Fondamenti di Automatica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Fondamenti di Automatica"

Transcript

1 Fondamenti di Automatica

2 Introduzione e modellistica dei sistemi Introduzione allo studio dei sistemi Modellistica dei sistemi dinamici elettrici Modellistica dei sistemi dinamici meccanici Modellistica dei sistemi dinamici elettromeccanici Modellistica dei sistemi dinamici termici 2

3 Introduzione e modellistica dei sistemi

4 Introduzione allo studio dei sistemi Nozione di sistema Distinzione fra sistemi statici e sistemi dinamici Definizione di sistema dinamico Criteri di classificazione dei sistemi dinamici Casi particolari di sistemi dinamici a dimensione finita Esempi di classificazione di sistemi dinamici 4

5 Introduzione allo studio dei sistemi

6 Nozione di sistema (1/2) Per sistema si intende un ente (fisico o astratto) dato dall interconnessione di più parti elementari, per cui vale il principio di azione e reazione u () i S y () i u( i) y () i : ingresso (azione, causa) : uscita (reazione, effetto) La variabile d interesse del sistema è l uscita y, il cui andamento è influenzato dall ingresso u 6

7 Nozione di sistema (2/2) Il comportamento di un sistema è descrivibile da un insieme S di relazioni matematiche (detto modello matematico) che legano fra loro l ingresso u e l uscita y Problematiche d interesse nello studio dei sistemi: noti Su, ( i) trovare y( i) noti S, y ( i) trovare u( i) des noti u( i), y ( i) trovare S Previsione Controllo Identificazione Notazione: u(), i y() i ut (), yt () : funzioni di ingresso e di uscita : valori dell ingresso e dell uscita all istante t 7

8 Introduzione allo studio dei sistemi

9 Sistema statico Per sistema statico si intende un sistema in cui il legame ingresso-uscita è istantaneo o statico: ( ) y () t = g u(), t t cioè il valore dell uscita y all istante t dipende solo dal valore dell ingresso u allo stesso istante t Esempio: resistore ideale i R R v R ut () = i () t R ( ) y () t = v () t = Ri () t = g ut (), t R R 9

10 Sistema dinamico (1/3) Per sistema dinamico si intende un sistema in cui il legame ingresso-uscita è di tipo dinamico: ( ) ( ) y () t = g u, t, t cioè il valore dell uscita y all istante t dipende da tutti i valori dell ingresso u fino all istante t Esempio: condensatore ideale, avente i C C v C ut () = i () t = Cdv () t dt C 1 yt () = v () t = i ( σ) dσ = C t ( ( ) ) 1 = u( σ) dσ = g u, t, t C C t C C 10

11 Sistema dinamico (2/3) Per riassumere tutta la storia passata del sistema fino all istante τ, si può introdurre lo stato x (τ ) che racchiude in sé tutta la memoria del passato: ( ) ( ) ( ) y () t = g x τ, u τ, t, t τ Rappresentazione grafica di un sistema dinamico: u () i S x () i y () i 11

12 Sistema dinamico (3/3) Esempio: condensatore ideale, avente v C ( )=0 i C 1 C v C τ x() τ = ic ( σ) dσ = v C () τ ut () = i () t = Cdv () t dt C yt () = v () t = 1 i ( σ) dσ C x ( τ ) t C C C C 1 t 1 τ 1 yt () = i ( σ) dσ = i ( σ) dσ + i ( σ) dσ = C C C C C C 1 t τ τ ( ( ) ( ) ) = x() τ + u( σ) dσ = g x τ, u τ, t, t τ C t 12

13 Introduzione allo studio dei sistemi

14 Definizione di sistema dinamico (1/3) Definizione assiomatica di sistema dinamico: ST (, U, Ω, XY,, Γ, ϕ, η) è un ente definito dai seguenti insiemi T : insieme ordinato dei tempi U : insieme dei valori assunti dall ingresso u Ω : insieme delle funzioni d ingresso { u(): i T U} X : insieme dei valori assunti dallo stato x Y : insieme dei valori assunti dall uscita y Γ : insieme delle funzioni d uscita y (): i T Y { } per cui sono definite le seguenti funzioni ϕ, η che ne determinano la rappresentazione di stato (o rappresentazione ingresso-stato-uscita): 14

15 Definizione di sistema dinamico (2/3) Funzione di transizione dello stato ϕ L evoluzione temporale dello stato (detta anche movimento dello stato) è descritta dall equazione: ( ) x( t) = ϕ t, τ, x( τ), u( i) t : istante finale τ : istante iniziale, con τ t x () τ : valore iniziale dello stato del sistema u( i) : funzione d ingresso definita nell intervallo [τ,t ] La funzione di transizione ϕ soddisfa le proprietà di consistenza, irreversibilità, composizione, causalità 15

16 Definizione di sistema dinamico (3/3) Funzione di uscita η L evoluzione temporale dell uscita (detta anche movimento dell uscita o risposta) è descritta da: y ( t) = η ( t, x( t), u( t) ) oppure da: y ( t), ( ) = η ( t x t ) Sistema improprio (non fisicamente realizzabile) Sistema proprio (fisicamente realizzabile) La funzione di uscita η è una funzione istantanea (cioè statica) dello stato e dell eventuale ingresso 16

17 Introduzione allo studio dei sistemi

18 Classificazione dei sistemi dinamici (1/5) Insieme dei tempi T : T sistema dinamico a tempo continuo T sistema dinamico a tempo discreto (si usa k come variabile temporale nel caso discreto, per meglio distinguerla dalla t del caso continuo) 18

19 Classificazione dei sistemi dinamici (2/5) Insiemi dei valori di ingresso U e di uscita Y : Insiemi discreti sistema dinamico a ingressi e uscite quantizzate U p, Y p =q =1 : q sistema monovariabile o SISO (Single Input - Single Output) p >1 e/o q >1: sistema multivariabile o MIMO (Multiple Input - Multiple Output) 19

