Università degli Studi di Palermo
|
|
|
- Rosalinda Simoni
- 8 anni fa
- Visualizzazioni
Transcript
1 Università degli Studi di Palermo Facoltà di Scienze MM.FF.NN. CORSO DI LAUREA IN: Laurea Magistrale in MATEMATICA (Classe LM-40) REGISTRO DELLE LEZIONI DI: ANALISI FUNZIONALE (c.i ) IMPARTITE DAL PROF. AVERNA Diego ANNO ACCADEMICO: 2010/2011 Da consegnare al Preside entro il 31 ottobre, con preghiera di voler indicare nel prospetto sottosegnato le indicazioni che si richiedono Corso compatto o esteso compatto Numero delle lezioni che dovevano impartirsi secondo il calendario.. 60 Numero delle lezioni effettivamente impartite 62 Numero delle Conferenze (tenuti dal prof. Dumitru Motreanu). 01 Visto Il Preside
2 Pagina 2 ANNO ACCADEMICO 2010 / 2011 PROGRAMMA DEL CORSO UFFICIALE di ANALISI FUNZIONALE tenuto dal professore AVERNA Diego TITOLO DEL CORSO ANALISI FUNZIONALE Testi consigliati ed eventuale bibliografia: DISPENSE DEL CORSO D.AVERNA, Analisi Funzionale Spazi di Hilbert D.AVERNA, Analisi Funzionale - Spazi di Hilbert (esempi, esercizi e dimostrazioni che sono indicati e non risolti nella dispensa) D.AVERNA, Analisi Funzionale Spazi di Banach S.M.BUCCELLATO, Spazi di Sobolev e formulazione variazionale dei problemi ai limiti NOTE M.PAVONE, On the Riesz representation theorem for bounded linear functionals, Proc. R. Ir. Acad., Vol. 94A, (1994) TESTI H.BREZIS, Analisi Funzionale, Liguori Editrice (1986) A.QUARTERONI, Modellistica Numerica per Problemi Differenziali, Springer (2000) Per pigliare visione delle dispense o del programma: Funzionale/index.html
3 Pagina 3 Introduzione del corso. Spazi di Hilbert e di Banach e di Sobolev: programma di massima. Inizio della dispensa su Spazi di Hilbert. Spazi pre-hilbertiani. Addì _08/_11/_2010_ Ora _11,30-13,30 Addì _10/_11/_2010_ Ora _11,30-13,30 Ancora sugli spazi pre-hilbertiani. Spazi lineari normati. Addì _10/_11/_2010_ Ora _12,30-13,30 Addì _15_11/_2010_ Ora _11,30-13,30 Lo spazio di Hilbert l2 Lo spazio di Hilbert L2 Addì _18/_10/_2010_ Ora _12,30-13,30 Addì _22/_11/_2010_ Ora _11,30-13,30 10
4 Pagina 4 Sottospazi. Sottospazi ortogonali. Addì _24/_11/_2010_ Ora _11,30-13,30 Addì _25/_11/_2010_ Ora _12,30-13,30 Ancora sugli sottospazi ortogonali. Basi. Esercizi su basi. Addì _29/_11/_2010_ Ora _11,30-13,30 Addì _01/_12/_2010_ Ora _11,30-13,30 Ancora sulle Basi. Isomorfismi. Applicazioni (Operatori) lineari e limitati. Addì _02/_12/_2010_ Ora _12,30-13,30 Addì _06/_12/_2010_ Ora _11,30-13,30 20
5 Pagina 5 Ancora sulle applicazioni (Operatori) lineari e limitati. Conferenza del prof. Dumitru Motreanu: FUCIK SPECTRUM FOR THE p-laplacian Addì _09/_12/_2010_ Ora _12,30-13,30 Addì _13/_12/_2010_ Ora _11,30-12,30 Teorema di rappresentazione di Riesz. Ancora sugli Operatori lineari. Operatori lineari. Addì _15/_12/_2010_ Ora _11,30-13,30 Addì _16/_12/_2010_ Ora _12,30-13,30 Forme bilineari. Operatori aggiunti. Addì _20/_12/_2010_ Ora _11,30-13,30 Addì _22/_12/_2010_ Ora _11,30-13,30 29
