10, 15), (0, 30), (30, 45) (14, 35), (1, 8), (4, 40), (3, 45).
2.1 Numeri naturali, interi relativi, razionali
2.1 Numeri naturali, interi relativi, razionali Definizione L insieme N = {0, 1, 2, 3,...} costituito dallo 0 e dai numeri interi positivi è l insieme dei numeri naturali. Se a, b 2 N, allora mentre non
Soluzioni dei quesiti della maturità scientifica A.S. 2009/2010
Soluzioni dei quesiti della maturità scientifica AS 009/010 Nicola Gigli Sun-Ra Mosconi giugno 010 Quesito 1 Un generico polinomio di grado n si può scrivere nella forma p(x) a 0 + a 1 x + + a n x n dove
Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre
Geometria euclidea Alessio del Vigna Lunedì 15 settembre La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione
Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni
Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche
Soluzioni 28 a Gara Città di Padova (6 Aprile 2013)
Soluzioni 28 a Gara Città di Padova (6 Aprile 2013) 1.- Sia K il valore comune delle somme degli elementi della prima riga, di quelli della seconda e di quelli della colonna. Sia X il numero messo nella
CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA
CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA FOGLIO DI ESERCIZI 1 GEOMETRIA 2009/10 Esercizio 1.1 (2.2). Determinare l equazione parametrica e Cartesiana della retta dello spazio (a) Passante per i
VI a GARA MATEMATICA CITTÀ DI PADOVA 23 MARZO 1991 SOLUZIONI. < 2 0 < 3a + 1 < 4 1 < 3a < < 3a+1. 1 < 1 b < 2 2 < b < 1 1 < b < 2.
VI a GARA MATEMATICA CITTÀ DI PADOVA 23 MARZO 1991 SOLUZIONI 1.- 0 < 3a+1 < 2 0 < 3a + 1 < 4 1 < 3a < 3 1 2 3 1 < 1 b < 2 2 < b < 1 1 < b < 2. 1 < a < 1 3 1 < b < 2 4 < a + b < 3 e, a fortiori, 4 < a +
Geometria euclidea. Alessio del Vigna
Geometria euclidea Alessio del Vigna La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione sono il punto,
misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x
4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto
x 1 Fig.1 Il punto P = P =
Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi
Soluzione. a) Per la bilinearità e la simmetria del prodotto scalare, b) Si sfruttano la bilinearità e la simmetria del prodotto scalare.
Esercizi svolti 4 Problemi guida 117 IL PRODOTTO SCALARE Problema 41 a) Dimostra che (v + w) (v w) = v 2 w 2 b) Dimostra che v w = 1 4 [ v + w 2 v w 2 ] Soluzione a) Per la bilinearità e la simmetria del
Prodotto scalare e ortogonalità
Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano
Problemi di massimo e minimo
Problemi di massimo e minimo Supponiamo di avere una funzione continua in. Per il teorema di Weierstrass esistono il massimo assoluto M e il minimo assoluto m. I problemi di massimo e minimo sono problemi
D. 1 Il prodotto di a = 12,37 e b = 25,45
Settembre 005 Aritmetica D. Il prodotto di a =,7 e b = 5,45 A 4, 867 B 4, 65 C 45, 650 D 4, 865 E 4, 8655 D. L inverso del numero numero: A 5 B 5 + 5 C + 5 D E D. I numeri 5 è il,4,5,0,00, si ordinano
La prima è la parte positiva (al di sopra dell asse y) della circonferenza di equazione. e raggio r = 2 ; la seconda è una retta (vedi figura).