20 Classificazione dei sistemi dinamici (3/5) Insieme dei valori dello stato X : Insieme discreto sistema dinamico a stati finiti n X, n finito sistema a dimensione finita (sistema a parametri concentrati) (nel caso a tempo continuo, il sistema dinamico è descritto da un sistema di equazioni differenziali alle derivate ordinarie) n X, n infinito sistema a dimensione infinita (sistema a parametri distribuiti) (nel caso a tempo continuo, il sistema dinamico è descritto da un sistema di equazioni differenziali alle derivate parziali) 20

21 Classificazione dei sistemi dinamici (4/5) Proprietà di linearità delle funzioni ϕ ed η : Il sistema dinamico è lineare se U, Ω, X, Y, Γ sono spazi vettoriali ϕ è lineare in x e in u ( ) xt () = ϕ t, τ, x(), τ u() i = = ϕ ( t, τ) x() τ + ϕ ( t, τ) u() i = x () t + x () t f f η è lineare in x e in u yt () = η t, xt (), ut () = C() t x() t + D() t u() t ( ) Altrimenti il sistema dinamico è non lineare 21

22 Classificazione dei sistemi dinamici (5/5) Proprietà di stazionarietà (o invarianza nel tempo) delle funzioni ϕ ed η : Il sistema dinamico è stazionario (oppure tempo-invariante) se ϕ ed η non dipendono esplicitamente dal tempo, cioè se ( ) ( Δτ ϕ t, τ, x, u( i) ) = ϕ t +Δ τ, τ +Δτ, x, u ( i) Δτ essendo u ( σ) = u( σ Δτ), σ [ τ+δ τ, t +Δτ], Δτ 0 y () t = η ( x(), t u() t ) Altrimenti il sistema dinamico è non stazionario (oppure tempo-variante) 22

23 Introduzione allo studio dei sistemi

24 Sistema dinamico a tempo continuo Per un sistema dinamico, a dimensione finita, a tempo continuo: il movimento xt () è soluzione di un sistema di n equazioni differenziali ordinarie del I ordine dx () t ( ) xt () = = f t, xt (), ut () dt il movimento y () t è dato da ( ) y () t = g t, x(), t u() t Equazione di stato Equazione di uscita 24

25 Sistema dinamico, a tempo continuo, lineare Per un sistema dinamico, a dimensione finita, a tempo continuo, lineare: l evoluzione temporale dello stato è descritta da n equazioni differenziali lineari in xt () ed ut () ( xt) = At () xt () + Bt () ut () Equazione di stato n n At ( ) : matrice di stato n p B( t) : matrice degli ingressi l evoluzione temporale dell uscita è descritta da y () t = C() t x() t + D() t u() t C t D ( t ) ( ) q n : matrice delle uscite q p Equazione di uscita : matrice del legame diretto ingresso-uscita 25

26 Sistema dinamico, a tempo continuo, LTI Per un sistema dinamico, a dimensione finita, a tempo continuo, lineare tempo-invariante (LTI): l evoluzione temporale dello stato è descritta da n equazioni differenziali lineari in x (t ) ed u (t ) a coefficienti costanti ( x t) = Ax() t + B u() t Equazione di stato l evoluzione temporale dell uscita è descritta da q equazioni lineari in xt (), ut () a coefficienti costanti y () t = C x() t + Du() t Equazione di uscita con A, B, C, D : matrici costanti 26

27 Sistema dinamico a tempo discreto Per un sistema dinamico, a dimensione finita, a tempo discreto: l evoluzione temporale dello stato è descritta da un sistema di n equazioni alle differenze finite ( ) x( k + 1) = f k, x( k), u( k) Equazione di stato l evoluzione temporale dell uscita è descritta da ( ) y ( k ) = g k, x( k), u( k) Equazione di uscita 27

28 Sistema dinamico, a tempo discreto, lineare Per un sistema dinamico, a dimensione finita, a tempo discreto, lineare: l evoluzione temporale dello stato è descritta da n equazioni alle differenze finite lineari in xk ( ), uk ( ) xk ( + 1) = Ak ( ) xk ( ) + Bkuk ( ) ( ) n n Ak ( ) : matrice di stato n p B( k) : matrice degli ingressi l evoluzione temporale dell uscita è descritta da y() k = C() k x() k + D()() k u k C k D ( k ) ( ) q n : matrice delle uscite q p Equazione di stato Equazione di uscita : matrice del legame diretto ingresso-uscita 28

29 Sistema dinamico, a tempo discreto, LTI Per un sistema dinamico, a dimensione finita, a tempo discreto, lineare tempo-invariante (LTI): l evoluzione temporale dello stato è descritta da n equazioni alle differenze finite lineari in xk ( ), uk ( ) a coefficienti costanti xk ( + 1) = Axk ( ) + Buk ( ) l evoluzione temporale dell uscita è descritta da q equazioni lineari in xk ( ), uk ( ) a coefficienti costanti y( k) = Cx( k) + Du( k) con A, B, C, D : matrici costanti Equazione di stato Equazione di uscita 29

30 Introduzione allo studio dei sistemi

31 Esempio #1 di classificazione (1/2) Dato il sistema descritto dalle seguenti equazioni 2 x () t = x () t + x () t x () t = 3 x () t + x () t u() t yt () = x() t ut () 2 analizzare le proprietà del modello matematico 31

32 Esempio #1 di classificazione (2/2) Il sistema è: Dinamico (il legame ingresso-uscita non è istantaneo) A tempo continuo (le equazioni di stato sono equazioni differenziali) SISO (p = #ingressi = dim(u ) = 1, q = #uscite = dim(y ) = 1) A dimensione finita (n = #variabili di stato = dim(x ) = 2 < ) 2 Non lineare (per i termini non lineari x (), t x () t u() t ) 1 1 Tempo-invariante (equazioni di stato e di uscita a coefficienti costanti) 32