6 Pagina 6 Operatori di proiezione. Inizio della dispensa su Spazi di Banach. Spazi lineari normati. Fine della dispensa su Spazi di Hilbert. Addì _10/_01/_2011_ Ora _11,30-13,30 31 Operatori e Funzionali lineari. Addì _12/_01/_2011_ Ora _11,30-13,30 Operatori e Funzionali lineari su spazi di dimensione finita. Spazi normati di operatori - Spazio duale. Addì _13/_01/_2011_ Ora _12,30-13,30 Addì _17/_01/_2011_ Ora _11,30-13,30 Il duale di R n, L p =L q 1<p<+, L 1 =L. Il teorema di Hahn-Banach (prima parte - spazio vettoriale reale). Il teorema di Hahn-Banach generalizzato (seconda parte). Addì _19/_01/_2011_ Ora _11,30-13,30 Addì _13/_01/_2010_ Ora _12,30-13,30 39
7 Pagina 7 Spazi riflessivi. Teorema di categoria e di uniforme limitatezza. Forte e debole convergenza. Addì _24/_01/_2011_ Ora _11,30-13,30 Addì _26/_01/_2011_ Ora _11,30-13,30 Convergenza di successioni di operatori. Inizio della dispensa su Spazi di Sobolev. Motivazione. Fine della dispensa su Spazi di Banach. Addì _27/_01/_2011_ Ora _12,30-13,30 44 Da Gli spazi di Sobolev W m,p (I) a Soluzione del problema debole Problemi ai limiti Da Passaggio alla formulazione variazionale a Proprietà di W 1,p (I) Addì 31/_01/_2011_ Ora _11,30-13,30 Da Lo spazio di Sobolev W 1,p (Ω) a Lo spazio di Sobolev W0 1,p (Ω) Da Problema di Dirichlet Omogeneo a Problema di Neumann omogeneo Fine della dispensa su Spazi di Sobolev. Addì _02/_02/_2011_ Ora _11,30-13,30 Addì _03_/_02/_2011_Ora _12,30-13,30 49
8 Pagina 8 Sottospazi ortogonali. Operatori e Funzionali lineari su spazi di dimensione finita. L insieme B di tutti gli operatori lineari e limitati su H è un algebra unitaria di Banach. Lo spazio di Hilbert l2. Addì _07/_02/_2011_ Ora _11,30-13,30 Addì _09/_02/_2011_ Ora _11,30-13,30 Convergenza di successioni di operatori. Gli Spazi Lp. Se Y è di Banach, allora B(X,Y) è di Banach. Forte e debole convergenza. Addì _10/_02/_2011_ Ora _11,30-13,30 Addì _14/_02/_2011_ Ora _11,30-13,30 Il teorema di Hahn-Banach generalizzato. Teorema di uniforme limitatezza. Lemma delle combinazioni lineari e sue conseguenze. Basi. Addì _16/_02/_2010_ Ora _11,30-13,30 Addì _17/_02/_2010_ Ora _11,30-13,30
9 Pagina 9 Operatori aggiunti. Operatori di proiezione. Fine Corso. Addì _21/02/_2011_ Ora _11,30-13,30 63
Facoltà di Medicina e Chirurgia
Mod. REG/01/INF Facoltà di Medicina e Chirurgia ANNO ACCADEMICO 20 /20 CORSO DI LAUREA IN SEDE DI REGISTRO DELLE LEZIONI DI CFU IMPARTITE DAL PROF. Ruolo SSD (Ordinario; Straordinario; Associato; Ricercatore;
Metodi Matematici per l Ingegneria Politecnico di Milano A.A. 2011/2012. Prof. M. Bramanti Esempi di domande teoriche da esame
Metodi Matematici per l Ingegneria Politecnico di Milano A.A. 2011/2012. Prof. M. Bramanti Esempi di domande teoriche da esame Le seguenti domande teoriche sono domande-tipo da esame. L elenco di domande
