MECCANICA COMPUTAZIONALE DELLE STRUTTURE
|
|
|
- Dionisia Costa
- 8 anni fa
- Visualizzazioni
Transcript
1 MECCANICA COMPUTAZIONALE DELLE STRUTTURE Elio Sacco Dipartimento di Meccanica Strutture Ambiente Territorio Università di Cassino Tel:
2 Fenomeno in natura Leggi della fisica Motivazione Risoluzione (Meccanica computazionale) Equazioni (algebriche, differenziali, integrali, etc.) RISOLUZIONE DELLE EQUAZIONI prof. Elio Sacco Meccanica Computazionale delle Strutture
3 Osservazione del fenomeno in natura (sperimentazione) Modellazione (SdC, TdC, Mecc.Terre) Risoluzione (Meccanica computazionale) Metodi Numerici Meccanica Computazionale prof. Elio Sacco Meccanica Computazionale delle Strutture 3
4 Metodi numerici Ingegneria Matematica Meccanica Computazionale F.E.M. Metodi numerici prof. Elio Sacco Meccanica Computazionale delle Strutture 4
5 Programma del Corso 1. Introduzione. Alcune equazioni nell ingegneria 3. Metodo delle differenze finite 4. Metodi variazionali 5. Metodo degli elementi finiti i. Funzioni di forma ii. Elemento isoparametrico iii. Integrazione numerica iv. Assemblaggio degli elementi finiti 6. Problemi non lineari prof. Elio Sacco Meccanica Computazionale delle Strutture 5
6 Testi consigliati Cesari: Introduzione al metodo degli elementi finiti, Pitagora Editrice Bologna,1996. Zienkiewicz & Taylor: The finite element method, Vol. 1,,3, Butterworth-Heinemann,. Reddy: An introduction to the finite element method, McGraw- Hill, Crisfield: Non-linear finite element analysis of solids and structures, John Wiley & Sons, etc. etc. prof. Elio Sacco Meccanica Computazionale delle Strutture 6
7 Equazioni differenziali nell ingegneria Fenomeni stazionari Equazioni differenziali contenenti solo derivate spaziali Fenomeni non stazionari Equazioni contenenti derivate spaziali e temporali. prof. Elio Sacco Meccanica Computazionale delle Strutture 7
8 Equazioni nell ingegneria Equazione armonica K φ + Q= i.e. d φ d φ d φ K + + Q( x, y, z) + = dx dy dz φ K Q incognita del problema coefficiente funzione nota prof. Elio Sacco Meccanica Computazionale delle Strutture 8
9 Trasmissione del calore Equazione di Fourier K T Q + = Τ temperatura K conducibilità del materiale (omogeneo e isotropo) Q generazione di calore Problema 1D dt K Q dx + = equazione differenziale ordinaria prof. Elio Sacco Meccanica Computazionale delle Strutture 9
10 Filtrazione Legge di Darcy ρk h+ Q= h carico piezometrico ρ densità del fluido K permeabilità del mezzo (omogeneo e isotropo) Q sorgente Problema 1D equazione differenziale ordinaria dh Q ρ K + = dx prof. Elio Sacco Meccanica Computazionale delle Strutture 1
11 Torsione Equazione di Prandtl 1 F( x, y) + Θ= G in A F = su A problema di Dirichelet F Θ G potenziale delle tensione angolo unitario di torsione modulo elastico a taglio prof. Elio Sacco Meccanica Computazionale delle Strutture 11
12 Equazione quasi-armonica d φ d φ d φ Kx + K (,, ) y + K z + Q x y z = dx dy dz φ = T Trasmissione del calore in un mezzo non isotropo K x, K y, K z conducibilità del materiale lungo x, y, z prof. Elio Sacco Meccanica Computazionale delle Strutture 1
13 Equazione biarmonica K 4 φ + Q= Modello piastra (Kirchhoff-Love) 4 D w p = w D p inflessione della piastra rigidezza flessionale della piastra carico agente D = Es ( ν ) Problema 1D (trave di Eulero-Bernoulli) 4 dw EI p 4 dx = equazione differenziale ordinaria prof. Elio Sacco Meccanica Computazionale delle Strutture 13
