Fondamenti di Automatica. Unità 2 Calcolo del movimento di sistemi dinamici LTI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Fondamenti di Automatica. Unità 2 Calcolo del movimento di sistemi dinamici LTI"

Transcript

1 Fondamenti di Automatica Unità 2 Calcolo del movimento di sistemi dinamici LTI

2 Calcolo del movimento di sistemi dinamici LTI Soluzione delle equazioni di stato per sistemi dinamici LTI a tempo continuo Esempi di soluzione delle equazioni di stato per sistemi dinamici LTI a tempo continuo Analisi modale per sistemi dinamici LTI a tempo continuo Concetti di base sulla trasformata zeta Soluzione delle equazioni di stato per sistemi dinamici LTI a tempo discreto Analisi modale per sistemi dinamici LTI a tempo discreto

3 Calcolo del movimento di sistemi dinamici LTI Soluzione delle equazioni di stato per sistemi dinamici LTI a tempo continuo

4 Soluzione delle equazioni di stato per sistemi dinamici LTI a tempo continuo Soluzione nel dominio della frequenza s (trasformata di Laplace) Soluzione nel dominio del tempo (formula di Lagrange)

5 Soluzione nel dominio della frequenza s Richiami sulla trasformata di Laplace

6 Richiami sulla trasformata di Laplace 1/6 Definizione Sia f(t) : R R La trasformata (unilatera) di Laplace è un operatore dallo spazio delle funzioni reali di variabile reale allo spazio delle funzioni complesse di variabile complessa s definita (quando esiste) da: { } st F ( s) = L f () t = f () t e dt 0

7 Linearità Richiami sulla trasformata di Laplace 2/6 Siano f 1 (t) ed f 1 (t) due funzioni, aventi trasformata di Laplace F 1 (s) ed F 2 (s) rispettivamente e c 1, c 2 R. Allora: L { } cf() t + cf () t = cf( s) + cf( s)

8 Richiami sulla trasformata di Laplace 3/6 L Derivazione Sia f(t) una funzione derivabile n volte e avente trasformata di Laplace F(s). Allora: { } L L { } f () t = sf ( s) f (0) { } f t s F s sf f 2 () = ( ) (0) (0) f ( t) = s F ( s) s f (0 ) s f (0 ) f (0 ) ( n) n n 1 n 2 ( n 1)

9 Richiami sulla trasformata di Laplace 4/6 Integrazione Sia f(t) una funzione integrabile e avente trasformata di Laplace F(s). Allora : L Ritardo nel tempo { t () } f τ dτ 0 = F ( s) s Sia f(t) una funzione avente trasformata di Laplace F(s). Allora: L { } τ f ( t τ ) = F ( s) e s

10 Richiami sulla trasformata di Laplace 5/6 Prodotto di convoluzione Siano f 1 (t) ed f 1 (t) due funzioni aventi trasformata di Laplace F 1 (s) ed F 2 (s) rispettivamente, allora il loro prodotto di convoluzione definito come: t f () t f () t f ( t τ ) f () τ dτ f () τ f ( t τ) dτ = = ammette trasformata di Laplace L { } f () t f () t = F ( s) F ( s) t

11 Richiami sulla trasformata di Laplace 6/6 Principali trasformate f () t F ( s) δ () t 1 ε () t n t n! 1 s 1 s n + 1 f () t F ( s) e at 1 s a n at t e 1 n! s a sin( ω t ) cos( ω t ) ( ) ω n s + ω0 s s + ω0 f () t F ( s) ( ) At e si A 1

12 Soluzione nel dominio della frequenza s Calcolo della soluzione nel dominio della trasformata di Laplace

13 Descrizione di sistemi dinamici LTI TC Il comportamento dinamico di un sistema LTI TC è descritto dalle equazioni di ingresso stato uscita: ( x t) = Ax() t + B u() t y () t = C x() t + Du() t Si ricorda che: x(t) R n, u(t) R p, y(t) R q A R nxn, B R nxp, C R qxn, D R qxp

14 Il movimento di sistemi dinamici LTI TC Utilizzando le equazioni di stato: ( x t) = Ax() t + B u() t si vuole calcolare la soluzione x(t) a partire da uno stato iniziale x(t = 0 - ) = x 0 noto e a fronte di un andamento dell ingresso u(t) noto t 0. La soluzione x(t) si indica con il termine movimento dello stato.

15 La soluzione nel dominio della frequenza s 1/5 Il calcolo di x(t) e y(t) con la trasformata di Laplace avviene secondo lo schema: Equazioni in dom(t) soluzione in dom(t) x(t), y(t) L L -1 Equazioni in dom(s) soluzione in dom(s) X(s), Y(s)

16 La soluzione nel dominio della frequenza s 2/5 La soluzione nel dominio della frequenza si ottiene trasformando le equazioni di ingresso - stato - uscita: x() t = Ax() t + B u() t y() t = C x() t + Du() t L sx ( s ) x (0 ) = AX ( s ) + B U ( s ) Y ( s) = C X ( s) + DU( s) e calcolando esplicitamente X(s) e Y(s).