Programma di Analisi Matematica 2
Programma di Analisi Matematica 2 Corso di Laurea in Matematica A.A. 2015/16 1. Integrali impropri del primo tipo 2. Integrali impropri del secondo tipo 3. Teorema del confronto per gli integrali impropri
Indice 1 Spazi a dimensione finita... 1 1.1 Primi esempi di strutture vettoriali... 1 1.2 Spazi vettoriali (a dimensione finita)...... 3 1.3 Matrici come trasformazioni lineari...... 5 1.4 Cambiamenti
ANALISI non Lineare. Diego Averna
ANALISI non Lineare Ovvero: presentazione di Analisi non Lineare Diego Averna Dipartimento di Matematica e Informatica Facoltà di Scienze MM.FF.NN. Via Archirafi, 34-90123 Palermo (Italy) [email protected]
Spazi di Sobolev e. formulazione variazionale dei. problemi ai limiti
Spazi di Sobolev e formulazione variazionale dei problemi ai limiti Corso di Analisi Funzionale 11 e 13 gennaio 21 Stefania Maria Buccellato Ultima Edizione 21 dicembre 211 Dipartimento di Matematica e
Esercizi per il corso di Analisi 6.
Esercizi per il corso di Analisi 6. 1. Si verifichi che uno spazio normato (X, ) è uno spazio vettoriale topologico con la topologia indotta dalla norma. Si verifichi poi che la norma è una funzione continua
REGISTRO DELLE LEZIONI
UNIVERSITA DEGLI STUDI DI GENOVA FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI REGISTRO DELLE LEZIONI del Corso UFFICIALE di GEOMETRIA B tenute dal prof. Domenico AREZZO nell anno accademico 2006/2007
Indice Funzioni e limiti 1 Lo spazio numerico R Il campo dei numeri reali (3). Valore assoluto e distanza euclidea (5). Insiemi di numeri reali (7). E
Indice Funzioni e limiti 1 Lo spazio numerico R Il campo dei numeri reali (3). Valore assoluto e distanza euclidea (5). Insiemi di numeri reali (7). Estremo superiore e inferiore di un insieme di numeri
Analisi Funzionale Cap. 2: Spazi di Hilbert
Analisi Funzionale Cap. 2: Spazi di Hilbert Gabriele H. Greco Dipartimento di Matematica Università di Trento 38050 POVO (Trento) Italia e-mail: [email protected] http://www.science.unitn.it/ greco
Corso di Elementi di Analisi Funzionale e Trasformate A.A. 2016/2017 Domande-tipo di teoria sulla prima metà del corso
Corso di Elementi di Analisi Funzionale e Trasformate A.A. 2016/2017 Domande-tipo di teoria sulla prima metà del corso Marco Bramanti Politecnico di Milano April 20, 2017 Cap. 1. Elementi di analisi funzionale
DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA A.A. 2011/2012 CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA
DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA A.A. 2011/2012 CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA DANIELE ANDREUCCI DIP. SCIENZE DI BASE E APPLICATE PER L INGEGNERIA UNIVERSITÀ LA SAPIENZA
Programma delle lezioni svolte nel corso CLEM di Matematica Generale, Lettere M-Z, Prof. F. Manzini.
