APPUNTI DI MODELLI NUMERICI PER I CAMPI
|
|
|
- Adolfo Mori
- 8 anni fa
- Visualizzazioni
Transcript
1 APPUNTI DI MODELLI NUMERICI PER I CAMPI Giovanni Miano UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II POLO DELLE SCIENZE E DELLE TECNOLOGIE FACOLTÀ DI INGEGNERIA
2
3 Indice 1. Richiami sui problemi di campo 1.1 Equazioni algebriche lineari 1.2 Equazioni algebriche nonlineari 1.3 Equazioni differenziali a derivate ordinarie 1.4 Equazioni differenziali a derivate parziali 1.5 Equazioni integrali 1.6 Problemi ben posti 1.7 Equazione di diffusione Problema della diffusione del calore Equazione di diffusione scalare Unicità della soluzione 1.8 Equazione di Poisson Un problema di elettrostatica in un dominio limitato Unicità della soluzione Integrale di Coloumb Formulazione variazionale dell equazione di Poisson 1.9 Formulazioni differenziali di problemi di elettromagnetismo Equazione delle onde vettoriale Equazione di Helmholtz vettoriale Unicità della soluzione Propagazione nello spazio vuoto 1.10 Formulazioni integrali di problemi di elettromagnetismo Un problema di elettrostatica Un problema di scattering elettromagnetico 2. Differenze finite 2.1 Differenze finite: problemi monodimensionali Problema di Dirichlet Il problema dell errore Relazione tra l operatore!d 2 / dx 2 e la matrice L N Problema di Neumann 2.2 Differenze finite: problemi bidimensionali Formulazione del problema Costruzione della matrice L N 2.3 Equazione di Poisson non lineare 2.4 Equazione di Helmholtz 2.9 Equazione di diffusione lineare 2.10 Equazione di propagazione lineare 2.11 Equazione di diffusione non lineare 2.12 Equazione di propagazione non lineare
4 3. Metodo di galerkin-elementi finiti 3.1 Formulazione debole e metodo dei residui pesati Formulazione debole dell equazione di Poisson monodimensionale Formulazione debole dell equazione di Poisson in 3D 3.2 Metodo di Galerkin Problema di Dirichlet Problema di Neumann Analisi del metodo di Galerkin 3.3 Metodo degli elementi finiti Problemi monodimensionali Problemi bidimensionali Analisi del metodo di Galerkin 3.4 Equazione di Poisson non lineare 3.5 Equazione di Helmholtz 3.6 Equazione di diffusione lineare 3.7 Equazione di propagazione lineare 3.8 Equazione di diffusione non lineare 3.9 Equazione di propagazione non lineare 3.10 Altri metodi di soluzione 3.11 Equazioni integrali di Fredholm 4. Equazioni algebriche lineari 4.1 Esistenza e unicità della soluzione 4.2 Regola di Cramer 4.3 Sistemi triangolari 4.4 Il metodo della fattorizzazione di Gauss Esistenza della fattorizzazione LU Matrice di permutazione 4.5 Errori di arrotondamento 4.6 Matrici sparse, matrici bandate 4.7 Il problema del condizionamento e della stabilità numerica Condizionamento di un sistema lineare Proprietà del numero di condizionament Analisi dell errore 4.8 Metodi iterativi Metodo di Jacobi Metodo di Gauss-Seidel Analisi dell errore Metodi di rilassamento 4.9 Il problema della convergenza Criterio di convergenza Metodo di Jacobi Metodo di Gauss-Seidel Velocità di convergenza Stima dell errore