17 La soluzione nel dominio della frequenza s 3/5 Per il movimento dello stato si ottiene: H0 ( s ) H ( ) f s ( ) 1 ( ) 1 X ( s ) = si A x (0 ) + si A B U ( s ) = x 0 x MOVIMENTO LIBERO MOVIMENTO FORZATO = ( x ( t )) = ( x ( t )) L x = H ( s) x(0 ) + H ( s) U( s) f Antitrasformando, x(t) risulta pari alla somma di: x() t = x () t + x () t x l (t) movimento libero dipende solo da x(0 - ) x f (t) movimento forzato dipende solo da u(t) L f x f

18 La soluzione nel dominio della frequenza s 4/5 L andamento di y(t), detto movimento dell uscita o risposta del sistema, si ottiene trasformando l equazione statica di uscita y () t = C x() t + Du() t : 0 RISPOSTA LIBERA = ( y ( t )) H ( s) MATRICE DI TRASFERIMENTO H0 ( s) ( ) 1 ( ) 1 Y ( s) = C si A x(0 ) + C si A B + D U( s) L = H ( s) x(0 ) + H( s) U( s) RISPOSTA FORZATA = ( y ( t )) Antitrasformando, y(t) risulta pari alla somma di: y l (t) risposta libera dipende solo da x(0 - ) y f (t) risposta forzata dipende solo da u(t) L f

19 La soluzione nel dominio della frequenza s 5/5 H(s) matrice di trasferimento del sistema (legame ingresso uscita). H x 0 (s), H x f (s),h 0 (s), H(s) sono in generale matrici complesse i cui elementi sono funzioni razionali fratte (rapporto di polinomi) nella variabile complessa s. Le matrici H x 0 (s), H 0 (s) rappresentano il legame fra le condizioni iniziali e, rispettivamente, lo stato e l uscita. Le matrici H x f (s), H(s) rappresentano il legame tra l ingresso e, rispettivamente, lo stato e l uscita.

20 La matrice di trasferimento La matrice H(s) èdetta matrice di trasferimento e rappresenta il legame tra l ingresso e l uscita, nel dominio della trasformata di Laplace. Per un sistema a p ingressi e q uscite la matrice di trasferimento è costituita da una matrice a q righe e p colonne di funzioni razionali della variabile s.

21 Soluzione nel dominio della frequenza s La funzione di trasferimento

22 La funzione di trasferimento Se il sistema è a un ingresso (p = 1) e un uscita (q = 1) (SISO) allora la matrice di trasferimento si dice funzione di trasferimento (fdt). m NH ( s) bms + b s + + b s + b H( s) = =, m n n D ( s) s + a s + + a s + a H m 1 m n 1 n m < n fdt strettamente propria (il sistema è proprio b m D 0). m n fdt non strettamente propria (bipropria) (il sistema è improprio b m D 0). radici di N H (s) zeri della fdt del sistema. radici di D H (s) poli della fdt del sistema.

23 Forme fattorizzate della funzione di trasferimento 1/2 Forma zeri e poli ( s z1) ( s z2) ( s zm ) ( )( ) ( ) Hs () = K s p s p s p 1 2 n z 1,, z m zeri della fdt p 1,, p n poli della fdt K guadagno infinito n m K = lim s H( s) s

24 Forme fattorizzate della funzione di trasferimento 2/2 Forma fattorizzata di Bode (forma fattorizzata in costanti di tempo) Sarà introdotta e studiata nel modulo di Controlli Automatici

25 Rappresentazione di singolarità complesse 1/4 p(s) = s 2 + a 1 s + a 0 = (s - σ 0 -jω 0 )(s - σ 0 + jω 0 ) polinomio di secondo grado con radici complesse coniugate s 1,2 = σ 0 ± jω 0. σ 0 e ω 0 parte reale e immaginaria rappresentazione cartesiana delle radici jω x jω 0 σ 0 σ x -jω 0

26 Radici complesse coniugate (2/4) Pulsazione naturale (ω n ) e smorzamento (ζ ) di una coppia di radici complesse coniugate jω θ ζ = sin(θ ) ω n = (σ ω 0 2 ) x ω n jω 0 σ 0 σ x - jω 0 σ 0 = ζω n ω 0 = ω n (1 ζ 2 ) ω n = (σ 02 +ω 02 ) ζ = σ 0 / (σ 02 +ω 02 ) ω n > 0 ζ < 1 per una coppia di radici complesse coniugate

27 Rappresentazione di singolarità complesse 3/4 Rappresentazione di un trinomio di 2 grado in funzione di smorzamento e pulsazione naturale s ζω s + ω n n

28 Rappresentazione di singolarità complesse 4/4 Funzione di trasferimento nella forma zeri e poli Hs () = K mr mc 2 2 ( s z ) i s + ζz, iωnz, is + ωnz, i i= 1 i= 1 nr nc 2 2 ( s pi ) s + ζp, iωnp, is + ωnp, i i= 1 i= 1 ( 2 ) ( 2 ) m r # zeri reali, m c # coppie zeri complessi coniugati m r + 2 m c = m n r # poli reali, n c # coppie poli complessi coniugati n r + 2 n c = n K guadagno infinito

29 Soluzione nel dominio del tempo La formula di Lagrange Movimento libero Movimento forzato

30 Descrizione di sistemi dinamici LTI TC Il comportamento dinamico di un sistema LTI TC è descritto dalle equazioni di ingresso stato uscita: ( x t) = Ax() t + B u() t y () t = C x() t + Du() t Si ricorda che: x(t) R n, u(t) R p, y(t) R q A R nxn, B R nxp, C R qxn, D R qxp

31 Il movimento di sistemi dinamici LTI TC Utilizzando le equazioni di stato: ( x t) = Ax() t + B u() t si vuole calcolare la soluzione x(t) a partire da uno stato iniziale x(t = 0 - ) = x 0 noto e a fronte di un andamento dell ingresso u(t) noto t 0. la soluzione x(t) si indica con il termine movimento dello stato.