Programma delle lezioni svolte nel corso CLEM di Matematica Generale, Lettere M-Z, Prof. F. Manzini. 1. Generalità sul corso e sulle modalità di esame. Insiemi ed operazioni sugli insiemi. Applicazioni
Premesse. Capitolo 1. 1.1 Spazi L p
Capitolo 1 Premesse 1.1 Spazi L p Indicheremo con un aperto misurabile di R N, con dx la misura di Lebesgue e con la misura di secondo Lebesgue. Siano f e g due funzioni misurabili su. Definiamo f ρ g
Operatori Compatti Decomposizione spettrale degli operatori autoaggiunti compatti Autofunzioni e Decomposizione Spettrale
Operatori Compatti Decomposizione spettrale degli operatori autoaggiunti compatti Autofunzioni e Decomposizione Spettrale Maria Eleuteri Andrea Gullotto Alessia Selvaggini 1 1 Operatori Compatti Decomposizione
Corso di Analisi Matematica 2-9 CFU
Corsi di Laurea in Ingegneria Elettronica e Biomedica Corso di Analisi Matematica 2-9 CFU PRESENTAZIONE Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Prerequisiti e Testi
Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente
1. Insiemi di generatori, lineare indipendenza, basi, dimensione. Consideriamo nello spazio vettoriale R 3 i seguenti vettori: v 1 = (0, 1, ), v = (1, 1, 1), v 3 = (, 1, 0), v 4 = (3, 3, ). Siano poi F
Lezione n. 1. Introduzione all analisi numerica (richiami di algebra lineare e analisi funzionale)
Lezione n. 1 Introduzione all analisi numerica (richiami di algebra lineare e analisi funzionale) R. Albanese, "Metodi numerici Pag. 1 Pag. 2 Programma 1. Introduzione all analisi numerica (richiami di
REGISTRO DELLE ESERCITAZIONI
UNIVERSITA DEGLI STUDI DI GENOVA FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI REGISTRO DELLE ESERCITAZIONI del Corso UFFICIALE di GEOMETRIA A tenute dal prof. Domenico AREZZO nell anno accademico
REGISTRO DELLE LEZIONI - ESERCITAZIONI - SEMINARI
U N I V E R S I T À D E G L I S T U D I D I P A V I A REGISTRO DELLE LEZIONI - ESERCITAZIONI - SEMINARI del Prof. G i a c o m o D A r i a n o Insegnamento di modulo Fondamenti della Meccanica Quantistica
Serie e Trasformata di Fourier
Serie e Trasformata di Fourier Corso di Analisi Funzionale Prof. Paolo Nistri Cancelli, D Angelo, Giannetti Polinomio di Fourier Si consideri la successione costituita dalle restrizioni delle funzioni
Programma del corso di Analisi Matematica 1 Corso di Laurea in Matematica Prof. A. Garroni - Canale Dl-Pa
Programma del corso di Analisi Matematica 1 Corso di Laurea in Matematica Prof. A. Garroni - Canale Dl-Pa 1. Elementi di spazi metrici e di topologia 1.1 Completezza di R. Richiami: Estremo superiore,
Spazi di Funzioni. Docente:Alessandra Cutrì. A. Cutrì e Metodi Matematici per l ingegneria Ing. Gestionale
Spazi di Funzioni Docente:Alessandra Cutrì Spazi vettoriali normati Uno spazio Vettoriale V si dice NORMATO se è definita su V una norma, cioè una funzione che verifica: v 0 e v = 0 v = 0 λv = λ v λ R(o
Corso di Laurea in Ingegneria Informatica (L8) Anno Accademico 2015/2016 ALGEBRA LINEARE E GEOMETRIA
Dipartimento di Ingegneria Elettrica, Elettronica e Informatica Corso di Laurea in Ingegneria Informatica (L8) Anno Accademico 2015/2016 ALGEBRA LINEARE E GEOMETRIA Docente titolare dell insegnamento:
COMPLEMENTI DI ANALISI MATEMATICA DI BASE. Prova scritta del 26 gennaio 2005
Prova scritta del 26 gennaio 2005 Esercizio 1. Posto B = x R 2 : x 2 2}, sia f n } una successione di funzioni (misurabili e) integrabili in B tali che f n f q.o. in B e, per ogni n N, f n (x) 2 x 3 per
appuntiofficinastudenti.com 1. Strutture algebriche e polinomi
1. Strutture algebriche e polinomi Cenni su linguaggio di Teoria degli Insiemi: appartenenza, variabili, quantificatori, negazione, implicazione, equivalenza, unione, intersezione, prodotto cartesiano,