14 Elasticità piana (tensione piana) equazione di Navier equilibrio u,v spostamenti lungo x, y equazione di Airy F potenziale delle tensioni u 1+ ν u v b 1 ν x x y G 1+ ν u v b 1 ν y x y G x = v y = 4 F = congruenza F F F σx = σ y = τ xy = y x x y prof. Elio Sacco Meccanica Computazionale delle Strutture 14
15 Fenomeni non stazionari Equazioni con derivata prima rispetto al tempo Transitorio termico Moto laminare non stazionario (Navier-Stokes) Consolidamento di un terreno Equazioni con derivata seconda rispetto al tempo Onde longitudinali in una barra Onde acustiche Onde superficiali in acque poco profonde prof. Elio Sacco Meccanica Computazionale delle Strutture 15
Il teorema dei lavori virtuali, l elasticità lineare ed il problema dell equilibrio elastico
5 Il teorema dei lavori virtuali, l elasticità lineare ed il problema dell equilibrio elastico Tema 5.1 Si consideri un corpo continuo libero nello spazio, di forma parallelepipedica e di dimensioni a
ATTRITO VISCOSO NEI FLUIDI
ATTRITO VISCOSO NEI FLUIDI DOWNLOAD Il pdf di questa lezione (0319a.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/scamb/ 19/03/2012 VISCOSITÀ La viscosità è un fenomeno che si manifesta in
Università degli Studi di Palermo
Dipartimento di Ingegneria Chimica, Gestionale, Informatica e Meccanica Università degli Studi di Palermo Corso in: SIMULAZIONE NUMERICA PER L'INGEGNERIA MECCANICA Docente: Prof. Antonio Pantano Anno Accademico
Presentazione e obiettivi del corso
Presentazione e obiettivi del corso Il corso si propone di fornire gli strumenti per il calcolo e la verifica di elementi strutturali soggetti a carichi statici o variabili nel tempo A questo scopo vengono
Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo
Parte 2, 1 Parte 2, 2 Elementi di Teoria dei Sistemi Definizione di sistema dinamico Parte 2, 3 Sistema dinamico a tempo continuo Cosa significa Dinamico? Parte 2, 4? e` univocamente determinata? Ingresso
Dinamica delle Strutture
Corso di Laurea magistrale in Ingegneria Civile e per l Ambiente e il Territorio Dinamica delle Strutture Prof. Adolfo SANTINI Ing. Francesco NUCERA Prof. Adolfo Santini - Dinamica delle Strutture 1 Dinamica
Metodi numerici per equazioni differenziali ordinarie. Calcolo Numerico a.a. 2008/2009
Metodi numerici per equazioni differenziali ordinarie Calcolo Numerico a.a. 2008/2009 ODE nei problemi dell ingegneria 1 Le leggi fondamentali della fisica, della meccanica, dell elettricità e della termodinamica
Indice 1 Spazi a dimensione finita... 1 1.1 Primi esempi di strutture vettoriali... 1 1.2 Spazi vettoriali (a dimensione finita)...... 3 1.3 Matrici come trasformazioni lineari...... 5 1.4 Cambiamenti
UNIVERSITA' DEGLI STUDI DI TRIESTE
A.A. 2001/02 UNIVERSITA' DEGLI STUDI DI TRIESTE CORSO DI LAUREA PROGRAMMA DEL CORSO DI DOCENTE INGEGNERIA, MECCANICA, NAVALE, dei MATERIALI, ELETTRICA FISICA TECNICA Enrico NOBILE PARTE I: TERMODINAMICA
Meccanica dei solidi
Università di Napoli Parthenope Facoltà di Ingegneria Laurea in Ingegneria per l Ambiente e il Territorio anno accademico 2005-06 Meccanica dei solidi Prof. Ing. Stefano Aversa Meccanica dei Solidi Prof.