5 4.10 Metodi del gradiente La funzione energia I metodi di discesa Il metodo del gradiente Il metodo del gradiente coniugato 4.11 Il metodo del gradiente coniugato Coniugazione Coniugazione di Gram-Schmidt Metodo del gradiente coniugato 5. Equazioni algebriche non lineari 5.1 Equazioni scalari Metodo della bisezione Metodo di Newton Raphson Metodo di Picard 5.2 Proprietà di convergenza Metodo della bisezione Metodo di Picard Metodo di Nnewton Raphson 5.3 Sistemi di equazioni algebriche non lineari Metodo di Picard Metodo di Newton Raphson 5.4 Proprietà di convergenza Metodo di Picard Metodo di Newton Raphson 6. Equazioni differenziali a derivate ordinarie 6.1 Equazioni differenziali del primo ordine Esistenza e unicità della soluzione Stabilità delle soluzioni Criteri di stabilità 6.2 Metodi alle differenze finite Metodo di Eulero esplicito Metodo di Eulero implicito Metodo di Crank-Nicolson Considerazioni finali 6.3 Errore globale e stabilità numerica Comportamento dell errore globale Stabilità numerica 6.4 Sistemi di equazioni differenziali lineari Metodo di Eulero esplicito Metodo di Eulero implicito Metodo di Crank-Nicolson 6.5 Sistemi di equazioni differenziali non lineari Strabilità delle soluzioni Stabilità numerica
6 7. Interpolazione e integrazione 7.1 Interpolazione Interpolazione polinomiale Interpolazione mediante splines 7.2 Integrazione numerica monodimensionale Formula dei rettangoli Formula del punto medio Formula dei trapezi Formula di Simpson Formula di Gauss 7.3 Cenni sull integrazione numerica in più dimensioni A1. Appendice 1: Matrici 1.1 Definizioni e concetti preliminari 1.2 Proprietà spettrali delle matrici Segno della parte reale degli autovalori di una matrice Autovalori reali e ortogonalità degli autovettori Diagonalizzazione 1.3 Decomposizione a valori singolari (SVD) A2. Appendice 2: Norma di vettori e matrici 2.1 Norma di un vettore 2.2 Norma di una matrice A3. Appendice 3: Problema di Dirichlet per l equazione di Poisson 2D e soluzione col metodo degli elementi finiti mediante MatLab Problemi
Lezione n. 1. Introduzione all analisi numerica (richiami di algebra lineare e analisi funzionale)
Lezione n. 1 Introduzione all analisi numerica (richiami di algebra lineare e analisi funzionale) R. Albanese, "Metodi numerici Pag. 1 Pag. 2 Programma 1. Introduzione all analisi numerica (richiami di
A. Quarteroni R. Sacco R Saleri MATEMATICA NUMERICA. Springer
A. Quarteroni R. Sacco R Saleri MATEMATICA NUMERICA Springer Prefazione XIII 1. Elementi di analisi delle matrici 1 1.1 Spazi vettoriali 1 1.2 Matrici y 3 1.3 Operazioni su matrici ' 4 1.3.1 Inversa di
Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza. Equazioni non lineari
Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza Equazioni non lineari ESERCIZIO 1 Data l equazione ln(e + x) = 1 (1 + 4x) + 1 2 1.1 verificare analiticamente se sono soddisfatte le
Indice 1 Spazi a dimensione finita... 1 1.1 Primi esempi di strutture vettoriali... 1 1.2 Spazi vettoriali (a dimensione finita)...... 3 1.3 Matrici come trasformazioni lineari...... 5 1.4 Cambiamenti
Calcolo Numerico Informatica Manolo Venturin A.A. 2010 2011 Guida all esame
Calcolo Numerico Informatica Manolo Venturin A.A. 2010 2011 Guida all esame Testo aggiornato al 23 maggio 2011. L esame consiste in una prova scritta della durata di 2 ore. Tale prova è composta da tre/-
Appendici Definizioni e formule notevoli Indice analitico
Indice 1 Serie numeriche... 1 1.1 Richiami sulle successioni................................. 1 1.2 Serie numeriche........................................ 4 1.3 Serie a termini positivi...................................