ANALISI MATEMATICA 3. esercizi assegnati per la prova scritta del 31 gennaio 2011
esercizi assegnati per la prova scritta del 31 gennaio 2011 Esercizio 1. Per x > 0 e n N si ponga f n (x) = ln ( n 5 x ) a) Provare l integrabilità delle funzioni f n in (0, + ). 3 + n 4 x 2. b) Studiare
EQUAZIONI ALLE DERIVATE PARZIALI
EQUAZIONI ALLE DERIVATE PARZIALI Dipartimento di Matematica e Informatica Università di Catania EQUAZIONI ALLE DERIVATE PARZIALI Equazione del primo ordine F (x, u, u) = 0 Equazione del secondo ordine
Topologie deboli. Capitolo 5. Topologia debole
Capitolo 5 Topologie deboli Topologia debole Sia X uno spazio di Banach. La continuità delle applicazioni lineari f : X R, dipende, per definizione, dalla topologia che si considera su X. Abbiamo definito
ii 1.20 Rango di una matrice Studio dei sistemi lineari Teoremi di Cramer e Rouché-Capelli......
Indice Prefazione vii 1 Matrici e sistemi lineari 1 1.1 Le matrici di numeri reali................. 1 1.2 Nomenclatura in uso per le matrici............ 3 1.3 Matrici ridotte per righe e matrici ridotte
3 Terza lezione. Il metodo diretto del Calcolo delle Variazioni
3 Terza lezione. Il metodo diretto del Calcolo delle Variazioni Coercività Definizione 3.1 Una funzione F : X R si dice coerciva (risp. sequenzialmente coerciva) se per ogni t R esiste un sottoinsieme
2 Calcolo differenziale in spazi di Banach
2 Calcolo differenziale in spazi di Banach In questo capitolo riassumiamo le principali definizioni ed i principali risultati del calcolo differenziale per mappe tra spazi di Banach. Per le dimostrazioni
INSEGNAMENTI DEI GRUPPI PER IL CURRICULUM TEORICO La loro attivazione è definita per ogni anno accademico in sede di programmazione didattica
INSEGNAMENTI DEI GRUPPI PER IL CURRICULUM TEORICO La loro attivazione è definita per ogni anno accademico in sede di programmazione didattica Gruppo IstAppl: Istituzioni applicative Istituzioni di analisi
APPUNTI DI MODELLI NUMERICI PER I CAMPI
APPUNTI DI MODELLI NUMERICI PER I CAMPI Giovanni Miano UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II POLO DELLE SCIENZE E DELLE TECNOLOGIE FACOLTÀ DI INGEGNERIA Indice 1. Richiami sui problemi di campo
ANALISI NUMERICA. Introduzione alle PDE e formulazione debole. a.a Maria Lucia Sampoli. ANALISI NUMERICA p.1/38
ANALISI NUMERICA Introduzione alle PDE e formulazione debole a.a. 212 213 Maria Lucia Sampoli ANALISI NUMERICA p.1/38 EDP o PDE Le Equazioni alle Derivate Parziali sono equazioni differenziali contenenti
PROBABILITA e STATISTICA
PROBABILITA e STATISTICA Perché scegliere corsi di probabilità o statistica? Formazione matematica Utilità pratica (ovvero, spendibilità nel mondo del lavoro) Una ulteriore ragione, che però vale per qualsiasi
Paolo Vitolo LEZIONI DI TOPOLOGIA DAGLI INSIEMI ALLE COMPATTIFICAZIONI
A01 152 Paolo Vitolo LEZIONI DI TOPOLOGIA DAGLI INSIEMI ALLE COMPATTIFICAZIONI Copyright MMX ARACNE editrice S.r.l. www.aracneeditrice.it [email protected] via Raffaele Garofalo, 133/A B 00173 Roma
PROGRAMMA del corso di. GEOMETRIA 1 - Algebra Lineare. Laurea Triennale in Matematica. Anno Accademico 2007/08. docente : Bruno Zimmermann
PROGRAMMA del corso di GEOMETRIA 1 - Algebra Lineare Laurea Triennale in Matematica Anno Accademico 2007/08 docente : Bruno Zimmermann (Il presente programma è stato redatto sulla base degli appunti del
Capitolo IV SPAZI VETTORIALI EUCLIDEI
Capitolo IV SPAZI VETTORIALI EUCLIDEI È ben noto che in VO 3 si possono considerare strutture più ricche di quella di spazio vettoriale; si pensi in particolare all operazioni di prodotto scalare di vettori.