Fondamenti di Automatica
Fondamenti di Automatica Introduzione e modellistica dei sistemi Introduzione allo studio dei sistemi Modellistica dei sistemi dinamici elettrici Modellistica dei sistemi dinamici meccanici Modellistica
Dinamica del punto materiale
Dinamica del punto materiale Formule fondamentali L. P. 5 Aprile 2010 N.B.: Le relazioni riportate sono valide in un sistema di riferimento inerziale. Princìpi della dinamica Secondo principio della dinamica
29. Mezzi elastici RELAZIONE SFORZO-DEFORMAZIONE
29. Mezzi elastici I mezzi continui solidi sono caratterizzati da piccole deformazioni, che consentono di stabilire una relazione lineare tra sforzo e deformazione nota come legge di Hook. Linearizzando
Università degli Studi di Cagliari - Facoltà di Ingegneria e Architettura. Fondamenti di Costruzioni Meccaniche Tensione e deformazione Carico assiale
Esercizio N.1 Un asta di acciaio è lunga 2.2 m e non può allungarsi più di 1.2 mm quando le si applica un carico di 8.5 kn. Sapendo che E = 200 GPa, determinare: (a) il più piccolo diametro dell asta che
Esercitazioni di Meccanica Razionale
Esercitazioni di Meccanica Razionale a.a. 2002/2003 Esempi di forze conservative Maria Grazia Naso [email protected] Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica
RELAZIONE ESERCITAZIONI AUTODESK INVENTOR
20 Ottobre 2015 RELAZIONE ESERCITAZIONI AUTODESK INVENTOR Corso di Costruzione di Macchine e Affidabilità C.d.L.M. in Ingegneria Meccanica Docente: Prof.ssa Cosmi Francesca Assistente: Dott.ssa Ravalico
Controlli Automatici e Teoria dei Sistemi Esempi di sistemi dinamici
Controlli Automatici e Teoria dei Sistemi Esempi di sistemi dinamici Prof. Roberto Guidorzi Dipartimento di Elettronica, Informatica e Sistemistica Università di Bologna Viale del Risorgimento 2, 40136
Meccanica dei fluidi, dove e cosa studiare
Meccanica dei fluidi, dove e cosa studiare Meccanica dei Fluidi AA 2015 2016 Il libro di testo adottato è Meccanica dei Fluidi di Cengel & Cimbala, McGraw Hill. Alcuni argomenti sono stati trattati con
La modellazione delle strutture
La modellazione delle strutture 1 Programma 31-1-2012 Introduzione e brevi richiami al metodo degli elementi finiti 7-2-2012 La modellazione della geometria 14-2-2012 21-2-2012 28-2-2012 6-3-2012 13-32012
LEZIONE 2. MATERIALI E CARICHI DELLA COSTRUZIONE Parte I. I materiali della costruzione
Corso di TECNICA DELLE COSTRUZIONI Chiara CALDERINI A.A. 2007-2008 Facoltà di Architettura Università degli Studi di Genova LEZIONE 2 MATERIALI E CARICHI DELLA COSTRUZIONE Parte I. I materiali della costruzione
OSCILLATORE ARMONICO SEMPLICE
OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato
Moto vario nelle correnti a superficie libera Nozione elementare di onda In termini generali un'onda consiste nella propagazione di un segnale
1 Moto vario nelle correnti a superficie libera Nozione elementare di onda In termini generali un'onda consiste nella propagazione di un segnale attraverso un mezzo (nella fattispecie un liquido) con una
Che cos è un fluido?