33 Esempio #2 di classificazione (1/2) Dato il sistema descritto dalle seguenti equazioni x ( k + 1) = x ( k) + 2 u ( k) x ( k + 1) = k x ( k) + u ( k) y ( k) = x ( k) + 3 u ( k) 1 1 analizzare le proprietà del modello matematico 33

34 Esempio #2 di classificazione (2/2) Il sistema è: Dinamico (il legame ingresso-uscita non è istantaneo) A tempo discreto (le equazioni di stato sono equazioni alle differenze) MIMO (p = #ingressi = dim(u ) = 2, q = #uscite = dim(y ) = 1) A dimensione finita (n = #variabili di stato = dim(x ) = 2 < ) Lineare (eq. di stato e di uscita lineari in x, x, u, u ) Tempo-variante (per il termine kx 1 avente un coefficiente non costante) 34

Introduzione ai sistemi dinamici

Introduzione ai sistemi dinamici Introduzione ai sistemi dinamici Prof. G. Ferrari Trecate, Prof. D.M. Raimondo Dipartimento di Ingegneria Industriale e dell Informazione (DIII) Università degli Studi di Pavia Fondamenti di Automatica

Dettagli

Fondamenti di Automatica. Unità 3 Equilibrio e stabilità di sistemi dinamici

Fondamenti di Automatica. Unità 3 Equilibrio e stabilità di sistemi dinamici Fondamenti di Automatica Unità 3 Equilibrio e stabilità di sistemi dinamici Equilibrio e stabilità di sistemi dinamici Equilibrio di sistemi dinamici Linearizzazione di sistemi dinamici Stabilità interna

Dettagli

01. Modelli di Sistemi

01. Modelli di Sistemi Controlli Automatici 01. Modelli di Sistemi Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it

Dettagli

TEORIA DEI SISTEMI SISTEMI LINEARI

TEORIA DEI SISTEMI SISTEMI LINEARI TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI SISTEMI LINEARI Ing. Cristian Secchi Tel.

Dettagli

Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo

Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo Parte 2, 1 Parte 2, 2 Elementi di Teoria dei Sistemi Definizione di sistema dinamico Parte 2, 3 Sistema dinamico a tempo continuo Cosa significa Dinamico? Parte 2, 4? e` univocamente determinata? Ingresso

Dettagli

3. Sistemi Lineari a Tempo Discreto

3. Sistemi Lineari a Tempo Discreto . Sistemi Lineari a Tempo Discreto .5 y(t), y(kt) 4 y(t), y(kt).5.5.5.5.5 4 5 4 5 Campionamento di un segnale continuo Fig. (a) Segnale discreto Fig. (b) Esprimono relazioni fra variabili campionate ad

Dettagli

Controlli Automatici e Teoria dei Sistemi Esempi di sistemi dinamici

Controlli Automatici e Teoria dei Sistemi Esempi di sistemi dinamici Controlli Automatici e Teoria dei Sistemi Esempi di sistemi dinamici Prof. Roberto Guidorzi Dipartimento di Elettronica, Informatica e Sistemistica Università di Bologna Viale del Risorgimento 2, 40136

Dettagli

CONTROLLI AUTOMATICI LS Ingegneria Informatica SISTEMI E MODELLI

CONTROLLI AUTOMATICI LS Ingegneria Informatica SISTEMI E MODELLI CONTROLLI AUTOMATICI LS Ingegneria Informatica SISTEMI E MODELLI Prof. Claudio Melchiorri DEIS-Università di Bologna Tel. 051 2093034 e-mail: claudio.melchiorri@unibo.it http://www-lar.deis.unibo.it/~cmelchiorri

Dettagli

Introduzione e modellistica dei sistemi

Introduzione e modellistica dei sistemi Introduzione e modellistica dei sistemi Modellistica dei sistemi dinamici meccanici Sistemi meccanici in traslazione: elementi base Sistemi in traslazione: equazioni del moto Sistemi in traslazione: rappresentazione

Dettagli

4 Analisi nel dominio del tempo delle rappresentazioni in

4 Analisi nel dominio del tempo delle rappresentazioni in Indice del libro Alessandro Giua, Carla Seatzu Analisi dei sistemi dinamici, Springer-Verlag Italia, II edizione, 2009 Pagina web: http://www.diee.unica.it/giua/asd/ Prefazione.....................................................

Dettagli

Risposta a regime (per ingresso costante e per ingresso sinusoidale)

Risposta a regime (per ingresso costante e per ingresso sinusoidale) Risposta a regime (per ingresso costante e per ingresso sinusoidale) Esercizio 1 (es. 1 del Tema d esame del 18-9-00) s + 3) 10 ( s + 1)( s + 4s ) della risposta all ingresso u ( a gradino unitario. Non

Dettagli

Modello matematico di un sistema fisico

Modello matematico di un sistema fisico Capitolo 1. INTRODUZIONE 1.1 Modello matematico di un sistema fisico La costruzione del modello matematico è anche un procedimento che permette di comprendere a pieno il fenomeno fisico che si vuol descrivere.