Matematica. Dr. Luca Secondi a.a. 2014/15. Presentazione del corso
Matematica Dr. Luca Secondi a.a. 2014/15 Presentazione del corso IL CORSO Corso di laurea in Tecnologie Alimentari ed Enologiche (TAE): MATEMATICA (6 CFU) Corso di laurea in Scienze Forestali e Ambientali
A.A. 2014/2015 Corso di Algebra Lineare
A.A. 2014/2015 Corso di Algebra Lineare Stampato integrale delle lezioni Massimo Gobbino Indice Lezione 01: Vettori geometrici nel piano cartesiano. Operazioni tra vettori: somma, prodotto per un numero,
A. Funzionali e operatori lineari continui, operatori integrali
Metodi Matematici per l Ingegneria Politecnico di Milano A.A. 013/014. Prof. M. Bramanti Esempi di domande teoriche da esame e esercizi (sulle parti 3, 4, 5 del corso) Le seguenti domande teoriche sono
SERIE NUMERICHE FAUSTO FERRARI
SERIE NUMERICHE FAUSTO FERRARI Materiale propedeutico alle lezioni di Analisi Matematica per i corsi di Laurea in Ingegneria Energetica e Meccanica N-Z dell Università di Bologna. Anno Accademico 2003/2004.
Indice. 5 Basi di Gröbner Ideali monomiali Basi di Gröbner... 22
Prefazione In questo breve testo delineiamo la teoria delle basi di Gröbner avendo presente il problema della discussione e della risoluzione di un sistema di equazioni polinomiali come si presenta ad
iv Indice c
Indice Prefazione ix 1 Numeri 1 1 Insiemi e logica 1 1.1 Concetti di base sugli insiemi 1 1.2 Un po di logica elementare 9 2 Sommatorie e coefficienti binomiali 13 2.1 Il simbolo di sommatoria 13 2.2 Fattoriale
Analisi Matematica II (legenda: PS=Pagani & Salsa, Analisi Matematica 1 & 2, Zanichelli, )
Analisi Matematica II (legenda: PS=Pagani & Salsa, Analisi Matematica 1 & 2, Zanichelli, 2015-2016) Strutturazione degli Esami L'esame consistera' in uno scritto in cui verranno sottoposti tre esercizi
DIARIO DEL CORSO DI GEOMETRIA E ALGEBRA LINEARE
DIARIO DEL CORSO DI GEOMETRIA E ALGEBRA LINEARE DOCENTI: S. MATTAREI (TITOLARE), G. VIGNA SURIA, D. FRAPPORTI Prima settimana. Lezione di martedí 23 febbraio 2010 Introduzione al corso: applicazioni dell
Elementi di Algebra Lineare Applicazioni lineari
Elementi di Algebra Lineare Applicazioni lineari Cristina Turrini UNIMI - 2015/2016 Cristina Turrini (UNIMI - 2015/2016) Elementi di Algebra Lineare 1 / 18 index Applicazioni lineari 1 Applicazioni lineari
MECCANICA COMPUTAZIONALE DELLE STRUTTURE
MECCANICA COMPUTAZIONALE DELLE STRUTTURE Elio Sacco Dipartimento di Meccanica Strutture Ambiente Territorio Università di Cassino Tel: 776.993659 Email: [email protected] Fenomeno in natura Leggi della fisica
Metodi Matematici per l Economia Prof. Giovanni Mastroleo
Programma dell insegnamento di Metodi Matematici per l Economia Prof. Giovanni Mastroleo Corso di Laurea in Economia A.A. 2007-08 Disciplina Settore Scientifico- Disciplinare METODI MATEMATICI PER L ECONOMIA
Forme bilineari simmetriche
Forme bilineari simmetriche Qui il campo dei coefficienti è sempre R Definizione 1 Sia V uno spazio vettoriale Una forma bilineare su V è una funzione b: V V R tale che v 1, v 2, v 3 V b(v 1 + v 2, v 3
Università degli Studi di Cagliari
Università degli Studi di Cagliari 8-03.-11 1 Matematica Generale Corso di Matematica per Economisti A cura di Beatrice Venturi Lezione 1 Presentazione del corso 8-03.-11 2 Obiettivi del corso Il corso
PARTE 1: Elementi di base. Simboli e operazioni sugli insiemi. Simboli logici. Prodotto cartesiano.