Che cos è un fluido? Breve introduzione alla fluidodinamica Alessandro Musesti Università Cattolica del Sacro Cuore Verona, 28 maggio 2008 Alessandro Musesti (Univ. Cattolica) Che cos è un fluido? Verona,
Formulario Meccanica
Formulario Meccanica Cinematica del punto materiale 1 Cinematica del punto: moto nel piano 3 Dinamica del punto: le leggi di Newton 3 Dinamica del punto: Lavoro, energia, momenti 5 Dinamica del punto:
Capitolo 11. TORSIONE (prof. Elio Sacco) 11.1 Sollecitazione di torsione Torsione nella sezione circolare
Capitolo TORSIONE (prof. Elio Sacco). Sollecitazione di torsione Si esamina il caso in cui la trave è soggetta ad una coppia torcente e 3 agente sulla base L della trave. Si utilizza il metodo seminverso
Architettura Laboratorio di Costruzione I (A-L)
Università degli Studi di Parma Architettura Laboratorio di Costruzione I (A-L) Anno accademico 2012/2013 Docenti: Prof. Roberto Brighenti e-mail: [email protected] Tel.: 0521/905910 Ricevimento:
Sollecitazioni semplici Il Taglio
Sollecitazioni semplici Il Taglio Considerazioni introduttive La trattazione relativa al calcolo delle sollecitazioni flessionali, è stata asata sull ipotesi ce la struttura fosse soggetta unicamente a
Applicazioni delle leggi della meccanica: moto armnico
Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di
viii Indice 1.10 Ruota con solo scorrimento rotatorioϕ(camber e/o imbardata) Spinta di camber (comportamento lineare) El
Indice Prefazione xiii 1 Comportamento della ruota con pneumatico 1 1.1 Sistema di riferimento e azioni ruota-strada............. 2 1.2 Moto della ruota con pneumatico rispetto alla strada....... 5 1.2.1
PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 4ALS MATERIA: FISICA
PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 4ALS MATERIA: FISICA Strategie didattiche: Le lezioni frontali saranno associate a delle esperienze di laboratorio per accompagnare la
Introduzione elementare al metodo degli Elementi Finiti.
Introduzione elementare al metodo degli Elementi Finiti [email protected] Obie4vi Introduzione elementare al metodo degli elemen8 fini8 Analisi Termica Analisi Stru>urale Analisi Fluidodinamica
Derivata materiale (Lagrangiana) e locale (Euleriana)
ispense di Meccanica dei Fluidi 0 0 det 0 = [ (0 ) + ( ( ) ) + (0 0 ) ] = 0. Pertanto, v e µ sono indipendenti tra loro e costituiscono una nuova base. Con essi è possibile descrivere altre grandezze,
LEZIONE 1. IL PROGETTO STRUTTURALE Parte 2. La modellazione. Corso di TECNICA DELLE COSTRUZIONI Chiara CALDERINI A.A
Corso di TECNICA DELLE COSTRUZIONI Chiara CALDERINI A.A. 2007-2008 Facoltà di Architettura Università degli Studi di Genova LEZIONE 1 IL PROGETTO STRUTTURALE Parte 2. La modellazione LA MODELLAZIONE INPUT
Indice. Fisica: una introduzione. Il moto in due dimensioni. Moto rettilineo. Le leggi del moto di Newton
Indice 1 Fisica: una introduzione 1.1 Parlare il linguaggio della fisica 2 1.2 Grandezze fisiche e unità di misura 3 1.3 Prefissi per le potenze di dieci e conversioni 7 1.4 Cifre significative 10 1.5
Analogie fra i meccanismi di trasporto e principali numeri adimensionali. Fenomeni di Trasporto
Analogie fra i meccanismi di trasporto e principali numeri adimensionali Fenomeni di Trasporto 1 Confronto fra le equazioni di bilancio q. di moto energia specie chimiche Accumulo più termini convettivi
Matematica II. Risolvere o integrare una e.d. significa trovarne tutte le soluzione, che costituiscono il cosidetto integrale generale.
Definizione Si dice equazione differenziale di ordine n nella funzione incognita y = y (x) una relazione fra y, le sue derivate y,..., y (n), e la variabila indipendente x Risolvere o integrare una e.d.