Esercizio 1. Esercizio 2
Sia data la matrice A A(α) = Esercizio α 2 2α 2 2, α R.) determinare per quali valori del parametro reale α é verificata la condizione necessaria e sufficiente di convergenza per il metodo di Jacobi;.2)
Alcuni esercizi in preparazione all appello scritto di Calcolo Numerico
Alcuni esercizi in preparazione all appello scritto di Calcolo Numerico Esercizio 1 Si consideri il sistema lineare Ax = b con 4 3 2 1 3 4 3 2 A = 2 3 4 3,b = 1 2 3 4 1 1 1 1. (1) 1. Prima di risolvere
DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA A.A. 2011/2012 CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA
DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA A.A. 2011/2012 CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA DANIELE ANDREUCCI DIP. SCIENZE DI BASE E APPLICATE PER L INGEGNERIA UNIVERSITÀ LA SAPIENZA
EQUAZIONI ALLE DERIVATE PARZIALI
EQUAZIONI ALLE DERIVATE PARZIALI Dipartimento di Matematica e Informatica Università di Catania EQUAZIONI ALLE DERIVATE PARZIALI Equazione del primo ordine F (x, u, u) = 0 Equazione del secondo ordine
iv Indice c
Indice Prefazione ix 1 Numeri 1 1 Insiemi e logica 1 1.1 Concetti di base sugli insiemi 1 1.2 Un po di logica elementare 9 2 Sommatorie e coefficienti binomiali 13 2.1 Il simbolo di sommatoria 13 2.2 Fattoriale
Metodi computazionali per i Minimi Quadrati
Metodi computazionali per i Minimi Quadrati Come introdotto in precedenza si considera la matrice. A causa di mal condizionamenti ed errori di inversione, si possono avere casi in cui il e quindi S sarebbe
Analisi Matematica II
Claudio Canuto, Anita Tabacco Analisi Matematica II Teoria ed esercizi con complementi in rete ^ Springer Indice 1 Serie numeriche 1 1.1 Richiami sulle successioni 1 1.2 Serie numeriche 4 1.3 Serie a termini
Calcolo Numerico per Ingegneria. Corso estivo di Bressanone. Prof. L. Bergamaschi SOLUZIONE DELLA PROVA SCRITTA del
Calcolo Numerico per Ingegneria. Corso estivo di Bressanone. Prof. L. Bergamaschi SOLUZIONE DELLA PROVA SCRITTA del 9.8.2. Data l equazione x x = (a) Mostrare che essa ammette una e una sola soluzione
Introduzione elementare al metodo degli Elementi Finiti.
Introduzione elementare al metodo degli Elementi Finiti [email protected] Obiettivi Introduzione elementare al metodo degli elementi finiti Analisi Termica Analisi Strutturale Analisi
ii 1.20 Rango di una matrice Studio dei sistemi lineari Teoremi di Cramer e Rouché-Capelli......
Indice Prefazione vii 1 Matrici e sistemi lineari 1 1.1 Le matrici di numeri reali................. 1 1.2 Nomenclatura in uso per le matrici............ 3 1.3 Matrici ridotte per righe e matrici ridotte
UNITEXT La Matematica per il 3+2
UNITEXT La Matematica per il 3+2 Volume 77 http://www.springer.com/series/5418 Alfio Quarteroni Riccardo Sacco Fausto Saleri Paola Gervasio Matematica Numerica 4 a edizione Alfio Quarteroni CMCS-MATHICSE
Diario delle lezioni di Calcolo e Biostatistica (O-Z) - a.a. 2013/14 A. Teta
Diario delle lezioni di Calcolo e Biostatistica (O-Z) - a.a. 2013/14 A. Teta 1. (1/10 Lu.) Generalità sugli insiemi, operazioni di unione, intersezione e prodotto cartesiano. Insiemi numerici: naturali,
Risoluzione di sistemi lineari sparsi e di grandi dimensioni
Risoluzione di sistemi lineari sparsi e di grandi dimensioni Un sistema lineare Ax = b con A R n n, b R n, è sparso quando il numero di elementi della matrice A diversi da zero è αn, con n α. Una caratteristica
PREFAZIONE pag. 15 Capitolo 1 I NUMERI E LE FUNZIONI REALI 1. Premessa Gli assiomi dei numeri reali Alcune conseguenze degli assiomi dei
PREFAZIONE pag. 15 Capitolo 1 I NUMERI E LE FUNZIONI REALI 1. Premessa 23 2. Gli assiomi dei numeri reali 24 3. Alcune conseguenze degli assiomi dei numeri reali 25 4. Cenni di teoria degli insiemi 30
x Indice Valutazione dell efficienza di isolamento delle vibrazioni Esercizio Determinaz
Indice 1 Modelli lineari ad 1 g.d.l. 1 1.1 Introduzione................................. 1 1.2 Equazione differenziale del moto..................... 1 1.3 Vibrazioni libere..............................