Dettagli

Controlli Automatici I

Controlli Automatici I Ingegneria Elettrica Politecnico di Torino Luca Carlone Controlli Automatici I LEZIONE V Sommario LEZIONE V Proprietà strutturali Controllabilità e raggiungibilità Raggiungibilità nei sistemi lineari Forma

Dettagli

1 Equazioni Differenziali

1 Equazioni Differenziali Equazioni Differenziali Un equazione differenziale è un equazione che esprime un legame tra una variabile indipendente x (o t, quando ci riferiamo al tempo) una variabile dipendente y o incognita che sta

Dettagli

CONTROLLI AUTOMATICI Ingegneria Gestionale MODELLI DI SISTEMI

CONTROLLI AUTOMATICI Ingegneria Gestionale  MODELLI DI SISTEMI CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm MODELLI DI SISTEMI Ing. Federica Grossi Tel. 059 2056333 e-mail: federica.grossi@unimore.it

Dettagli

Prefazione 3. Ringraziamenti 5

Prefazione 3. Ringraziamenti 5 Indice Prefazione 3 Ringraziamenti 5 1 Introduzione all uso del software di calcolo MATLAB 7 1.1 Caratteristiche del software MATLAB 7 1.2 Nozioni di base del MATLAB 8 1.3 Assegnazione di variabili scalari

Dettagli

Reti nel dominio del tempo. Lezione 7 1

Reti nel dominio del tempo. Lezione 7 1 Reti nel dominio del tempo Lezione 7 1 Poli (o frequenze naturali) di una rete Lezione 7 2 Definizione 1/2 Il comportamento qualitativo di una rete dinamica dipende dalle sue frequenze naturali o poli

Dettagli

CONTROLLI AUTOMATICI Ingegneria Gestionale ANALISI ARMONICA

CONTROLLI AUTOMATICI Ingegneria Gestionale  ANALISI ARMONICA CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Ing. Federica Grossi Tel. 059 2056333 e-mail: federica.grossi@unimore.it

Dettagli

06. Analisi Armonica. Controlli Automatici. Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti

06. Analisi Armonica. Controlli Automatici. Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti Controlli Automatici 6. Analisi Armonica Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it http://www.arscontrol.org/teaching

Dettagli

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema

Dettagli

Introduzione e modellistica dei sistemi

Introduzione e modellistica dei sistemi Introduzione e modellistica dei sistemi Modellistica dei sistemi dinamici termici Elementi fondamentali Scrittura delle equazioni dinamiche Rappresentazione in variabili di stato Esempio di rappresentazione

Dettagli

Contenuti dell unità + C A0 L

Contenuti dell unità + C A0 L 1 ontenuti dell unità Questa unità considera problemi di transitorio in reti: 1) contenenti un solo elemento reattivo (1 condensatore oppure 1 induttore) a) alimentate da generatori costanti in presenza

Dettagli

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1 Alcuni esercizi risolti su: - calcolo dell equilibrio di un sistema lineare e valutazione delle proprietà di stabilità dell equilibrio attraverso linearizzazione - calcolo del movimento dello stato e dell

Dettagli

Rappresentazione dei segnali con sequenze di numeri e simboli

Rappresentazione dei segnali con sequenze di numeri e simboli Elaborazione numerica dei segnali Digital Signal Processing 1 Rappresentazione dei segnali con sequenze di numeri e simboli Elaborazione delle sequenze per stimare i parametri caratteristici di un segnale;

Dettagli

Docente: Pierpaolo Puddu

Docente: Pierpaolo Puddu Corso di Dinamica e Controllo dei Sistemi Energetici A.A. 2012-2013 Docente: Pierpaolo Puddu ORA Lunedì Martedì Mercoledì Giovedì Venerdì 08-09 X X 09-10 X 10-11 X 11-12 X 12-13 X 15-16 16-17 17-18 18-19

Dettagli

TECNICHE DI CONTROLLO

TECNICHE DI CONTROLLO TECNICHE DI CONTROLLO Richiami di Teoria dei Sistemi Dott. Ing. SIMANI SILVIO con supporto del Dott. Ing. BONFE MARCELLO Sistemi e Modelli Concetto di Sistema Sistema: insieme, artificialmente isolato

Dettagli

Pulse Amplitude Modulation (PAM) 2 Scelta delle risposte impulsive dei filtri in trasmissione e ricezione

Pulse Amplitude Modulation (PAM) 2 Scelta delle risposte impulsive dei filtri in trasmissione e ricezione Pulse Amplitude Modulation (PAM 1 Definizione La trasmissione di una sequenza di numeri {a k } mediante un onda PAM consiste nel generare, a partire dalla sequenza {a k } il segnale a tempo continuo u(t

Dettagli

RICHIAMI MATEMATICI. x( t)

RICHIAMI MATEMATICI. x( t) 0.0. 0.1 1 RICHIAMI MATEMATICI Funzioni reali del tempo: (t) : t (t) (t) ( t) Funzioni reali dell ingresso: y() t t y( ) y() : y() Numeri complessi. Un numero complesso è una coppia ordinata di numeri

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica STRUMENTI MATEMATICI PER L ANALISI DEI SISTEMI DISCRETI Ing. Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

COMPLEMENTI SUI DIFFERENZIALI ESATTI E L INTEGRAZIONE DI FORME DIFFERENZIALI

COMPLEMENTI SUI DIFFERENZIALI ESATTI E L INTEGRAZIONE DI FORME DIFFERENZIALI COMPLEMENTI SUI DIFFERENZIALI ESATTI E L INTEGRAZIONE DI FORME DIFFERENZIALI Sergio Console Derivate parziali (notazione) Data una funzione z = f(x, y), si può pensare di tener fissa la variabile y (considerandola

Dettagli

Calcolo del movimento di sistemi dinamici LTI. Soluzione per sistemi dinamici LTI TD

Calcolo del movimento di sistemi dinamici LTI. Soluzione per sistemi dinamici LTI TD Calcolo del movimento di sistemi dinamici LTI Soluzione per sistemi dinamici LTI TD Soluzione per sistemi LTI TD Soluzione nel dominio del tempo Soluzione nel dominio della frequenza Esempio di soluzione