PROGETTAZIONE DI STRUTTURE MECCANICHE
PROGETTAZIONE DI STRUTTURE MECCANICHE Andrew Ruggiero A.A. 2011/12 Analisi matriciale delle strutture: caratterizzazione degli elementi A. Gugliotta, Elementi finiti Parte I Elementi e strutture Una qualsiasi
Cavo Carbonio. Sergio Rubio Carles Paul Albert Monte
Cavo o Sergio Rubio Carles Paul Albert Monte o, Rame e Manganina PROPRIETÀ FISICHE PROPRIETÀ DEL CARBONIO Proprietà fisiche del o o Coefficiente di Temperatura α o -0,0005 ºC -1 o Densità D o 2260 kg/m
Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia
Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia Prof. Dino Zardi Dipartimento di Ingegneria Civile, Ambientale e Meccanica Fisica Componenti elementari
Università degli studi di Trento Corso di Laurea in Enologia e Viticoltura. Prof. Dino Zardi Dipartimento di Ingegneria Civile, Ambientale e Meccanica
Università degli studi di Trento Corso di Laurea in Enologia e Viticoltura Prof. Dino Zardi Dipartimento di Ingegneria Civile, Ambientale e Meccanica Agrometeorologia 5. Caratteristiche dei moti atmosferici
Indice slides. 1 Oscillatore semplice 5. 2 Equazione caratteristica 6. 3 Radici complesse 7. 4 Integrale generale 8. 5 Forza Peso 9.
Moto di Oscillatori Pietro Pantano Dipartimento di Matematica Università della Calabria Slides 1 di 27 Slides 2 di 27 1 Oscillatore semplice 5 2 Equazione caratteristica 6 3 Radici complesse 7 4 Integrale
Calcolo strutturale dell albero a gomito di un motore motociclistico
UNIVERSITÀ DEGLI STUDI DI BOLOGNA FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA MECCANICA DISEGNO TECNICO INDUSTRIALE Calcolo strutturale dell albero a gomito di un motore motociclistico Tesi di
Temi per la prova orale di Fisica Tecnica 2014-2015
I temi elencati nel seguito vogliono essere una guida alla preparazione della prova orale dell esame di Fisica Tecnica cosicché gli allievi possano raggiungere una preparazione completa sugli argomenti
PROBLEMI NON-LINEARI NEL CALCOLO STRUTTURALE
PROBLEMI NON-LINEARI NEL CALCOLO STRUTTURALE 1/ Non-linearità geometrica: spostamenti e deformazioni finiti / Non-linearità materiale: legge costitutiva non-lineare, plasticità, meccanica del danno, ipoelasticità,
Dipolo Elettrico: due cariche (puntiformi) +q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo
Il Dipolo Elettrico Dipolo Elettrico: due cariche (puntiformi) q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo qa che va da qq a q Dato un punto P molto distante
FACOLTA DI INGEGNERIA
FACOLTA DI INGEGNERIA CORSO DI LAUREA in Ingegneria Industriale Classe L/9 Insegnamento di Scienza delle Costruzioni S.S.D. ICAR/08 9 C.F.U. A.A. 2015-2016 Docente: Prof.ssa Francesca Nerilli E-mail: [email protected]
ONDE. Propagazione di energia senza propagazione di materia. Una perturbazione viene trasmessa ma l acqua non si sposta
ONDE Propagazione di energia senza propagazione di materia Una perturbazione viene trasmessa ma l acqua non si sposta Le onde meccaniche trasferiscono energia propagando una perturbazione in un mezzo.