A.A. 2014/2015 Corso di Algebra Lineare
A.A. 2014/2015 Corso di Algebra Lineare Stampato integrale delle lezioni Massimo Gobbino Indice Lezione 01: Vettori geometrici nel piano cartesiano. Operazioni tra vettori: somma, prodotto per un numero,
Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia
Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia Nota Bene: Gli esercizi di questa raccolta sono solo degli esempi. Non sono stati svolti né verificati e servono unicamente da spunto
APPUNTI ANALISI MATEMATICA
MAURIZIO TROMBETTA APPUNTI DEL CORSO DI ANALISI MATEMATICA PER IL DIPLOMA UNIVERSITARIO PARTE PRIMA INDICE Capitolo Primo: INSIEMI, APPLICAZIONI, RELAZIONI 1 Gli insiemi... Pag 1 2 Operazioni fra insiemi...
appuntiofficinastudenti.com 1. Strutture algebriche e polinomi
1. Strutture algebriche e polinomi Cenni su linguaggio di Teoria degli Insiemi: appartenenza, variabili, quantificatori, negazione, implicazione, equivalenza, unione, intersezione, prodotto cartesiano,
Adams, Calcolo Differenziale I, Casa Editrice Ambrosiana
Argomenti da studiare sui testi di riferimento: Adams, Calcolo Differenziale I, Casa Editrice Ambrosiana P - Preliminari 1 Limiti e continuità 1.1 Velocità, rapidità di crescita, area: alcuni esempi Velocità
Analisi Matematica 1
Analisi Matematica 1 Schema provvisorio delle lezioni A. A. 2015/16 1 Distribuzione degli argomenti delle lezioni Argomento ore tot Numeri reali 11 11 Numeri complessi 1 12 Spazio euclideo 2 14 Topologia
ANALISI MATEMATICA A CORSO DI LAUREA TRIENNALE IN MATEMATICA 15 CF A.A
ANALISI MATEMATICA A CORSO DI LAUREA TRIENNALE IN MATEMATICA 15 CF A.A. 2016-17 Programma Provvisorio del corso di Analisi Matematica A Il programma che segue è solo indicativo. Il programma definitivo
DIARIO DEL CORSO DI GEOMETRIA E ALGEBRA LINEARE
DIARIO DEL CORSO DI GEOMETRIA E ALGEBRA LINEARE DOCENTI: S. MATTAREI (TITOLARE), G. VIGNA SURIA, D. FRAPPORTI Prima settimana. Lezione di martedí 23 febbraio 2010 Introduzione al corso: applicazioni dell
APPUNTI ED ESERCIZI DI MATEMATICA
APPUNTI ED ESERCIZI DI MATEMATICA Per Scienze Naturali e Biologiche S.Console - M.Roggero - D.Romagnoli A.A. 2005/2006 Indice Capitolo 1 - Nozioni introduttive e notazioni 6 Gli insiemi...................................
1.5 Calcolo di erenziale vettoriale Derivata ordinaria Gradiente Esempio n. 3 - Gradiente di 1
Indice 1 ANALISI VETTORIALE 1 1.1 Scalari e vettori......................... 1 1.1.1 Vettore unitario (versore)............... 2 1.2 Algebra dei vettori....................... 3 1.2.1 Somma di due vettori.................