Dettagli

Fondamenti di Automatica. Unità 2 Calcolo del movimento di sistemi dinamici LTI

Fondamenti di Automatica. Unità 2 Calcolo del movimento di sistemi dinamici LTI Fondamenti di Automatica Unità 2 Calcolo del movimento di sistemi dinamici LTI Calcolo del movimento di sistemi dinamici LTI Soluzione delle equazioni di stato per sistemi dinamici LTI a tempo continuo

Dettagli

Applicazioni delle leggi della meccanica: moto armnico

Applicazioni delle leggi della meccanica: moto armnico Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di

Dettagli

Analisi Numerica. Debora Botturi ALTAIR. Debora Botturi. Laboratorio di Sistemi e Segnali

Analisi Numerica. Debora Botturi ALTAIR.  Debora Botturi. Laboratorio di Sistemi e Segnali Analisi Numerica ALTAIR http://metropolis.sci.univr.it Argomenti Argomenti Argomenti Rappresentazione di sistemi con variabili di stato; Tecniche di integrazione numerica Obiettivo: risolvere sistemi di

Dettagli

Meccanica quantistica (5)

Meccanica quantistica (5) Meccanica quantistica (5) 0/7/14 1-MQ-5.doc 0 Oscillatore armonico Se una massa è sottoposta ad una forza di richiamo proporzionale allo spostamento da un posizione di equilibrio F = kx il potenziale (

Dettagli

RETI DI TELECOMUNICAZIONE

RETI DI TELECOMUNICAZIONE RETI DI TELECOMUNICAZIONE CATENE DI MARKOV TEMPO CONTINUE Definizioni Sia dato un processo stocastico x(t) che può assumere valori discreti appartenenti ad un insieme se accade che il processo è una catena

Dettagli

02. Modelli Matematici: Derivazione

02. Modelli Matematici: Derivazione Controlli Automatici 02. Modelli Matematici: Derivazione Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it

Dettagli

Fondamenti di Automatica. Modellistica dei sistemi dinamici a tempo discreto

Fondamenti di Automatica. Modellistica dei sistemi dinamici a tempo discreto Fondamenti di Automatica Modellistica dei sistemi dinamici a tempo discreto Sistemi dinamici a tempo discreto I sistemi dinamici a tempo discreto sono sistemi in cui tutte le grandezze variabili sono funzioni

Dettagli

Soluzione di circuiti RC ed RL del primo ordine

Soluzione di circuiti RC ed RL del primo ordine Principi di ingegneria elettrica Lezione 11 a parte 2 Soluzione di circuiti RC ed RL del primo ordine Metodo sistematico Costante di tempo Rappresentazione del transitorio Metodo sistematico per ricavare

Dettagli

Equilibrio e stabilità di sistemi dinamici. Linearizzazione di sistemi dinamici

Equilibrio e stabilità di sistemi dinamici. Linearizzazione di sistemi dinamici Eqilibrio e stabilità di sistemi dinamici Linearizzazione di sistemi dinamici Linearizzazione di sistemi dinamici Linearizzazione di na fnzione reale Linearizzazione di n sistema dinamico Esempi di linearizzazione

Dettagli

I.T.I.S. TRASFORMATA DI LAPLACE DIAGRAMMI DI BODE

I.T.I.S. TRASFORMATA DI LAPLACE DIAGRAMMI DI BODE I.T.I.S. APPUNTI DI ELETTRONICA TRASFORMATA DI LAPLACE E DIAGRAMMI DI BODE PREMESSA Per lo studio dei sistemi di controllo si utilizzano modelli matematici dinamici lineari. L analisi o il progetto di

Dettagli

Modellistica grafica: Bond Graphs

Modellistica grafica: Bond Graphs 1. - Bond Graphs 1.1 1 Modellistica grafica: Bond Graphs In qualsiasi campo energetico è sempre possibile scomporre il sistema in parti elementari che si interconnettono ad altre tramite delle porte energetiche,

Dettagli

REGOLATORI PID. Modello dei regolatori PID. Metodi di taratura automatica

REGOLATORI PID. Modello dei regolatori PID. Metodi di taratura automatica REGOLATORI PID Modello dei regolatori PID Metodi di taratura automatica Illustrazioni dal Testo di Riferimento per gentile concessione degli Autori 1 MODELLO DEI REGOLATORI PID Larga diffusione in ambito

Dettagli

Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro

Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro Segnali e Sistemi Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici Gianni Borghesan e Giovanni Marro Indice Introduzione 2. Notazione............................. 2 2 Classificazione

Dettagli

Risposta temporale: esempi

Risposta temporale: esempi ...4 Risposta temporale: esempi Esempio. Calcolare la risposta al gradino unitario del seguente sistema: x(t) = u(t) s + 5 (s + )(s + ) y(t) Il calcolo della trasformata del segnale di uscita è immediato:

Dettagli

Introduzione al Metodo agli Elementi Finiti (FEM) (x, y) Γ Tale formulazione viene detta Formulazione forte del problema.

Introduzione al Metodo agli Elementi Finiti (FEM) (x, y) Γ Tale formulazione viene detta Formulazione forte del problema. Introduzione al Metodo agli Elementi Finiti (FEM) Consideriamo come problema test l equazione di Poisson 2 u x 2 + 2 u = f(x, y) u = f y2 definita su un dominio Ω R 2 avente come frontiera la curva Γ,

Dettagli

Raggiungibilità, Controllabilità, Osservabilità e Determinabilità

Raggiungibilità, Controllabilità, Osservabilità e Determinabilità Raggiungibilità, Controllabilità, Osservabilità e Determinabilità Si determini se i sistemi lineari tempo invarianti ẋ(t) = Ax(t) + Bu(t), Σ c : y(t) = Cx(t) + Du(t). x(k + ) = Ax(k) + Bu(k), Σ d : y(k)

Dettagli

Analisi Matematica 2 Ingegneria Gestionale Docenti: B. Rubino e R. Sampalmieri L Aquila, 21 marzo 2005