PROGRAMMA di Analisi Matematica 1 A.A. 2008-2009, canale 1, prof.: Francesca Albertini, Claudio Marchi Ingegneria gestionale, meccanica e meccatronica, Vicenza Testo Consigliato: Analisi Matematica, M.
0.1 Spazi Euclidei in generale
0.1. SPAZI EUCLIDEI IN GENERALE 1 0.1 Spazi Euclidei in generale Sia V uno spazio vettoriale definito su R. Diremo, estendendo una definizione data in precedenza, che V è uno spazio vettoriale euclideo
Algebra Lineare ed Elementi di Geometria Corso di Laurea in Matematica Applicata MODULO 1
Algebra Lineare ed Elementi di Geometria Corso di Laurea in Matematica Applicata MODULO 1 Prof. Lidia Angeleri Anno accademico 2015-2016 1 1 appunti aggiornati in data 14 gennaio 2016 Indice I Gruppi 3
ANALISI MATEMATICA A CORSO DI LAUREA TRIENNALE IN MATEMATICA 15 CF A.A
ANALISI MATEMATICA A CORSO DI LAUREA TRIENNALE IN MATEMATICA 15 CF A.A. 2016-17 Programma Provvisorio del corso di Analisi Matematica A Il programma che segue è solo indicativo. Il programma definitivo
UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI INGEGNERIA (sede di Vicenza)
UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI INGEGNERIA (sede di Vicenza) PROGRAMMA DI MATEMATICA A, A.A. 2007-08 CANALI 1 E 2 - Prof. F. Albertini e M. Motta Testi Consigliati: Elementi di Analisi Matematica
UNIVERSITÀ DEGLI STUDI DI PALERMO Corso di Laurea in Matematica. Calendario degli esami di profitto 1/10/ /09/2014
UNIVERSITÀ DEGLI STUDI DI PALERMO Corso di Laurea in Matematica Calendario degli esami di profitto 1/10/2013 30/09/2014 PRIMO ANNO () Sessione Invernale 14 Febbraio 17 Marzo 2014 14 Aprile -24 Aprile 2014
Esame di Geometria - 9 CFU (Appello del 14 gennaio A)
Esame di Geometria - 9 CFU (Appello del 4 gennaio 24 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Si considerino le rette s : { x x 2 2x 3 = 2 3x x 2 =, { x + x s 2 : 2 x 3 = x 2 =.. Stabilire
MECCANICA COMPUTAZIONALE DELLE STRUTTURE
MEANIA OMPUTAZIONALE DELLE STRUTTURE Elio Sacco DiMSAT Università di assino Tel: 0776.299659 Email: [email protected] Motivazione Fenomeno in natura Leggi della fisica Risoluzione (Meccanica computazionale)
NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n
NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare
Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno
Programma del Corso di Matematica A Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno Premessa (D) dopo un teorema o una proposizione citati sta ad