32 La formula di Lagrange per il calcolo di x(t) L espressione di x(t) si calcola con la formula di Lagrange: t At A( t τ ) () (0) () τ 0 x ( t ) x t = e x + e Bu dτ = = x () t + x () t f x ( t ) f Il movimento dello stato x(t) è la somma di due contributi: x l (t) movimento libero dipende solo da x(0 - ) x f (t) movimento forzato dipende solo da u(t)

33 Calcolo del movimento dell uscita L andamento di y(t), detto movimento dell uscita, si ottiene dalla relazione statica: y () t = C x() t + Du() t dopo avere sostituito per x(t) l espressione ottenuta dalla formula di Lagrange: t At A( t τ ) () (0) () τ τ () 0 y ( t ) y t = Ce x + C e Bu d + Du t = = y () t + y () t f y ( t ) f

34 Calcolo del movimento dell uscita Anche il movimento dell uscita y(t) detto anche risposta del sistema è la somma di due contributi: y l (t) risposta libera dipende solo da x(0 - ) y f (t) risposta forzata dipende solo da u(t)

35 Utilizzo della trasformata di Laplace L impiego diretto della formula di Lagrange richiede però l utilizzo di procedimenti di calcolo integrale Al fine di semplificare tali procedimenti, risulta più utile fare ricorso alla trasformata di Laplace, giustificando in tal modo la soluzione nel dominio della frequenza s

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L.

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L. Parte 3 Aggiornamento: Settembre 2010 Parte 3, 1 Trasformata di Laplace e Funzione di trasferimento Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: lmarconi@deis.unibo.it URL:

Dettagli

Capitolo. La funzione di trasferimento. 2.1 Funzione di trasferimento di un sistema. 2.2 L-trasformazione dei componenti R - L - C

Capitolo. La funzione di trasferimento. 2.1 Funzione di trasferimento di un sistema. 2.2 L-trasformazione dei componenti R - L - C Capitolo La funzione di trasferimento. Funzione di trasferimento di un sistema.. L-trasformazione dei componenti R - L - C. Determinazione delle f.d.t. di circuiti elettrici..3 Risposta al gradino . Funzione

Dettagli

Risposta temporale: esercizi

Risposta temporale: esercizi ...4 Risposta temporale: esercizi Esercizio. Calcolare la risposta al gradino del seguente sistema: G(s) X(s) = s (s+)(s+) Y(s) Per ottenere la risposta al gradino occorre antitrasformare la seguente funzione:

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondamenti di Controlli Automatici - A.A. 7/8 4 Dicembre 7 - Esercizi Compito A Nr. Nome: Nr. Mat. Firma: a) Determinare la trasformata di Laplace X i (s) dei seguenti segnali temporali x i (t): x (t)

Dettagli

LA FUNZIONE DI TRASFERIMENTO

LA FUNZIONE DI TRASFERIMENTO LA FUNZIONE DI TRASFERIMENTO Può essere espressa sia nel dominio della s che nel dominio della j Definizione nel dominio della s. è riferita ai soli sistemi con un ingresso ed un uscita 2. ha per oggetto

Dettagli

La funzione di risposta armonica

La funzione di risposta armonica 0.0. 3.1 1 La funzione di risposta armonica Se ad un sistema lineare stazionario asintoticamente stabile si applica in ingresso un segnale sinusoidale x(t) = sen ωt di pulsazione ω: x(t) = sin ωt (s) =

Dettagli

6. Trasformate e Funzioni di Trasferimento

6. Trasformate e Funzioni di Trasferimento 6. Trasformate e Funzioni di Trasferimento 6.3 Richiami sulla Trasformata di Laplace Definizione La trasformata di Laplace di f(t) è la funzione di variabile complessa s C, (s = σ + jω), F (s) = e st f(t)dt

Dettagli

Trasformate di Laplace

Trasformate di Laplace TdL 1 TdL 2 Trasformate di Laplace La trasformata di Laplace e un OPERATORE funzionale Importanza dei modelli dinamici Risolvere equazioni differenziali (lineari a coefficienti costanti) Tempo t Dominio

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Risposte canoniche e sistemi elementari Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1

Dettagli

ESERCITAZIONE (7-11-13) Ing. Stefano Botelli

ESERCITAZIONE (7-11-13) Ing. Stefano Botelli FONDAMENTI di AUTOMATICA ESERCITAZIONE (7-11-13) Ing. Stefano Botelli NB in presenza di matrici 3x3 bisogna intuire che esiste un metodo risolutivo particolare perchè non verrà mai richiesto a lezione

Dettagli

Istituto d Istruzione Secondaria Superiore M.BARTOLO. A cura del Prof S. Giannitto

Istituto d Istruzione Secondaria Superiore M.BARTOLO. A cura del Prof S. Giannitto Istituto d Istruzione Secondaria Superiore M.BATOLO PACHINO (S) APPUNTI DI SISTEMI AUTOMATICI 3 ANNO MODELLIZZAZIONE A cura del Prof S. Giannitto MODELLI MATEMATICI di SISTEMI ELEMENTAI LINEAI, L, C ivediamo

Dettagli

La trasformata Zeta. Marco Marcon

La trasformata Zeta. Marco Marcon La trasformata Zeta Marco Marcon ENS Trasformata zeta E l estensione nel caso discreto della trasformata di Laplace. Applicata all analisi dei sistemi LTI permette di scrivere in modo diretto la relazione