Analisi Matematica 2 Ingegneria Gestionale Docenti: B. Rubino e R. Sampalmieri L Aquila, 21 marzo 2005 Analisi Matematica 2 Ingegneria Gestionale Docenti: B. Rubino e R. Sampalmieri L Aquila, 21 marzo 2005 Prova orale il: Docente: Determinare, se esistono, il massimo ed il minimo assoluto della funzione

Dettagli

TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI

TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI Ing. Cristian

Dettagli

Reti nel dominio delle frequenze. Lezione 10 2

Reti nel dominio delle frequenze. Lezione 10 2 Lezione 10 1 Reti nel dominio delle frequenze Lezione 10 2 Introduzione Lezione 10 3 Cosa c è nell Unità 3 In questa sezione si affronteranno Introduzione all Unità Trasformate di Laplace Reti nel dominio

Dettagli

università DEGLI STUDI DI NAPOLI FEDERICO II

università DEGLI STUDI DI NAPOLI FEDERICO II università DEGLI STUDI DI NAPOLI FEDERICO II Facoltà di Ingegneria Registro delle Lezioni dell insegnamento di: Introduzione ai Circuiti Corso di Laurea in Ingegneria dell'automazione Corso di Laurea in

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I

TEMI D ESAME DI ANALISI MATEMATICA I TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare

Dettagli

MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO. Sistema lineare stazionario a tempo continuo in equazioni di stato. = Cx(t) + Du(t) x(0) = x 0

MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO. Sistema lineare stazionario a tempo continuo in equazioni di stato. = Cx(t) + Du(t) x(0) = x 0 MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO Sistema lineare stazionario a tempo continuo in equazioni di stato ẋ(t) y(t) = Ax(t) + Bu(t) = Cx(t) + Du(t) x() = x Risposta completa (risposta libera e

Dettagli

iv Indice c

iv Indice c Indice Prefazione ix 1 Numeri 1 1 Insiemi e logica 1 1.1 Concetti di base sugli insiemi 1 1.2 Un po di logica elementare 9 2 Sommatorie e coefficienti binomiali 13 2.1 Il simbolo di sommatoria 13 2.2 Fattoriale

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondamenti di segnali Fondamenti e trasmissione TLC Introduzione Se il segnale d ingresso di un sistema Lineare Tempo-Invariante (LTI e un esponenziale

Dettagli

FONDAMENTI DI AUTOMATICA

FONDAMENTI DI AUTOMATICA Corso di laurea in Ingegneria delle Telecomunicazioni Guido Guardabassi FONDAMENTI DI AUTOMATICA NOTE COMPLEMENTARI LEZ. II : Sistemi POLITECNICO DI MILANO 4. Sistemi dinamici Il connotato qualificante

Dettagli

Stabilità BIBO Risposta impulsiva (vedi Marro par. 2.3, vedi Vitelli-Petternella par. III.1, vedi es. in LabView) Poli sull asse immaginario

Stabilità BIBO Risposta impulsiva (vedi Marro par. 2.3, vedi Vitelli-Petternella par. III.1, vedi es. in LabView) Poli sull asse immaginario Stabilità BIBO Risposta impulsiva (vedi Marro par..3, vedi Vitelli-Petternella par. III., vedi es. in LabView) Poli sull asse immaginario Criteri per la stabilità (vedi Marro Par. 4. a 4., vedi Vitelli-Petternella

Dettagli

Introduzione a MATLAB

Introduzione a MATLAB Introduzione a MATLAB Principali comandi MATLAB utili per il corso di Fondamenti di Automatica 01AYS Politecnico di Torino Sistemi dinamici LTI 1. Simulazione a tempo continuo Definizione del sistema Per

Dettagli

Modello matematico di un sistema fisico

Modello matematico di un sistema fisico Capitolo. NTRODUZONE. Modello matematico di n sistema fisico La costrzione del modello matematico è anche n procedimento che permette di comprendere a pieno il fenomeno fisico che si vol descrivere. Compromesso

Dettagli

Funzioni vettoriali di variabile scalare

Funzioni vettoriali di variabile scalare Capitolo 11 Funzioni vettoriali di variabile scalare 11.1 Curve in R n Abbiamo visto (capitolo 2) come la posizione di un punto in uno spazio R n sia individuata mediante le n coordinate di quel punto.

Dettagli

Lo studio dell evoluzione libera nei sistemi dinamici

Lo studio dell evoluzione libera nei sistemi dinamici Lo studio dell evoluzione libera nei sistemi dinamici December, Un sistema lineare, dinamico, a dimensione finita e continuo (ovvero in cui il tempo t appartiene all insieme dei reali) può essere descritto

Dettagli

MECCANICA COMPUTAZIONALE DELLE STRUTTURE

MECCANICA COMPUTAZIONALE DELLE STRUTTURE MECCANICA COMPUTAZIONALE DELLE STRUTTURE Elio Sacco Dipartimento di Meccanica Strutture Ambiente Territorio Università di Cassino Tel: 776.993659 Email: sacco@unicas.it Fenomeno in natura Leggi della fisica

Dettagli

Introduzione al Corso

Introduzione al Corso Introduzione - 1 Corso di Laurea in Ingegneria Meccanica Introduzione al Corso DEIS-Università di Bologna Tel. 051 2093020 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi Introduzione -

Dettagli

Indice 1 Spazi a dimensione finita... 1 1.1 Primi esempi di strutture vettoriali... 1 1.2 Spazi vettoriali (a dimensione finita)...... 3 1.3 Matrici come trasformazioni lineari...... 5 1.4 Cambiamenti

Dettagli

Data un azione, le due opzioni call e put (europee, scadenza t0 ) con prezzo di esercizio X in ogni tempo t < t0 si ha