Definizione di Lavoro
Definizione Lavoro Caso Forza intensità costante che agisce lungo una retta: L = F s = Fs Caso Forza intensità e rezione variabile: s L = F ds = F ( s) ds 0 0 F(s) componente della forza lungo s. s Nel
A.A Corso di Fisica I 12 CFU
A.A. 2016-17 Corso di Fisica I 12 CFU Docente: Prof.ssa Marinella Ragosta Scuola di Ingegneria Email: [email protected] Pagina web personale: http://oldwww.unibas.it/utenti/ragosta/index.html Pagina
ESERCITAZIONE 1 ESTENSIMETRIA
UNIVERSITA DEGLI STUDI DI CAGLIARI FACOLTA DI INGEGNERIA E ARCHITETTURA DIPARTIMENTO DI MECCANICA, CHIMICA E MATERIALI CORSO DI LAUREA IN INGEGNERIA MECCANICA ESERCITAZIONE 1 ESTENSIMETRIA Relazione del
FENOMENI DI MOTO VARIO PRESSIONE
FENOMENI DI MOTO VARIO NELLE CONDOTTE IN PRESSIONE 1 IMPIANTO IDROELETTRICO 2 IMPIANTO DI SOLLEVAMENTO 3 PROCESSI DI MOTO VARIO Variazioni di portata Q rapide (resistenze trascurabili se lunghezza condotta
LE ACQUE SOTTERRANEE
LE ACQUE SOTTERRANEE Acque sotterranee: si organizzano in corpi idrici con caratteristiche differenti a seconda del tipo di materiale Rocce cristalline o sedimentarie: circolano prevalentemente lungo fratture
Sommario 1 VOLUME CAPITOLO 1 - Matrici 1 VOLUME CAPITOLO 3 - Geometria delle masse 1 VOLUME CAPITOLO 2 - Notazione indiciale
Sommario CAPITOLO 1 - Matrici...! Definizione! Matrici di tipo particolare Definizioni relative-! Definizioni ed operazioni fondamentali! Somma di matrici (o differenza)! Prodotto di due matrici! Prodotti
LE RETTE PERPENDICOLARI E LE RETTE PARALLELE Le rette perpendicolari Le rette tagliate da una trasversale Le rette parallele
PROGRAMMA DI MATEMATICA Classe prima (ex quarta ginnasio) corso F NUMERI: Numeri per contare: insieme N. I numeri interi: insieme Z. I numeri razionali e la loro scrittura: insieme Q. Rappresentare frazioni
Fisica Tecnica Ambientale
Università degli Studi di Perugia Sezione di Fisica ecnica Fisica ecnica Ambientale Lezione del marzo 015 Ing. Francesco D Alessandro [email protected] Corso di Laurea in Ingegneria Edile e Architettura
Presentazione dell edizione italiana
Indice Presentazione dell edizione italiana Prefazione Nota sulle unita di misura Glossario dei simboli L alfabeto greco XIII XVII XIX XX XXIV 1 Introduzione all ingegneria geotecnica 1 1.1 Che cos e l
Dipartimento di Fisica anno accademico 2015/16 Registro lezioni del docente RUI RINALDO
Dipartimento di Fisica anno accademico 2015/16 Registro lezioni del docente RUI RINALDO Attività didattica TERMODINAMICA E FLUIDODINAMICA [172SM] Periodo di svolgimento: Secondo Semestre Docente titolare
Giovanni Menditto. Lezioni di Scienza delle Costruzioni. Volume I : La Statica. , t. Pitagora Editrice Bologna
Giovanni Menditto Lezioni di Scienza delle Costruzioni Volume I : La Statica. t Pitagora Editrice Bologna l. '". _ IUAV - VENEZIA AREA SERV BIBLIOGRAFICI E DOCUMENTALI H 9237 BIBLIOTECA CENTRALE I J_ '..J
PARAMETRI ELASTICI E TERMOFISICI DEL SILICIO CRISTALLINO
RAP TECHNICAL NOTE 006 INFN-LNF, Frascati 9/1/2009 PARAMETRI ELASTICI E TERMOFISICI DEL SILICIO CRISTALLINO A. Marini La nota contiene dati di riferimento a temperature ambiente e di interesse criogenico
Analisi di stabilita di un pendio naturale
Università degli Studi di Napoli FEDERICO II Dipartimento di Ingegneria Idraulica, Geotecnica ed Ambientale (DIGA) Corso di perfezionamento - Gestione e mitigazione dei rischi naturali Analisi di stabilita
02. Modelli Matematici: Derivazione
Controlli Automatici 02. Modelli Matematici: Derivazione Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it
1. Impostazione di un semplice modello FEM
Progettazione Assistita di Strutture Meccaniche 24/06/2011, pagina 1/5 Cognome: Anno accademico in cui si è seguito il corso Nome: [2010/2011] [2009/2010] [2008/2009] [........ ] Matricola: Componenti
ESAME DI AERODINAMICA 11/02/2015
ESAME DI AERODINAMICA 11/02/2015 In un profilo alare non simmetrico, al diminuire dell angolo di incidenza, la coordinata del centro di pressione: (a) tende verso il bordo di attacco (b) tende verso il
I seguenti grafici rappresentano istantanee dell onda di equazione:
Descrizione matematica di un onda armonica La descrizione matematica di un onda è data dalla seguente formula : Y ; t) A cos( k ω t + ϕ ) () ( ove ω e k, dette rispettivamente pulsazione e numero d onda,
Legge di Faraday. x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 Φ B.