Dettagli

Richiami: funzione di trasferimento e risposta al gradino

Richiami: funzione di trasferimento e risposta al gradino Richiami: funzione di trasferimento e risposta al gradino 1 Funzione di trasferimento La funzione di trasferimento di un sistema lineare è il rapporto di due polinomi della variabile complessa s. Essa

Dettagli

Calcolo del movimento di sistemi dinamici LTI. Soluzione per sistemi dinamici LTI TD

Calcolo del movimento di sistemi dinamici LTI. Soluzione per sistemi dinamici LTI TD Calcolo del movimento di sistemi dinamici LTI Soluzione per sistemi dinamici LTI TD Soluzione per sistemi LTI TD Soluzione nel dominio del tempo Soluzione nel dominio della frequenza Esempio di soluzione

Dettagli

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/ Catene di Misura Corso di Misure Elettriche http://sms.unipv.it/misure/ Piero Malcovati Dipartimento di Ingegneria Industriale e dell Informazione Università di Pavia piero.malcovati@unipv.it Piero Malcovati

Dettagli

Funzioni di trasferimento. Lezione 14 2

Funzioni di trasferimento. Lezione 14 2 Lezione 14 1 Funzioni di trasferimento Lezione 14 2 Introduzione Lezione 14 3 Cosa c è nell Unità 4 In questa sezione si affronteranno: Introduzione Uso dei decibel e delle scale logaritmiche Diagrammi

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica STRUMENTI MATEMATICI PER L ANALISI DEI SISTEMI DISCRETI Ing. Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

La funzione di trasferimento

La funzione di trasferimento Sommario La funzione di trasferimento La funzione di trasferimento Poli e zeri della funzione di trasferimento I sistemi del primo ordine Esempi La risposta a sollecitazioni La funzione di trasferimento

Dettagli

Politecnico di Milano. Fondamenti di Automatica (CL Ing. Gestionale) a.a.2014-15 Prof. Silvia Strada Prima prova intermedia 28 Novembre 2014 SOLUZIONE

Politecnico di Milano. Fondamenti di Automatica (CL Ing. Gestionale) a.a.2014-15 Prof. Silvia Strada Prima prova intermedia 28 Novembre 2014 SOLUZIONE Politecnico di Milano Fondamenti di Automatica (CL Ing. Gestionale) a.a.014-15 Prof. Silvia Strada Prima prova intermedia 8 Novembre 014 SOLUZIONE ESERCIZIO 1 punti: 8 su 3 Si consideri il sistema dinamico

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Controlli Automatici - A.A. 1/11 Ingegneria Gestionale 13 Settembre 11 - Esercizi Nome: Nr. Mat. Firma: Rispondere alle seguenti domande. a) Calcolare la trasformata di Laplace X(s) dei seguenti segnali

Dettagli

Sistemi dinamici Introduzione Descrizione Soluzione Funzione di trasferimento Stabilità Regime permanente

Sistemi dinamici Introduzione Descrizione Soluzione Funzione di trasferimento Stabilità Regime permanente Controlli Automatici (AUT) - 09AKSBL Sistemi dinamici Introduzione Descrizione Soluzione Funzione di trasferimento Stabilità Regime permanente Sistemi dinamici - Introduzione Concetto di sistema. Si parla

Dettagli

2.5 Stabilità dei sistemi dinamici 20. - funzioni di trasferimento, nella variabile di Laplace s, razionali fratte del tipo:

2.5 Stabilità dei sistemi dinamici 20. - funzioni di trasferimento, nella variabile di Laplace s, razionali fratte del tipo: .5 Stabilità dei sistemi dinamici 9 Risulta: 3 ( s(s + 4).5 Stabilità dei sistemi dinamici Si è visto come un sistema fisico può essere descritto tramite equazioni differenziali o attraverso una funzione

Dettagli

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6 EQUAZIONI DIFFERENZIALI.. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x log t (d) x = e t x log x (e) y = y 5y+6 (f) y = ty +t t +y (g) y = y (h) xy = y (i) y y y = 0 (j) x = x (k)

Dettagli

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1)

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1) Transitori Analisi nel dominio del tempo Ricordiamo che si definisce transitorio il periodo di tempo che intercorre nel passaggio, di un sistema, da uno stato energetico ad un altro, non è comunque sempre

Dettagli

LEZIONI DEL CORSO DI SISTEMI DEL QUINTO ANNO

LEZIONI DEL CORSO DI SISTEMI DEL QUINTO ANNO LEZIONI DEL CORSO DI SISTEMI DEL QUINTO ANNO MOD. 1 Sistemi di controllo e di regolazione. Si tratta di un ripasso di una parte di argomenti effettuati l anno scorso. Introduzione. Schemi a blocchi di

Dettagli

Prova scritta di Controlli Automatici - Compito A

Prova scritta di Controlli Automatici - Compito A Prova scritta di Controlli Automatici - Compito A 21 Marzo 27 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare quali sono le affermazioni vere. 1. Si consideri

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi armonica e metodi grafici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 053 974839 E-mail: marcello.bonfe@unife.it pag. Analisi

Dettagli

Sistema dinamico a tempo continuo

Sistema dinamico a tempo continuo Sistema dinamico a tempo continuo Un sistema è un modello matematico di un fenomeno fisico: esso comprende le cause e gli effetti relativi al fenomeno, nonché la relazione matematica che li lega. X INGRESSO