Diario del corso di Analisi Matematica 1 (a.a. 2016/17)
Diario del corso di Analisi Matematica 1 (a.a. 2016/17) 16 settembre 2016 (2 ore) Presentazione del corso. Numeri naturali, interi, razionali, reali. 2 non è razionale. Come si risolve 2 + 1 = 0? 19 settembre
Corso di Laurea in Ingegneria Informatica Analisi Numerica
Corso di Laurea in Ingegneria Informatica Lucio Demeio Dipartimento di Scienze Matematiche 1 2 Analisi degli errori Informazioni generali Libro di testo: J. D. Faires, R. Burden, Numerical Analysis, Brooks/Cole,
Programma del corso di Analisi Matematica 1 Corso di Laurea in Matematica Prof. A. Garroni - Canale Dl-Pa
Programma del corso di Analisi Matematica 1 Corso di Laurea in Matematica Prof. A. Garroni - Canale Dl-Pa 1. Elementi di spazi metrici e di topologia 1.1 Completezza di R. Richiami: Estremo superiore,
Programma di Analisi Matematica 2
Programma di Analisi Matematica 2 Corso di Laurea in Matematica A.A. 2015/16 1. Integrali impropri del primo tipo 2. Integrali impropri del secondo tipo 3. Teorema del confronto per gli integrali impropri
Indice breve. Funzioni di una variabile. Funzioni di più variabili e funzioni vettoriali. Equazioni differenziali. Funzioni olomorfe e trasformate
Indice breve I PARTE I Elementi di base Capitolo 1 Introduzione 1 Capitolo 2 Funzioni 34 PARTE II Funzioni di una variabile Capitolo 3 Introduzione alle proprietà locali e al concetto di limite 73 Capitolo
Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno
Programma del Corso di Matematica A Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno Premessa (D) dopo un teorema o una proposizione citati sta ad
Programma del corso di: Calcolo Numerico Corso di laurea in Matematica a.a. 2005-06 Prof. B.Paternoster
Programma del corso di: Calcolo Numerico Corso di laurea in Matematica a.a. 2005-06 Prof. B.Paternoster Richiami di analisi degli errori. Rappresentazione dei numeri in un calcolatore. Operazioni di macchina.
Indice Funzioni e limiti 1 Lo spazio numerico R Il campo dei numeri reali (3). Valore assoluto e distanza euclidea (5). Insiemi di numeri reali (7). E
Indice Funzioni e limiti 1 Lo spazio numerico R Il campo dei numeri reali (3). Valore assoluto e distanza euclidea (5). Insiemi di numeri reali (7). Estremo superiore e inferiore di un insieme di numeri
Programma delle lezioni svolte nel corso CLEM di Matematica Generale, Lettere M-Z, Prof. F. Manzini.
Programma delle lezioni svolte nel corso CLEM di Matematica Generale, Lettere M-Z, Prof. F. Manzini. 1. Generalità sul corso e sulle modalità di esame. Insiemi ed operazioni sugli insiemi. Applicazioni
Esercizi Svolti di Analisi Numerica
Esercizi Svolti di nalisi Numerica Esercizi Svolti di nalisi Numerica Gli esercizi che proponiamo qui di seguito si riferiscono ai contenuti del libro. M. Perdon, Elementi di nalisi Numerica, Pitagora
UNIVERSITA DEGLI STUDI DI SALERNO. Dipartimento di Ingegneria Industriale - Corso di studi in Ingegneria Chimica
UNIVERSITA DEGLI STUDI DI SALERNO Dipartimento di Ingegneria Industriale - Corso di studi in Ingegneria Chimica Anno Accademico 2016/17 Disciplina: Matematica I Docente: Roberto Capone Modulo di Analisi
Metodi Matematici per l Ingegneria Politecnico di Milano A.A. 2011/2012. Prof. M. Bramanti Esempi di domande teoriche da esame
Metodi Matematici per l Ingegneria Politecnico di Milano A.A. 2011/2012. Prof. M. Bramanti Esempi di domande teoriche da esame Le seguenti domande teoriche sono domande-tipo da esame. L elenco di domande
Motivazioni. Sistemi lineari. Obiettivo. Il problema
Motivazioni Sistemi lineari Metodo di eliminazione di Gauss Molti problemi si possono rappresentare mediante un sistema lineare La soluzione di un sistema lineare costituisce un sottoproblema di moltissime
Esercitazione di Calcolo Numerico 1 27 Maggio Calcolare la fattorizzazione P A = LU della matrice A =
Esercitazione di Calcolo Numerico 1 27 Maggio 29 1. Calcolare la fattorizzazione P A = LU della matrice 1 2 3 A = 2 3 3, ed utilizzarla per risolvere il sistema lineare Ax = b, con b = (1, 2,, 16) T. 2.
Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III)
Derivazione numerica Introduzione al calcolo numerico Il calcolo della derivata di una funzione in un punto implica un processo al limite che può solo essere approssimato da un calcolatore. Supponiamo
Metodi iterativi SISTEMI LINEARI. Metodi Iterativi. Metodo di rilassamento successivo e metodi del gradiente
Metodi iterativi Metodo di rilassamento successivo e metodi del gradiente Metodi iterativi Metodi iterativi 1 Il metodo di rilassamento successivo Condizioni per la convergenza 2 Metodi del Metodo della
ISTRUZIONI PER LA CONSEGNA DEI FILE MATLAB
Calcolo Numerico ed Elementi di Analisi - Allievi AEROSPAZIALI Proff. S. Micheletti, S. Perotto A.A. 20/202, Appello 28 Gennaio 203 NOME... COGNOME... MATRICOLA... DOCENTE... AULA... PC... Ver.A I seguenti
Corso di Laurea in Ingegneria Gestionale Anno Accademico 2013/2014 Calcolo Numerico
1. Dato il problema ai valori iniziali f (t) = f(t) + cos t f(0) = 1, (ii) determinarne la soluzione numerica per 0 t 2π utilizzando il metodo di 2. Calcolare analiticamente e numericamente la media della
Si prevede il raggiungimento di abilità di calcolo differenziale e integrale per funzioni di più
ANNO ACCADEMICO: INSEGNAMENTO: ANALISI MATEMATICA DUE TIPOLOGIA DI ATTIVITÀ FORMATIVA: Base DOCENTE: Sorin DRAGOMIR e-mail: [email protected] telefono: 39-0971-205843 sito web: cell. di servizio
Un sistema lineare si rappresenta in generale come
SISTEMI LINEARI Un sistema lineare si rappresenta in generale come n j=1 a ij x j = b i i = 1, 2,..., m o anche AX = B. La soluzione esiste se e solo se B appartiene allo spazio lineare generato dalle
9.9.1 Applicazione al calcolo di aree Esercizi Soluzioni...361
Indice 1 Nozioni di base... 1 1.1 Insiemi... 1 1.2 Elementi di logica matematica... 5 1.2.1 Connettivi logici... 5 1.2.2 Predicati... 7 1.2.3 Quantificatori... 7 1.3 Insiemi numerici... 9 1.3.1 L ordinamento
Metodi di calcolo nella dinamica delle strutture
FRANCESCO CESARI Metodi di calcolo nella dinamica delle strutture PITAGOR~ EDITRICE BOLOGN~ ellunl AAlE --"-- -- ---~!'. di Architettura ersitano lstitito Unt~ E N E Z I A ostr B 769 BIBLIOTECA CENTRALE
Appunti di Laboratorio di Calcolo Numerico con Matlab
Appunti di Laboratorio di Calcolo Numerico con Matlab Ing. Luca Paulon ([email protected] ) 1 Riferimenti [1] Matlab help [2] MathWork web site [3] Manualetto di Matlab, [4] Calcolo Scientifico (Quarteroni,
4 Analisi nel dominio del tempo delle rappresentazioni in
Indice del libro Alessandro Giua, Carla Seatzu Analisi dei sistemi dinamici, Springer-Verlag Italia, II edizione, 2009 Pagina web: http://www.diee.unica.it/giua/asd/ Prefazione.....................................................