Data un azione, le due opzioni call e put (europee, scadenza t0 ) con prezzo di esercizio X in ogni tempo t < t0 si ha 0) limitazioni prezzo call Data un azione, le due opzioni call e put (europee, scadenza t0 ) con prezzo di esercizio X in ogni tempo t < t0 si ha γ(t)x + c(t) = A(t) + p(t) con A(t) prezzo dell azione,

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi dei sistemi dinamici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1 Analisi dei

Dettagli

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,

Dettagli

FUNZIONI DI TRASFERIMENTO

FUNZIONI DI TRASFERIMENTO FUNZIONI DI TRASFERIMENTO Funzioni Di Traferimento La difficoltà maggiore nel trattare i modelli matematici di itemi dinamici lineari è dovuta al fatto che le equazioni delle leggi fiiche che decrivono

Dettagli

Scomposizione in fratti semplici

Scomposizione in fratti semplici 0.0.. Scomposizione in fratti semplici La determinazione dell evoluzione libera e dell evoluzione forzata di un sistema lineare stazionario richiedono l antitrasformazione di una funzione razionale fratta

Dettagli

Consideriamo un sistema dinamico tempo-invariante descritto da:

Consideriamo un sistema dinamico tempo-invariante descritto da: IL PROBLEMA DELLA STABILITA Il problema della stabilità può essere affrontato in vari modi. Quella adottata qui, per la sua riconosciuta generalità ed efficacia, è l impostazione classica dovuta a M. A.

Dettagli

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6 EQUAZIONI DIFFERENZIALI.. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x log t (d) x = e t x log x (e) y = y 5y+6 (f) y = ty +t t +y (g) y = y (h) xy = y (i) y y y = 0 (j) x = x (k)

Dettagli

Note sul sistema di Lotka-Volterra. Prima versione. Commenti e correzioni sono benvenuti.

Note sul sistema di Lotka-Volterra. Prima versione. Commenti e correzioni sono benvenuti. Ottobre 2016 Note sul sistema di Lotka-Volterra Prima versione. Commenti e correzioni sono benvenuti. 1 Introduzione Il sistema di Lotka Volterra (LV), o sistema preda predatore è probabilmente il primo

Dettagli

Teoria dei Segnali Richiami di analisi matematica; alcune funzioni notevoli

Teoria dei Segnali Richiami di analisi matematica; alcune funzioni notevoli Teoria dei Segnali Richiami di analisi matematica; alcune funzioni notevoli Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria dei Segnali Richiami

Dettagli

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile;

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile; 1 Esercizi svolti Esercizio 1. Con riferimento al sistema di figura, calcolare: ut) + K s s + 6 s 3 yt) a) la funzione di trasferimento a ciclo chiuso tra ut) e yt); b) i valori di K per i quali il sistema

Dettagli

Capitolo 2. Un introduzione all analisi dinamica dei sistemi

Capitolo 2. Un introduzione all analisi dinamica dei sistemi Capitolo 2 Un introduzione all analisi dinamica dei sistemi Obiettivo: presentare una modellistica di applicazione generale per l analisi delle caratteristiche dinamiche di sistemi, nota come system dynamics,

Dettagli

Sistemi Dinamici a Tempo Continuo

Sistemi Dinamici a Tempo Continuo Parte 2 Aggiornamento: Settembre 2010 Parte 2, 1 Sistemi Dinamici a Tempo Continuo Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: lmarconi@deis.unibo.it URL: www-lar.deis.unibo.it/~lmarconi

Dettagli

Risposta al gradino di un sistema del primo ordine

Risposta al gradino di un sistema del primo ordine 0.0..4 Risposta al gradino di un sistema del primo ordine Diagramma Si consideri il seguente sistema lineare del primo ordine: G(s) = +τ s L unico parametro che caratterizza il sistema è la costante di

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi dei sistemi dinamici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1 Analisi dei

Dettagli

5. Per ω = 1/τ il diagramma reale di Bode delle ampiezze della funzione G(jω) =

5. Per ω = 1/τ il diagramma reale di Bode delle ampiezze della funzione G(jω) = Fondamenti di Controlli Automatici - A.A. 211/12 3 luglio 212 - Domande Teoriche Cognome Nome: Matricola: Corso di Laurea: Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni

Dettagli

Calcolo del movimento di sistemi dinamici LTI

Calcolo del movimento di sistemi dinamici LTI Calcolo del movimento di sistemi dinamici LTI Analisi modale per sistemi dinamici LTI TC Modi naturali di un sistema dinamico Analisi modale Esercizio 1 Costante di tempo Esercizio 2 2 Analisi modale per

Dettagli

CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo. SCHEMI A BLOCCHI

CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo.  SCHEMI A BLOCCHI CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/controlliautomatici.html SCHEMI A BLOCCHI Ing. e-mail: luigi.biagiotti@unimore.it http://www.dii.unimore.it/~lbiagiotti

Dettagli

2.5 Stabilità dei sistemi dinamici 20. - funzioni di trasferimento, nella variabile di Laplace s, razionali fratte del tipo:

2.5 Stabilità dei sistemi dinamici 20. - funzioni di trasferimento, nella variabile di Laplace s, razionali fratte del tipo: .5 Stabilità dei sistemi dinamici 9 Risulta: 3 ( s(s + 4).5 Stabilità dei sistemi dinamici Si è visto come un sistema fisico può essere descritto tramite equazioni differenziali o attraverso una funzione

Dettagli

CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica

CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica CONTROLLO DI SISTEMI ROBOTICI ANALISI DEI SISTEMI LTI Ing. Tel. 0522 522235 e-mail: secchi.cristian@unimore.it http://www.dismi.unimo.it/members/csecchi