Dettagli

Prova scritta di Controlli Automatici

Prova scritta di Controlli Automatici Prova scritta di Controlli Automatici Corso di Laurea in Ingegneria Meccatronica, AA 2011 2012 10 Settembre 2012 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare

Dettagli

Orlando Allocca Regolatori standard

Orlando Allocca Regolatori standard A09 159 Orlando Allocca Regolatori standard Copyright MMXII ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133/A B 00173 Roma (06) 93781065 ISBN 978-88-548-4882-7

Dettagli

Fondamenti di Automatica. Modellistica dei sistemi dinamici a tempo discreto

Fondamenti di Automatica. Modellistica dei sistemi dinamici a tempo discreto Fondamenti di Automatica Modellistica dei sistemi dinamici a tempo discreto Sistemi dinamici a tempo discreto I sistemi dinamici a tempo discreto sono sistemi in cui tutte le grandezze variabili sono funzioni

Dettagli

Una definizione di stabilità più completa di quella precedentemente introdotta fa riferimento ad una sollecitazione impulsiva.

Una definizione di stabilità più completa di quella precedentemente introdotta fa riferimento ad una sollecitazione impulsiva. 2. Stabilità Uno dei requisiti più importanti richiesti ad un sistema di controllo è la stabilità, ossia la capacita del. sistema di raggiungere un stato di equilibrio dopo la fase di regolazione. Per

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1 Funzioni di trasferimento

Dettagli

Elettronica e Telecomunicazioni Classe Quinta. La trasformata di Laplace

Elettronica e Telecomunicazioni Classe Quinta. La trasformata di Laplace Elettronica e Telecomunicazioni Classe Quinta La trasformata di Laplace ELETTRONICA E TELECOMUNICAZIONI CLASSE QUINTA A INFORMATICA INDICE Segnali canonici Trasformata di Laplace Teoremi sulla trasformata

Dettagli

SIMULAZIONE TEST ESAME - 1

SIMULAZIONE TEST ESAME - 1 SIMULAZIONE TEST ESAME - 1 1. Il dominio della funzione f(x) = log (x2 + 1)(4 x 2 ) (x 2 2x + 1) è: (a) ( 2, 2) (b) ( 2, 1) (1, 2) (c) (, 2) (2, + ) (d) [ 2, 1) (1, 2] (e) R \{1} 2. La funzione f : R R

Dettagli

Esercizi svolti. 1. Si consideri la funzione f(x) = 4 x 2. a) Verificare che la funzione F(x) = x 2 4 x2 + 2 arcsin x è una primitiva di

Esercizi svolti. 1. Si consideri la funzione f(x) = 4 x 2. a) Verificare che la funzione F(x) = x 2 4 x2 + 2 arcsin x è una primitiva di Esercizi svolti. Si consideri la funzione f() 4. a) Verificare che la funzione F() 4 + arcsin è una primitiva di f() sull intervallo (, ). b) Verificare che la funzione G() 4 + arcsin π è la primitiva

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

Studio dei segnali nel dominio della frequenza. G. Traversi

Studio dei segnali nel dominio della frequenza. G. Traversi Studio dei segnali nel dominio della frequenza G. Traversi Segnali periodici e serie di Fourier Una funzione periodica f(t) di periodo T (purché integrabile) è esprimibile con una serie del tipo: f (t)

Dettagli

Laboratorio di Fondamenti di Automatica Ingegneria Elettrica Sessione 2/3. Danilo Caporale [caporale@elet.polimi.it]

Laboratorio di Fondamenti di Automatica Ingegneria Elettrica Sessione 2/3. Danilo Caporale [caporale@elet.polimi.it] Laboratorio di Fondamenti di Automatica Ingegneria Elettrica Sessione 2/3 Danilo Caporale [caporale@elet.polimi.it] Outline 2 Funzione di trasferimento e risposta in frequenza Diagrammi di Bode e teorema

Dettagli

Controlli Automatici I

Controlli Automatici I Ingegneria Elettrica Politecnico di Torino Luca Carlone Controlli Automatici I LEZIONE II Sommario LEZIONE II Trasformata di Laplace Proprietà e trasformate notevoli Funzioni di trasferimento Scomposizione

Dettagli

Sistemi LSTD: rappresentazione esplicita

Sistemi LSTD: rappresentazione esplicita Trasformata Zeta Outline Sistemi LSTD: rappresentazione esplicita x(k+1) = Ax(k)+Bu(k), x R n, u R m, k Z y(k) = Cx(k)+Du(k), y R p x R n : vettore delle variabili di stato; u R m : vettore dei segnali

Dettagli

Calcolo del movimento di sistemi dinamici LTI. Esempi di soluzione per sistemi dinamici LTI TC

Calcolo del movimento di sistemi dinamici LTI. Esempi di soluzione per sistemi dinamici LTI TC Calcolo del movimento di sistemi dinamici LTI Esempi di soluzione per sistemi dinamici LTI TC Esempi di soluzione per sistemi LTI TC Scomposizione in fratti semplici (parte I) Esempio di soluzione 1 Scomposizione

Dettagli

Brevi appunti di Fondamenti di Automatica 1. prof. Stefano Panzieri Dipartimento di Informatica e Automazione Universitá degli Studi ROMA TRE

Brevi appunti di Fondamenti di Automatica 1. prof. Stefano Panzieri Dipartimento di Informatica e Automazione Universitá degli Studi ROMA TRE Brevi appunti di Fondamenti di Automatica prof. Dipartimento di Informatica e Automazione Universitá degli Studi ROMA RE ROMA RE UNIVERSIÀ DEGLI SUDI 4 marzo 05 Rev. 0. INDICE Indice La rasfomata di Laplace.0.