Esercizi su Autovalori e Autovettori
Esercizi su Autovalori e Autovettori Esercizio n.1 5 A = 5, 5 5 5 Esercizio n.6 A =, Esercizio n.2 4 2 9 A = 2 1 8, 4 2 9 Esercizio n.7 6 3 3 A = 6 3 6, 3 3 6 Esercizio n.3 A = 4 6 6 2 2, 6 6 2 Esercizio
Ripasso di Calcolo Scientifico: Giulio Del Corso
Ripasso di Calcolo Scientifico: Giulio Del Corso Queste dispense sono tratte dalle lezioni del Prof. Gemignani e del Prof. Bini del corso di Calcolo Scientifico (2014/2015) dell università di Pisa. Non
Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente
1. Insiemi di generatori, lineare indipendenza, basi, dimensione. Consideriamo nello spazio vettoriale R 3 i seguenti vettori: v 1 = (0, 1, ), v = (1, 1, 1), v 3 = (, 1, 0), v 4 = (3, 3, ). Siano poi F
Introduzione al Metodo agli Elementi Finiti (FEM) (x, y) Γ Tale formulazione viene detta Formulazione forte del problema.
Introduzione al Metodo agli Elementi Finiti (FEM) Consideriamo come problema test l equazione di Poisson 2 u x 2 + 2 u = f(x, y) u = f y2 definita su un dominio Ω R 2 avente come frontiera la curva Γ,
Autovalori ed autovettori di una matrice
Autovalori ed autovettori di una matrice Lucia Gastaldi DICATAM http://www.ing.unibs.it/gastaldi/ Indice 1 Definizioni di autovalori ed autovettori Autovalori ed autovettori 2 Metodo delle potenze 3 Calcolo
2.2.5 Approssimazione di un segnale in una base biortogonale (segnali rettangolari) Esercizi proposti... 46
Indice 1 Operazioni elementari, convoluzione, correlazione 1 1.1 Operazioni elementari........................ 1 1.1.1 Ribaltamento, traslazione, scalatura............ 1 1.2 Convoluzione.............................
FACOLTÀ DI INGEGNERIA Esame di GEOMETRIA E ALGEBRA. (Ingegneria Industriale A.A. 2013/2014. Docente: F. BISI.
FACOLTÀ DI INGEGNERIA Esame di GEOMETRIA E ALGEBRA. (Ingegneria Industriale A.A. 2013/2014. Docente: F. BISI. 1 Regole generali per l esame L esame è costituito da una prova scritta e da una prova orale.
REGISTRO DELLE LEZIONI
UNIVERSITA DEGLI STUDI DI GENOVA FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI REGISTRO DELLE LEZIONI del Corso UFFICIALE di GEOMETRIA B tenute dal prof. Domenico AREZZO nell anno accademico 2006/2007
Problemi Termici nelle Strutture. Introduzione agli Elementi Finiti
Problemi Termici nelle Strutture Introduzione agli Elementi Finiti INTRODUZIONE agli ELEMENTI FINITI Gli elementi finiti nascono per risolvere problemi nell ambito dell ingegneria delle strutture. Tale
Proposizioni. Negazione di una proposizione. Congiunzione e disgiunzione di due proposizioni. Predicati. Quantificatori.
Corso di laurea in Ingegneria elettronica e informatica - A13 Programma di Analisi matematica 1 - A13106 Anno accademico 2015-2016 Prof. Giulio Starita 1 - Insiemi, logica, numeri I concetti primitivi.