Φ ε ds ds dφ = dt Legge di Faraday E x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x 1 x x x x x x x x x x E x x x x x x x x x x E Schema Generale Elettrostatica moto di q in un campo E
Introduzione al corso Le Piastre
Corso di Progetto di Strutture POTENZA, a.a. 2012 2013 Introduzione al corso Le Piastre Dott. Marco VONA DiSGG, Università di Basilicata [email protected] http://www.unibas.it/utenti/vona/ PROGRAMMA
PROGRAMMA DI MATEMATICA
Classe: IE Indirizzo: artistico-grafico PROGRAMMA DI MATEMATICA I numeri naturali e i numeri interi 1. Che cosa sono i numeri naturali 2. Le quattro operazioni 3. I multipli e i divisori di un numero 4.
DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA
DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema
Esercitazioni di Meccanica Razionale
Esercitazioni di Meccanica Razionale a.a. 2002/2003 Meccanica analitica I parte Maria Grazia Naso [email protected] Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica
TRAVI SU SUOLO ALLA WINKLER, INTERAZIONE TERRENO-FONDAZIONE
Università degli Studi di Palermo Facoltà di Ingegneria Dipartimento di Ingegneria Strutturale e Geotecnica TRAVI SU SUOO AA WINKER, INTERAZIONE TERRENO-FONDAZIONE Prof.. Cavaleri Ing. F. Di Trapani TRAVI
Indice delle lezioni del corso di Scienza delle Costruzioni Corso di laurea in Ingegneria Civile (01CFOAX), Vercelli
Indice delle lezioni del corso di Corso di laurea in Ingegneria Civile (0CFOAX), Vercelli Fabrizio Barpi Dipartimento di Ingegneria Strutturale e Geotecnica Politecnico di Torino 6 maggio 2009 Questo documento
Figura 1: Azioni generalizzate sul concio infinitesimo di piastra. dx dy = 0 (1)
Equazione risolvente delle piastre sottili Al fine di determinare l equazione della superficie elastica, cioè l unica incognita del problema, dato che tutte le altre grandezze sono scritte in funzione
Le unità di misura dell'si
Le unità di misura dell'si Unità fondamentali Ogni altra grandezza fisica (e la relativa unità di misura) è una combinazione di due o più grandezze fisiche (unità) di base, od il reciproco di una di esse.
CORSO DI LAUREA MAGISTRALE IN GEOLOGIA E TERRITORIO CORSO DI MODELLAZIONE GEOLOGICO- TECNICA ED IDROGEOLOGICA MODELLAZIONE IDROGEOLOGICA (2 CFU)
CORSO DI LAUREA MAGISTRALE IN GEOLOGIA E TERRITORIO CORSO DI MODELLAZIONE GEOLOGICO- TECNICA ED IDROGEOLOGICA MODELLAZIONE IDROGEOLOGICA (2 CFU) Docente: Alessandro Gargini (E-mail: [email protected])
La conduzione nei semiconduttori Politecnico di Torino 1
La conduzione nei semiconduttori 2006 Politecnico di Torino 1 La conduzione nei semiconduttori Concentrazioni di carica libera all equilibrio Correnti nei semiconduttori Modello matematico 3 2006 Politecnico
Corso di MECCANICA DEL VOLO Modulo Prestazioni. Lezione N. 3. Prof. D. P. Coiro
Corso di MECCANICA DEL VOLO Modulo Prestazioni Lezione N. 3 Prof. D. P. Coiro [email protected] www.dias.unina.it/adag/ Corso di Meccanica del Volo - Mod. Prestazioni - Prof. D. Corio - Intro Il Velivolo
IDRAULICA II (1 e 2 modulo)
IDRAULICA II (1 e 2 modulo) Docente: Prof.ssa Claudia Adduce Ricevimento: mercoledì 15:30-16:30 presso il Dipartimento di Scienze dell Ingegneria Civile stanza 1.8 Testi di riferimento: - MR: E.Marchi
Dinamica dei Fluidi. Moto stazionario
FLUIDODINAMICA 1 Dinamica dei Fluidi Studia il moto delle particelle di fluido* sotto l azione di tre tipi di forze: Forze di superficie: forze esercitate attraverso una superficie (pressione) Forze di
FERRARI LUCI MARIANI PELISSETTO FISICA MECCANICA E TERMODINAMICA IDELSON-GNOCCHI
FERRARI LUCI MARIANI PELISSETTO FISICA Volume Primo MECCANICA E TERMODINAMICA IDELSON-GNOCCHI Autori VALERIA FERRARI Professore Ordinario di Fisica Teorica Dipartimento di Fisica Sapienza Università di
PARTE 1: Elementi di base. Simboli e operazioni sugli insiemi. Simboli logici. Prodotto cartesiano.