Macerata 3 febbraio 0 classe 3M COMPITO DI MATEMATICA SOLUZIONE QUESITO a) Rappresenta graficamente la curva descritta dalla seguente equazione: y y + + = 0 Per la presenza del valore assoluto dobbiamo
Kangourou Italia Gara del 16 marzo 2017 Categoria Student Per studenti del triennio della scuola secondaria di secondo grado
Kangourou Italia Gara del 16 marzo 2017 Categoria Student Per studenti del triennio della scuola secondaria di secondo grado 20 17 1. --------------------- = 2 + 0 + 1 + 7 I quesiti dal N. 1 al N. 10 valgono
Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana /16
Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana - 015/16 Esercizio 1 Per quali valori n Z \ {0} l espressione è un numero intero positivo? (n + 5)(n + 6) 6n Soluzione. Il problema
Kangourou della Matematica 2012 finale nazionale italiana Mirabilandia, 7 maggio 2012
Kangourou della Matematica 2012 finale nazionale italiana Mirabilandia, 7 maggio 2012 LIVELLO STUDENT S1. (5 punti ) Assegnati tre punti non allineati nello spazio, quante sfere passano per questi tre
Categoria Student Per studenti del quarto e quinto anno della scuola media superiore. I quesiti dal N.1 al N. 10 valgono 3 punti ciascuno
Categoria Student Per studenti del quarto e quinto anno della scuola media superiore I quesiti dal N. al N. 0 valgono 3 punti ciascuno. Risposta B) Per soddisfare le condizioni sulle righe, la coppia di
I Giochi di Archimede - Soluzioni Biennio 27 novembre 2013
PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE I Giochi di Archimede - Soluzioni Biennio 7 novembre 013 Griglia delle risposte corrette Problema
32 GARA MATEMATICA CITTÀ DI PADOVA SOLUZIONI C = (20 27 )
32 GARA MATEMATICA CITTÀ DI PADOVA SOLUZIONI P1.- Suddividendo il cubo in 3 3 = 27 cubetti di lato 1/3 del lato di C il parallelepipedo che togliamo è formato da tre di tali cubetti, quando togliamo il
Le sezioni piane del cubo
Le sezioni piane del cubo Versione provvisoria 11 dicembre 006 1 Simmetrie del cubo e sezioni speciali Sezioni speciali si presentano in corrispondenza di piani perpendicolari agli assi di simmetria del
GARA DI MATEMATICA ON-LINE (9/11/2015)
GR I MTEMTI ON-LINE (9//0) LE ZUHE I HLLOWEEN [] Riscriviamo la prima equazione costruendo a secondo termine un quadrato di binomio: c a b c a ab b ab c ( a b) ab alla prima equazione ricaviamo a b c :
Kangourou della Matematica 2016 finale nazionale italiana Cervia, 9 maggio 2016
Kangourou della Matematica 2016 finale nazionale italiana Cervia, 9 maggio 2016 LIVELLO STUDENT Tutte le risposte devono essere giustificate S1. (5 punti ) Per un certo valore di n, 2016 è esprimibile
Problemi sui teoremi di Euclide e Pitagora
Appunti di Matematica GEOMETRIA EUCLIDEA Problemi sui teoremi di Euclide e Pitagora Utilizzando le misure di segmenti e superfici si possono riscrivere i teoremi di Pitagora ed Euclide per il triangolo
VETTORI NELLO SPAZIO ORDINARIO ,
VETTORI E GEOMETRIA ANALITICA 1 VETTORI NELLO SPAZIO ORDINARIO Vettori ordinari ed operazioni. Dipendenza ed indipendenza lineare, basi. Prodotto scalare, proiezioni, angoli. Prodotto vettoriale e prodotto
Test di Matematica di base
Test di Matematica di base Geometria Il rapporto tra la superficie di un quadrato e quella di un triangolo equilatero di eguale lato è a. 4 b. 4 d. [ ] Quali sono le ascisse dei punti della curva di equazione
Lezione 6 Richiami di Geometria Analitica
1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata
Soluzioni dei quesiti della maturità scientifica A.S. 2007/2008
Soluzioni dei quesiti della maturità scientifica A.S. 007/008 Nicola Gigli Sun-Ra Mosconi 19 giugno 008 1. La proposizione è falsa. Per trovare un controesempio ad essa, si consideri un qualunque piano
ISTITUTO SAN GABRIELE CLASSI 4 S - 4 SA PROF. ANDREA PUGLIESE GEOMETRIA EUCLIDEA NELLO SPAZIO
ISTITUTO SAN GABRIELE CLASSI 4 S - 4 SA PROF. ANDREA PUGLIESE GEOMETRIA EUCLIDEA NELLO SPAZIO GEOMETRIA NELLO SPAZIO Gli enti fondamentali sono punto, retta, piano, e spazio. Con le lettere maiuscole (A,B,C,...)
(i) Determinare l equazione cartesiana dell unica circonferenza C passante per i tre punti dati.
Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Edile/Architettura Esercizi per il corso di GEOMETRIA - a.a. 7/8 Docente: Prof. F. Flamini - Tutore: Dott. M. Paganin FOGLIO - Esercizi
PIANO DI RECUPERO DI MATEMATICA ANNO SCOLASTICO 2015/2016 CLASSI 3
PIANO DI RECUPERO DI MATEMATICA ANNO SCOLASTICO 0/0 CLASSI DISEQUAZIONI Risolvi le seguenti disequazioni numeriche intere. ) ) 9 ) ) 9 ( ) ) ) non esiste R non esiste R Risolvi le seguenti disequazioni
P z. OP x, OP y, OP z sono le proiezioni ortogonali di v sugli assi x, y, z, per cui: OP x = ( v i) i. k j. P x. OP z = ( v k) k
Richiami di calcolo vettoriale Consideriamo il vettore libero v = OP. Siano P x, P y, P z le proiezioni ortogonali di P sui tre assi cartesiani. v è la diagonale del parallelepipedo costruito su OP x,
Carlo Sintini, Problemi di maturità, 1948 Luglio, matematicamente.it Luglio 1948, primo problema
Luglio 1948, primo problema In un cerchio di raggio r è condotta una corda AB la cui distanza dal centro è r/. Inscrivere nel segmento circolare che non contiene il centro, un triangolo ABC in modo che
VETTORI GEOMETRICI / RICHIAMI
M.GUIDA, S.ROLANDO, 2016 1 VETTORI GEOMETRICI / RICHIAMI Chiamiamo vettore un qualsiasi segmento orientato del piano o dello spazio. Orientare un segmento significa scegliere un verso per percorrerlo,
Geometria BAER Canale I Esercizi 10
Geometria BAER Canale I Esercizi 10 Esercizio 1. Data la retta x = t r : y = t z = 1 si trovi il punto A di r tale che l angolo di r con il vettore AO sia π/2, e il punto B di r tale che l angolo di r
C = d x π (pi greco) 3,14. d = C : π (3,14) r = C : (π x 2)
circonferenza rettificata significa messa su una retta è un segmento che ha la stessa lunghezza della circonferenza formule: C = d x π (pi greco) 3,14 d = C : π (3,14) r = C : (π x 2) area del cerchio
Macerata 19 dicembre 2014 classe 3M COMPITO DI MATEMATICA RECUPERO ASSENTI ( ) ( ) ( ) C 2; 1.
Macerata 9 dicembre 04 classe M COMPITO DI MATEMATICA RECUPERO ASSENTI SOLUZIONE QUESITO In un riferimento cartesiano ortogonale è dato il fascio di rette: k + x k y + k + = 0. Determina il centro C del
Liceo Scientifico G. Galilei Trebisacce Anno Scolastico Prova di Matematica : La retta + Pitagora e Euclide Alunno: Classe: 2 B
Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 011-01 Prova di Matematica : La retta + Pitagora e Euclide Alunno: Classe: B 9.03.01 prof. Mimmo Corrado A. Dato il triangolo di vertici: 3, 1 4,
Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze
Test su geometria Domanda 1 Fissato nel piano un sistema di assi cartesiani ortogonali Oxy, il luogo dei punti le cui coordinate (x; y) soddisfano l equazione x y = 1 è costituita da una circonferenza.
I vertici e i lati di ogni poligono vengono detti rispettivamente vertici e spigoli del poliedro.
1 I poliedri diagonale DEFINIZIONE. Un poliedro è la parte di spazio delimitata da poligoni posti su piani diversi in modo tale che ogni lato sia comune a due di essi. I poligoni che delimitano il poliedro
Risolvere i seguenti esercizi (le soluzioni sono alla fine di tutti gli esercizi).
La geometria analitica nello spazio: punti, vettori, rette e piani esercizi 1 prof D Benetti Risolvere i seguenti esercizi (le soluzioni sono alla fine di tutti gli esercizi) Esercizio 1 Determina due
ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.
. Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione
Esame di Stato di Liceo Scientifico Corso di Ordinamento
Corso di Ordinamento Soluzione dei Temi di Matematica proposti nella Sessione Ordinaria 8 Sessione Ordinaria 8 Corso di Ordinamento Sommario Problema Punto a) Punto b) Punto c) Punto d) 5 Problema 6 Punto
Geometria e Topologia I (U1-4) 2006-mag-10 61
Geometria e Topologia I (U1-4) 2006-mag-10 61 (15.9) Teorema. Consideriamo il piano affine. Se A A 2 (K) è un punto e r una retta che non passa per A, allora esiste unica la retta per A che non interseca
Gli esercizi assegnati all esame saranno varianti di alcuni degli esercizi seguenti
Gli esercizi assegnati all esame saranno varianti di alcuni degli esercizi seguenti 1.1) Su un piano α (trasparente) sia tracciato un triangolo equilatero. Si consideri un piano β parallelo ad α e raggi
Geometria BAER Canale A-K Esercizi 10
Geometria BAER 2016-2017 Canale A-K Esercizi Esercizio 1. Data la retta r : y = t z = 1 si trovi il punto A di r tale che l angolo di r con il vettore AO sia π/2, e il punto B di r tale che l angolo di
Applicazioni dei teoremi di Pitagora ed Euclide
Utilizzando le misure di segmenti e superfici si possono riscrivere i teoremi di Pitagora ed Euclide per il triangolo rettangolo: Teorema di Pitagora: 1 + c i c = 1 Teorema di Euclide: c p i 1 = 1 c =
La misura delle grandezze
GEOMETRIA EUCLIDEA La misura delle grandezze Una classe di grandezze geometriche è un insieme di enti geometrici in cui è possibile: - il confronto tra due qualsiasi elementi dell insieme; - l addizione,
Esercizi svolti. Geometria analitica: rette e piani
Esercizi svolti. Sistemi di riferimento e vettori. Dati i vettori v = i + j k, u =i + j + k determinare:. il vettore v + u ;. gli angoli formati da v e u;. i vettore paralleli alle bisettrici di tali angoli;
Lista di esercizi 11 maggio 2016
Lista di esercizi 11 maggio 2016 1. Determinare il numero di sequenze binarie di lunghezza n che contengano almeno una coppia di 0 consecutivi. Soluzione. Potrebbe essere utile un programma di calcolo
La circonferenza nel piano cartesiano
6 La circonferenza nel piano cartesiano onsideriamo la circonferenza in figura in cui il centro è ; e il raggio 5 r : se indichiamo con P ; un punto della circonferenza avremo, per definizione, che la
1 Geometria analitica nel piano
Lezioni di Geometria a.a. 2007-2008 cdl SIE prof. C. Franchetti 1 Geometria analitica nel piano 1.1 Distanza di due punti Siano P 1 = (x 1, y 1 ), P 2 = (x 2, y 2 ) due punti del piano, se d(p 1, P 2 )
Corso di Matematica II
Corso di Matematica II Università degli Studi della Basilicata Dipartimento di Scienze Corso di laurea in Chimica e in Scienze Geologiche A.A. 2014/15 dott.ssa Vita Leonessa Elementi di geometria analitica
Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione
Esercizi geometria analitica nello spazio Corso di Laurea in Informatica Docente: Andrea Loi Correzione 1. Denotiamo con P 1, P 13, P 3, P 1, P, P 3, P i simmetrici di un punto P rispetto ai piani coordinati
Università del Salento Facoltà di Scienze Matematiche Fisiche e Naturali. Matematica e Fisica
Università del Salento Facoltà di Scienze Matematiche Fisiche e Naturali Test d INGRESSO Matematica e Fisica 2017-2018 A 1. In un parallelogramma due lati consecutivi sono lunghi a e b e l angolo tra essi
Geometria analitica del piano II (M.S. Bernabei & H. Thaler)
Geometria analitica del piano II (M.S. Bernabei & H. Thaler) Equazione della retta in forma esplicita Sia data una retta r ax + by + c = 0 con b 0. Svolgendo questa equazione per y otteniamo e ponendo
k l equazione diventa 2 x + 1 = 0 e ha unica soluzione
a B 3 Compito del Q 8 maggio 009 A) Equazioni con parametro. Data l equazione ( k + k ) + k + 0 determinare il valore di k in ciascuno dei seguenti casi. L equazione si abbassa di grado (risolvere l equazione
Geometria euclidea dello spazio Presentazione n. 5 Poliedri Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia
Geometria euclidea dello spazio Presentazione n. 5 Poliedri Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Poliedri Un poliedro è un solido delimitato da una superficie formata da
RETTE, PIANI, SFERE, CIRCONFERENZE
RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,
Sono dati i punti 0; 1, 1; 0, 4; 2. Determina e rappresenta l equazione del luogo dei punti P del piano tali che: 2.