Indice. P Preliminari 3. 1 Limiti e continuità 59
Indice Prefazione ix Per lo studente xii Ringraziamenti xiv Che cos èilcalcolodifferenziale? 1 P Preliminari 3 P.1 Numeri reali e retta reale 3 Intervalli 5 Il valore assoluto 8 Equazioni e disequazioni
PROGRAMMA DI MATEMATICA
Classe 2^ sez. A 1. Ripasso Operazioni tra polinomi, prodotti notevoli, equazioni di primo grado intere e frazionarie. Problemi risolvibili con le equazioni di primo grado. 2. Sistemi Sistemi di equazioni
Analisi Matematica e Geometria 1
Michele Campiti Prove scritte di Analisi Matematica e Geometria 1 Ingegneria Industriale aa 2015 2016 y f 1 g 0 La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica e
Matematica. Dr. Luca Secondi a.a. 2014/15. Presentazione del corso
Matematica Dr. Luca Secondi a.a. 2014/15 Presentazione del corso IL CORSO Corso di laurea in Tecnologie Alimentari ed Enologiche (TAE): MATEMATICA (6 CFU) Corso di laurea in Scienze Forestali e Ambientali
Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 20 giugno 2011
Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 20 giugno 2011 L esame consiste di 4 domande aperte e 10 esercizi a risposta multipla. Per gli esercizi ci sono
Equazioni differenziali
Equazioni differenziali Antonino Polimeno Università degli Studi di Padova Equazioni differenziali - 1 Un equazione differenziale è un equazione la cui soluzione è costituita da una funzione incognita
CEDAM GIUSEPPE ZWIRNER PARTE SECONDA. nuova edizione
GIUSEPPE ZWIRNER per gli studenti delle facoltà dj chimica, agraria, scienze naturali, economia commercio e statistica PARTE SECONDA nuova edizione CEDAM... IUAV - VENEZIA AREA SERV. BIBLIOGRAFICI E DOCUMENTALI
(2) Dato il vettore w = (1, 1, 1), calcolare T (w). (3) Determinare la matrice A associata a T rispetto alla base canonica.
1. Applicazioni lineari Esercizio 1.1. Sia T : R 2 R 3 l applicazione lineare definita sulla base canonica di R 2 nel seguente modo: T (e 1 ) = (1, 2, 1), T (e 2 ) = (1, 0, 1). a) Esplicitare T (x, y).
Indice Elementi di analisi delle matrici I fondamenti della matematica numerica
Indice 1. Elementi di analisi delle matrici 1 1.1 Spazivettoriali... 1 1.2 Matrici... 3 1.3 Operazionisumatrici... 4 1.3.1 Inversadiunamatrice... 6 1.3.2 Matricietrasformazionilineari... 7 1.4 Tracciaedeterminante...
Progetto Matlab N 2. Calcolo Numerico 6 CFU. Corso di Laurea in Ingegneria delle Comunicazioni 31/05/2014
Progetto Matlab N 2 Calcolo Numerico 6 CFU Corso di Laurea in Ingegneria delle Comunicazioni 31/05/2014 Procedimento 1. Scrivere una function che implementi il prodotto matrice-vettore AX con A matrice
REGISTRO DELLE LEZIONI di Metodi agli Elementi Finiti
UNIVERSITÀ DEGLI STUDI CAGLIARI FACOLTÀ DI INGEGNERIA E ARCHITETTURA REGISTRO DELLE LEZIONI di Metodi agli Elementi Finiti dettate dal prof. Filippo Bertolino nell Anno Accademico 2013-14 ARGOMENTO DELLA
TOM M. APOSTOL : VOLUME TERZO :ANALISI 2. ~i CALCOLO ::: !! f PROGRAMMA DI MATEMATICA FISICA ELETTRONICA ... I BORINGHIERI.:~. .,. .. t... ~ ,.
- TOM M. APOSTOL ~i CALCOLO ::: : VOLUME TERZO :ANALISI 2.,. :,_,.- PROGRAMMA DI MATEMATICA FISICA ELETTRONICA,_ I BORINGHIERI.:~... t ~!! f ~ BIBUOTECA OIP.~.ç-.: r;m~:~ lro Se" ;., ' ~ CA o:~~. DI ~f.:cnl-