Dettagli

13-1 SISTEMI A DATI CAMPIONATI: INTRODUZIONE. y(t) TMP. y k. Trasduttore. Schema di base di un sistema di controllo digitale

13-1 SISTEMI A DATI CAMPIONATI: INTRODUZIONE. y(t) TMP. y k. Trasduttore. Schema di base di un sistema di controllo digitale SISTEMI A DATI CAMPIONATI: INTRODUZIONE + e k u k u(t) r k C D/A P y k TMP A/D Trasduttore y(t) Schema di base di un sistema di controllo digitale A/D: convertitore analogico digitale C: controllore digitale

Dettagli

Soluzione di equazioni quadratiche

Soluzione di equazioni quadratiche Soluzione di equazioni quadratiche Soluzione sulla Retta Algebrica Inseriamo sulla Retta Algebrica le seguenti espressioni polinomiali x e x 3 e cerchiamo di individuare i valori di x per i quali i punti

Dettagli

Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza p. 2

Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza p. 2 Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013

Dettagli

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06 Analisi Mat. - Ing. Inform. - Soluzioni del compito del 3-3-6 Sia p il polinomio di quarto grado definito da pz = z 4. Sia S il settore circolare formato dai numeri complessi che hanno modulo minore o

Dettagli

Capitolo 4. Sistemi lineari tempo-invarianti: analisi nel dominio della frequenza

Capitolo 4. Sistemi lineari tempo-invarianti: analisi nel dominio della frequenza Capitolo 4 Sistemi lineari tempo-invarianti: analisi nel dominio della frequenza 1. Introduzione In questo capitolo ci occuperemo dell analisi nel dominio della frequenza di sistemi dinamici lineari tempo-invarianti.

Dettagli

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI FREQUENZIALE E PROGETTO

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

Istituto Tecnico Industriale Statale Enrico Mattei

Istituto Tecnico Industriale Statale Enrico Mattei Istituto Tecnico Industriale Statale Enrico Mattei Specializzazione di Elettronica ed Elettrotecnica URBINO Corso di Sistemi Automatici Elettronici ESERCITAZIONE TRASFORMATA DI LAPLACE Circuiti del primo

Dettagli

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione 0.0. 3.2 Diagrammi di Bode Possibili rappresentazioni grafiche della funzione di risposta armonica F (ω) = G(jω) sono: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols. I Diagrammi

Dettagli

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012 Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 211/212 Ricordare: una funzione lipschitziana tra spazi metrici manda insiemi limitati in insiemi limitati; se il dominio di una funzione

Dettagli

Autovalori e Autovettori

Autovalori e Autovettori Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2008-2009 Autovalori e Autovettori Definizione Siano A C nxn, λ C, e x C n, x 0, tali che Ax = λx. (1) Allora

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA Si svolgano cortesemente i seguenti esercizi ESERCIZIO (6 PUNTI) METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 2 GENNAIO 25 Una volta identificato, nel piano complesso α, il dominio di convergenza della

Dettagli

Esempio. Approssimazione con il criterio dei minimi quadrati. Esempio. Esempio. Risultati sperimentali. Interpolazione con spline cubica.

Esempio. Approssimazione con il criterio dei minimi quadrati. Esempio. Esempio. Risultati sperimentali. Interpolazione con spline cubica. Esempio Risultati sperimentali Approssimazione con il criterio dei minimi quadrati Esempio Interpolazione con spline cubica. Esempio 1 Come procedere? La natura del fenomeno suggerisce che una buona approssimazione

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche. Analisi dei segnali A.A. 2008-09.

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche. Analisi dei segnali A.A. 2008-09. Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Analisi dei segnali A.A. 2008-09 Alberto Perotti DELEN-DAUIN Segnali continui e discreti Un segnale tempo-continuo è

Dettagli

Controllori PID, metodi di taratura e problemi d implementazione

Controllori PID, metodi di taratura e problemi d implementazione Controllori PID, metodi di taratura e problemi d implementazione Prof. Luigi Glielmo Università del Sannio L. Glielmo 1 / 23 Contenuto della presentazione Controllori PID Metodi di taratura in anello aperto

Dettagli

Stabilità dei sistemi

Stabilità dei sistemi Stabilità dei sistemi + G(s) G(s) - H(s) Retroazionati Sistemi - Stabilità - Rielaborazione di Piero Scotto 1 Sommario In questa lezione si tratteranno: La funzione di trasferimento dei sistemi retroazionati

Dettagli

A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO

A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO Sono stati trattati gli elementi base per l'analisi e il dimensionamento dei sistemi di controllo nei processi continui. E' quindi importante:

Dettagli

Anno 5 4. Funzioni reali: il dominio

Anno 5 4. Funzioni reali: il dominio Anno 5 4 Funzioni reali: il dominio 1 Introduzione In questa lezione impareremo a definire cos è una funzione reale di variabile reale e a ricercarne il dominio. Al termine di questa lezione sarai in grado

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

Quesiti di Analisi Matematica A

Quesiti di Analisi Matematica A Quesiti di Analisi Matematica A Presentiamo una raccolta di quesiti per la preparazione alla prova orale del modulo di Analisi Matematica A. Per una buona preparazione é consigliabile rispondere ad alta

Dettagli

Revisione dei concetti fondamentali dell analisi in frequenza

Revisione dei concetti fondamentali dell analisi in frequenza Revisione dei concetti fondamentali dell analisi in frequenza rgomenti: trasformazione in frequenza: significato e funzionamento; schemi di rappresentazione; trasformata discreta. 1 Rappresentazione dei

Dettagli

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag.