PIANO CARTESIANO E RETTA ESERCIZI Esercizio 26.95 Sono dati i punti 0; 1, 1; 0, ; 2. Determina e rappresenta l equazione del luogo dei punti P del piano tali che: 2. Soluzione Indichiamo con : le coordinate
Costruzione dell immagine prospettica di un parallelepipedo.
Costruzione dell immagine prospettica di un parallelepipedo. La difficoltà di costruzione dell immagine prospettica di un parallelepipedo equivale, tutto sommato, a quella che si incontra nella costruzione
Test di autovalutazione di Matematica - I parte
Test di autovalutazione di Matematica - I parte M1.1 Una circonferenza è individuata da: (A) due punti (C) quattro punti non allineati (E) cinque punti. (B)quattro punti allineati (D) tre punti non allineati
Test di autovalutazione di Matematica - I parte
Test di autovalutazione di Matematica - I parte M1.1 Una circonferenza è individuata da: (A) due punti (C) quattro punti non allineati (E) cinque punti. (B)quattro punti allineati (D) tre punti non allineati
SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO
DIPARTIMENTO DI INGEGNERIA CIVILE PRECORSO DI MATEMATICA ANNO ACCADEMICO 013-014 ESERCIZI RELATIVI A SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO Esercizio 1: Fissato su una retta un sistema di riferimento
Appunti sulla circonferenza
1 Liceo Falchi Montopoli in Val d Arno - Classe 3 a I - Francesco Daddi - 16 aprile 010 Appunti sulla circonferenza In queste pagine sono trattati gli argomenti riguardanti la circonferenza nel piano cartesiano
Quesiti. 1. La somma di quest anno La somma vale Quanti sono gli addendi?
Quesiti 1. La somma di quest anno La somma 1 3 + 5 7 + 9 vale 2013. Quanti sono gli addendi? 2. Il triangolo numerato Una tabella di numeri ha l aspetto di un triangolo: in figura ne vedete una parte.
MATEMATICA PRIMO COMPITINO SOLUZIONE DI ALCUNI ESERCIZI PRIMA PARTE. Esercizio 1. (Testo B) Determina, motivando la risposta, se la funzione f : R R
ANNO ACCADEMICO 25 6 SCIENZE GEOLOGICHE E SCIENZE NATURALI E AMBIENTALI MATEMATICA PRIMO COMPITINO SOLUZIONE DI ALCUNI ESERCIZI PROFF MARCO ABATE E MARGHERITA LELLI-CHIESA PRIMA PARTE Esercizio (Testo
Capitolo 2. Cenni di geometria analitica nel piano
Capitolo Cenni di geometria analitica nel piano 1 Il piano cartesiano Il piano cartesiano è una rappresentazione grafica del prodotto cartesiano R = R R La rappresentazione grafica è possibile se si crea
Superfici e solidi di rotazione. Cilindri indefiniti
Superfici e solidi di rotazione Consideriamo un semipiano α, delimitato da una retta a, e sul semipiano una curva g; facendo ruotare il semipiano in un giro completo attorno alla retta a, la curva g descrive
DIEDRI. Un diedro è convesso se è una figura convessa, concavo se non lo è.
DIEDRI Si definisce diedro ciascuna delle due parti di spazio delimitate da due semipiani che hanno la stessa origine, compresi i semipiani stessi. I due semipiani prendono il nome di facce del diedro
a) Perché posso affermare che sono complanari? b) Determina l equazione del piano che li contiene
Esercizi svolti Esercizio 1. Dati i punti: A(1, 1, 0), B( 1, 1, 4), C(1, 1, 3), D(2, 2, 8) dello spazio R 3 a) Perché posso affermare che sono complanari? b) Determina l equazione del piano che li contiene
Vettori e Calcolo vettoriale
Vettori e Calcolo vettoriale Ci poniamo nello spazio ordinario S, in cui valgono gli assiomi della geometria euclidea. I vettori vengono rappresentati mediante frecce, con un punto iniziale e un punto