Dettagli

Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE Automation Robotics and System CONTROL Università degli Studi di Modena e Reggio Emilia Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL o E 2 o ORDINE CA 5 Cesare Fantuzzi (cesare.fantuzzi@unimore.it)

Dettagli

Gianfranco Cariolaro, Gianfranco Pierobon, Giancarlo Calvagno Segnali e sistemi Indice analitico

Gianfranco Cariolaro, Gianfranco Pierobon, Giancarlo Calvagno Segnali e sistemi Indice analitico Gianfranco Cariolaro, Gianfranco Pierobon, Giancarlo Calvagno Segnali e sistemi Indice analitico Copyright The McGraw-Hill Companies srl A aliasing, 443 fenomeno dell, 424f AMI, codificatore, 315 analiticità

Dettagli

Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia

Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia Prof. Dino Zardi Dipartimento di Ingegneria Civile, Ambientale e Meccanica Fisica Componenti elementari

Dettagli

CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO. Sistema in condizioni di equilibrio a t = 0. d(t) = 0. u(t) = 0. y(t) = 0. Sistema

CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO. Sistema in condizioni di equilibrio a t = 0. d(t) = 0. u(t) = 0. y(t) = 0. Sistema CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO Sistema in condizioni di equilibrio a t = 0. d(t) = 0 u(t) = 0 Sistema y(t) = 0 Tipi di perturbazione. Perturbazione di durata limitata: u(t) = 0, t > T u

Dettagli

6. Trasformate e Funzioni di Trasferimento

6. Trasformate e Funzioni di Trasferimento 6. Trasformate e Funzioni di Trasferimento 6.3 Richiami sulla Trasformata di Laplace Definizione La trasformata di Laplace di f(t) è la funzione di variabile complessa s C, (s = σ + jω), F (s) = e st f(t)dt

Dettagli

Esercizi di Fisica Matematica 3, anno , parte di meccanica hamiltoniana e quantistica

Esercizi di Fisica Matematica 3, anno , parte di meccanica hamiltoniana e quantistica Esercizi di Fisica Matematica 3, anno 014-015, parte di meccanica hamiltoniana e quantistica Dario Bambusi 09.06.015 Abstract Gli esercizi dei compiti saranno varianti dei seguenti esercizi. Nei compiti

Dettagli

Derivazione Numerica

Derivazione Numerica Derivazione Numerica I metodi alle differenze finite sono basati sull approssimazione numerica di derivate parziali. Per questo consideriamo come problema iniziale quello di approssimare le derivate di

Dettagli

Cenni sulla Serie di Fourier

Cenni sulla Serie di Fourier Cenni sulla Serie di Fourier Note per le lezioni del corso di Controlli Automatici Prof.ssa Maria Elena Valcher 1 Serie di Fourier Osserviamo preliminarmente che la somma di segnali periodici non è necessariamente

Dettagli

Leggi di capitalizzazione e di attualizzazione

Leggi di capitalizzazione e di attualizzazione Sommario Alcuni appunti di supporto al corso di Matematica Finanziaria (L-Z) Facoltà di Economia & Management- Università di Ferrara Sommario Parte I: Funzioni di capitalizzazione Parte II: Capitalizzazione

Dettagli

a.a. 2014/2015 Docente: Stefano Bifaretti

a.a. 2014/2015 Docente: Stefano Bifaretti a.a. 2014/2015 Docente: Stefano Bifaretti email: bifaretti@ing.uniroma2.it Gli schemi circuitali impiegati per la realizzazione dei convertitori statici sono molteplici. Infatti, la struttura del convertitore

Dettagli

Modellistica di sistemi elettromeccanici

Modellistica di sistemi elettromeccanici Modellistica di sistemi elettromeccanici Legge di Lorentz: una carica elettrica q che si muove con velocità v(t) relativamente ad un campo magnetico di induzione B(t) è soggetta ad una forza v(t) q α B(t)

Dettagli

Formulario Elettromagnetismo

Formulario Elettromagnetismo Formulario Elettromagnetismo. Elettrostatica Legge di Coulomb: F = q q 2 u 4 0 r 2 Forza elettrostatica tra due cariche puntiformi; ε 0 = costante dielettrica del vuoto; q = cariche (in C); r = distanza

Dettagli

Esempi di modelli fisici

Esempi di modelli fisici 0.0..2 Esempi di modelli fisici ) Dinamica del rotore di un motore elettrico. Si consideri un elemento meccanico con inerzia J, coefficiente di attrito lineare che ruota alla velocità angolare ω al quale

Dettagli

Il blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una

Il blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una l blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una sorgente. Nel caso, come riportato in figura, il segnale

Dettagli

Esercitazione 03: Sistemi a tempo discreto

Esercitazione 03: Sistemi a tempo discreto 0 aprile 06 (h) Alessandro Vittorio Papadopoulos alessandro.papadopoulos@polimi.it Fondamenti di Automatica Prof. M. Farina Analisi di investimenti Una banca propone un tasso d interesse i = 3% trimestrale

Dettagli

Analisi sismica di un sistema lineare viscoso a più gradi di libertà con il metodo dello Spettro di Risposta

Analisi sismica di un sistema lineare viscoso a più gradi di libertà con il metodo dello Spettro di Risposta Analisi sismica di un sistema lineare viscoso a più gradi di libertà con il metodo dello Spettro di Risposta Prof. Adolfo Santini - Dinamica delle Strutture 1 Analisi sismica con lo spettro di risposta

Dettagli

Equazioni differenziali lineari del secondo ordine a coefficienti costanti

Equazioni differenziali lineari del secondo ordine a coefficienti costanti Equazioni differenziali lineari del secondo ordine a coefficienti costanti 0.1 Introduzione Una equazione differenziale del secondo ordine è una relazione del tipo F (t, y(t), y (t), y (t)) = 0 (1) Definizione

Dettagli