PROGRAMMA di Analisi Matematica 1 A.A. 2008-2009, canale 1, prof.: Francesca Albertini, Claudio Marchi Ingegneria gestionale, meccanica e meccatronica, Vicenza Testo Consigliato: Analisi Matematica, M.
LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA
LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI MATEMATICA Classe VB Anno Scolastico 014-015 Insegnante: Prof.ssa La Salandra Incoronata 1 Nozioni di topologia su Intervalli; Estremo superiore
Corso di Costruzioni Aeronautiche
Corso di Costruzioni Aeronautiche Analisi Modale Elementi Monodimensionali 11 Dicembre 2013 Ing. Mauro Linari Senior Project Manager MSC Softw are S.r.l. Definizione Oscillazione libera non smorzata Oscillazione
Compito di Meccanica Razionale M-Z
Compito di Meccanica Razionale M-Z 11 giugno 213 1. Tre piastre piane omogenee di massa m aventi la forma di triangoli rettangoli con cateti 4l e 3l sono saldate lungo il cateto più lungo come in figura
Capitolo 1 - Introduzione
Capitolo 1 - Introduzione Indice - Motivazioni, obiettivi - Metodi numerici (FEM, BEM) - Metodi geometrici (Sorgenti immagine, ray tracing) - Applicazioni Metodi numerici per l acustica 1 Introduzione
Teoremi di Stokes, della divergenza e di Gauss Green.
Matematica 3 Esercitazioni eoremi di tokes, della divergenza e di Gauss Green. Esercizio 1 : Calcolare l area del dominio avente per frontiera la linea chiusa γ di equazioni parametriche x (1 t) t γ :,
Formulario di onde e oscillazioni
Formulario di onde e oscillazioni indice ------------------- Sistema massa-molla ------------------- ------------------- Pendolo semplice ------------------- 3 ------------------- Moto armonico Smorzamento
Lecture 4. Text: Motori Aeronautici Mar. 6, Mauro Valorani Univeristà La Sapienza. Equazioni del moto dei fluidi
Lecture 4 Equazioni del Text: Motori Aeronautici Mar. 6, 2015 Equazioni del Mauro alorani Univeristà La Sapienza 4.39 Agenda Equazioni del 1 2 4.40 Modelli Macroscopico a Equazioni del Ipotesi: volume
Corrente ele)rica. Cariche in movimento e legge di Ohm
Corrente ele)rica Cariche in movimento e legge di Ohm Corrente ele)rica Nei metalli si possono avere elettroni che si muovono anche velocemente fra un estremo e l altro del metallo, ma la risultante istante
1 Cinematica del punto Componenti intrinseche di velocità e accelerazione Moto piano in coordinate polari... 5
Indice 1 Cinematica del punto... 1 1.1 Componenti intrinseche di velocità e accelerazione... 3 1.2 Moto piano in coordinate polari... 5 2 Cinematica del corpo rigido... 9 2.1 Configurazioni rigide......