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag. SOMMARIO CAPITOLO : I RADICALI. I radicali pag.. I radicali aritmetici pag.. Moltiplicazione e divisione fra radicali aritmetici pag.. Potenza di un radicale aritmetico pag.. Trasporto di un fattore esterno

Dettagli

24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2

24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2 Dati due numeri naturali a e b, diremo che a è divisibile per b se la divisione a : b è esatta, cioè con resto 0. In questo caso diremo anche che b è un divisore di a. 24 : 3 = 8 con resto 0 26 : 4 = 6

Dettagli

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come RICHIAMI SULLE MATRICI Una matrice di m righe e n colonne è rappresentata come A = a 11 a 12... a 1n a 21 a 22... a 2n............ a m1 a m2... a mn dove m ed n sono le dimensioni di A. La matrice A può

Dettagli

STANDARD MINIMI DI RIFERIMENTO MATEMATICA LICEO TECNICO

STANDARD MINIMI DI RIFERIMENTO MATEMATICA LICEO TECNICO STANDARD MINIMI DI RIFERIMENTO MATEMATICA LICEO TECNICO CLASSE 1^ CONOSCENZE Insiemi numerici N, Z, Q, R; rappresentazioni, operazioni, ordinamento Espressioni algebriche; principali operazioni Equazioni

Dettagli

APPUNTI SU TRASFORMATE DI LAPLACE E TRASFORMATE Z ERRATA CORRIGE

APPUNTI SU TRASFORMATE DI LAPLACE E TRASFORMATE Z ERRATA CORRIGE APPUNTI SU TRASFORMATE DI LAPLACE E TRASFORMATE Z ERRATA CORRIGE Proprietà 2.: L[y(t)] (2.29): u( + ) (2.65): n j= j i Prima della (2.69): A = lim s W (s) Nella Seione 2.6, usa sia t che k per indicare

Dettagli

Analisi di risposte di sistemi dinamici in MATLAB

Analisi di risposte di sistemi dinamici in MATLAB Laboratorio di Fondamenti di Automatica Seconda esercitazione Analisi di risposte di sistemi dinamici in MATLAB 2005 Alberto Leva, Marco Lovera, Maria Prandini Premessa Scopo di quest'esercitazione di

Dettagli

Funzioni. Parte prima. Daniele Serra

Funzioni. Parte prima. Daniele Serra Funzioni Parte prima Daniele Serra Nota: questi appunti non sostituiscono in alcun modo le lezioni del prof. Favilli, né alcun libro di testo. Sono piuttosto da intendersi a integrazione di entrambi. 1

Dettagli

Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro

Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro Segnali e Sistemi Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici Gianni Borghesan e Giovanni Marro Indice Introduzione 2. Notazione............................. 2 2 Classificazione

Dettagli

MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO. Sistema lineare stazionario a tempo continuo in equazioni di stato. = Cx(t) + Du(t) x(0) = x 0

MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO. Sistema lineare stazionario a tempo continuo in equazioni di stato. = Cx(t) + Du(t) x(0) = x 0 MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO Sistema lineare stazionario a tempo continuo in equazioni di stato ẋ(t) y(t) = Ax(t) + Bu(t) = Cx(t) + Du(t) x() = x Risposta completa (risposta libera e

Dettagli

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale Radicali 1. Radice n-esima Terminologia Il simbolo è detto radicale. Il numero è detto radicando. Il numero è detto indice del radicale. Il numero è detto coefficiente del radicale. Definizione Sia un

Dettagli

Calcolo del movimento di sistemi dinamici LTI. Concetti di base sulla trasformata zeta

Calcolo del movimento di sistemi dinamici LTI. Concetti di base sulla trasformata zeta Calcolo del movimento di sistemi dinamici LTI Concetti di base sulla trasformata zeta Concetti di base sulla trasformata zeta Definizione e proprietà Principali trasformate Scomposizione in fratti semplici

Dettagli

Sistemi e modelli matematici

Sistemi e modelli matematici 0.0.. Sistemi e modelli matematici L automazione è un complesso di tecniche volte a sostituire l intervento umano, o a migliorarne l efficienza, nell esercizio di dispositivi e impianti. Un importante

Dettagli

Control System Toolbox

Control System Toolbox Control System Toolbox E` un insieme di funzioni per l analisi di sistemi dinamici (tipicamente lineari tempo invarianti o LTI) e per la sintesi di controllori (in particolare a retroazione). All'interno

Dettagli

PROGRAMMA SVOLTO fino al 22-06-2015 Fine del corso

PROGRAMMA SVOLTO fino al 22-06-2015 Fine del corso PROGRAMMA SVOLTO fino al 22-06-2015 Fine del corso Prof. Bruno Picasso LEZIONI: Introduzione al corso. Introduzione ai sistemi dinamici. I sistemi dinamici come sistemi di equazioni differenziali; variabili

Dettagli

Lezione 8. La macchina universale

Lezione 8. La macchina universale Lezione 8 Algoritmi La macchina universale Un elaboratore o computer è una macchina digitale, elettronica, automatica capace di effettuare trasformazioni o elaborazioni su i dati digitale= l informazione

Dettagli

Lez. 17/12/13 Funzione di trasferimento in azione e reazione, pulsazione complessa, introduzione alla regolazione

Lez. 17/12/13 Funzione di trasferimento in azione e reazione, pulsazione complessa, introduzione alla regolazione Lez. 7/2/3 unzione di trasferimento in azione e reazione, pulsazione complessa, introduzione alla regolazione consideriamo il risultato del filtro passa alto che si può rappresentare schematicamente nel

Dettagli

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0 LEZIONE 23 231 Diagonalizzazione di matrici Abbiamo visto nella precedente lezione che, in generale, non è immediato che, data una matrice A k n,n con k = R, C, esista sempre una base costituita da suoi

Dettagli

Il luogo delle radici (ver. 1.0)

Il luogo delle radici (ver. 1.0) Il luogo delle radici (ver. 1.0) 1 Sia dato il sistema in retroazione riportato in Fig. 1.1. Il luogo delle radici è uno strumento mediante il quale è possibile valutare la posizione dei poli della funzione

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento: robustezza e prestazioni Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it

Dettagli

Tempo di risposta di un termometro a mercurio

Tempo di risposta di un termometro a mercurio Fisica ecnica empo di risposta di un termometro a mercurio Ing. Luciano Pirri - 998 Vogliamo studiare la risposta dinamica di un termometro al mercurio e cioè la rapidità con la quale l'indicazione del

Dettagli

Matematica generale CTF

Matematica generale CTF Successioni numeriche 19 agosto 2015 Definizione di successione Monotonìa e limitatezza Forme indeterminate Successioni infinitesime Comportamento asintotico Criterio del rapporto per le successioni Definizione

Dettagli

Politecnico di Bari Facoltà di Ingegneria

Politecnico di Bari Facoltà di Ingegneria Politecnico di Bari Facoltà di Ingegneria Dispensa per il Corso di Controlli Automatici I Uso del software di calcolo Matlab 4. per lo studio delle risposte nel tempo dei sistemi lineari tempoinvarianti

Dettagli

Controlli Automatici prof. M. Indri Sistemi di controllo digitali

Controlli Automatici prof. M. Indri Sistemi di controllo digitali Controlli Automatici prof. M. Indri Sistemi di controllo digitali Schema di controllo base r(t) + e(t) {e k } {u k } u(t) Campionatore (A/D) Controllore digitale Ricostruttore (D/A) Sistema (tempo cont.)

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = log a (x) si può studiare per punti e constatare che essa presenta i seguenti andamenti y

0 < a < 1 a > 1. In entrambi i casi la funzione y = log a (x) si può studiare per punti e constatare che essa presenta i seguenti andamenti y INTRODUZIONE Osserviamo, in primo luogo, che le funzioni logaritmiche sono della forma y = log a () con a costante positiva diversa da (il caso a = è banale per cui non sarà oggetto del nostro studio).

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento: stabilità, errore a regime e luogo delle radici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail:

Dettagli

SINTESI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO

SINTESI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO SINTESI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO Requisiti e specifiche Approcci alla sintesi Esempi di progetto Principali reti stabilizzatrici Illustrazioni dal Testo di Riferimento per gentile concessione

Dettagli

LE FUNZIONI E LE LORO PROPRIETÀ

LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI REALI DI VARIABILE REALE COSA SONO LE FUNZIONI Dati due sottoinsiemi A e B non vuoti di R, una FUNZIONE da A a B è una relazione che associa ad ogni numero reale

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 203-4 I sistemi lineari Generalità sui sistemi lineari Molti problemi dell ingegneria, della fisica, della chimica, dell informatica e dell economia, si modellizzano

Dettagli

CORSO di AUTOMAZIONE INDUSTRIALE

CORSO di AUTOMAZIONE INDUSTRIALE CORSO di AUTOMAZIONE INDUSTRIALE (cod. 8469) APPELLO del 10 Novembre 2010 Prof. Emanuele Carpanzano Soluzioni Esercizio 1 (Domande generali) 1.a) Controllo Modulante Tracciare qualitativamente la risposta

Dettagli

FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI

FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI Guida alla soluzione degli esercizi d esame Dott. Ing. Marcello Bonfè Esercizi sulla scomposizione di modelli nello spazio degli stati: Gli esercizi nei

Dettagli

31/10/2012. Lo studio delle funzioni permette di interpretare la variazione di due grandezze, l una rispetto l altra, quando

31/10/2012. Lo studio delle funzioni permette di interpretare la variazione di due grandezze, l una rispetto l altra, quando FUNZIONI MATEMATICHE Introduzione Lo studio delle funzioni permette di interpretare la variazione di due grandezze, l una rispetto l altra, quando tra le due esiste un legame di tipo matematico. La teoria

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi dei sistemi dinamici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1 Analisi dei

Dettagli

analisi di sistemi retroazionati (2)

analisi di sistemi retroazionati (2) : analisi di sistemi retroazionati (2) Marco Lovera Dipartimento di Elettronica e Informazione Politecnico di Milano lovera@elet.polimi.it Indice Piccolo guadagno Stabilita ingresso-uscita Guadagno L 2

Dettagli

Matematica generale CTF

Matematica generale CTF Equazioni differenziali 9 dicembre 2015 Si chiamano equazioni differenziali quelle equazioni le cui incognite non sono variabili reali ma funzioni di una o più variabili. Le equazioni differenziali possono

Dettagli