Sistemi e modelli matematici

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Sistemi e modelli matematici"

Transcript

1 0.0.. Sistemi e modelli matematici L automazione è un complesso di tecniche volte a sostituire l intervento umano, o a migliorarne l efficienza, nell esercizio di dispositivi e impianti. Un importante capitolo della scienza dell automazione o automatica è costituito dalla disciplina denominata controlli automatici. Tale disciplina studia i dispositivi (detti regolatori, controllori o dispositivi di controllo), mediante i quali si fanno variare automaticamente le grandezze liberamente manipolabili di un sistema (detto sistema controllato) Un sistema è un complesso, normalmente costituito di più elementi interconnessi, in cui si possono distinguere grandezze soggette a variare nel tempo (indicate semplicemente con il nome di variabili). Segnali: sono le funzioni che rappresentano l andamento delle variabili nel tempo. Variabili di ingresso: sono le variabili indipendenti o cause. Variabili di uscita: sono le variabili dipendenti o effetti. Sistema orientato: è un sistema in le cui variabili siano state suddivise in variabili di ingresso e variabili di uscita. Variabili manipolabili: variabili di ingresso il cui andamento nel tempo può essere arbitrariamente imposto. Variabili non manipolabili o disturbi: variabili sul cui andamento nel tempo non si può influire, in quanto casuale o assegnabile ad arbitrio solo da parte di altro operatore. R. Zanasi - Controlli Automatici - 20/2. SISTEMI, MODELLI E SCHEMI A BLOCCHI

2 .. SISTEMI E MODELLI. 2 Esempio: motore in corrente continua Il modello semplificato di un motore in corrente continua con eccitazione indipendente è il seguente: Variabili di interesse: la tensione e la corrente di armatura v a e i a, la tensione e la corrente di campo v e e i e, la coppia resistente all albero c r, la velocità e la posizione angolare del rotore ω e ϑ. Orientamento del sistema: Cause: v a, v e e c r ; Effetti: i a, i e, ω e ϑ; Variabili manipolabili: v a e v e ; Variabile non manipolabile: c r ; Rappresentazione mediante schemi a blocchi: R. Zanasi - Controlli Automatici - 20/2. SISTEMI, MODELLI E SCHEMI A BLOCCHI

3 .. SISTEMI E MODELLI. 3 Modello matematico di un sistema: è l insieme di equazioni e di parametri Diagramma che permettono di determinare gli andamenti nel tempo delle uscite, noti quelli degli ingressi. Il modello matematico è sempre un compromesso fra precisione e semplicità: è inutile infatti ricorrere a modelli sofisticati quando i valori dei parametri che in essi compaiono si conoscono solo approssimativamente. Modello statico o puramente algebrico: descrive il legame fra i valori degli ingressi, supposti costanti, e i valori delle uscite una volta che il sistema abbia raggiunto la condizione di regime stazionario, cioè la condizione di funzionamento in cui tutti i segnali siano costanti. Caratteristica statica del motore elettrico in corrente continua: Caratteristica statica ingresso-uscita: ω = f(v a ) Approssimazione lineare nell intorno dell origine: ω = Kv a ; Linearizzazione nell intorno del punto di lavoro: ω Ω = K (v a V ) R. Zanasi - Controlli Automatici - 20/2. SISTEMI, MODELLI E SCHEMI A BLOCCHI

4 .. SISTEMI E MODELLI. 4 Modello statico di un sistema MIMO (Multi Input Multi Output): consiste in più funzioni (tante quante sono le uscite) di più variabili (tante quanti sono gli ingressi), cioè Rappresentazione grafica: y =f (x,...,x n ),..., y m =f m (x,...,x n ) Punto di lavoro: (X,...,X n ),(Y,...,Y m ). Linearizzazione nell intorno del punto di lavoro: y = a x +...+a n x n,... y m = a m x +...+a mn x n in cui è a ij := f i x j (i =,...,m;j =,...,n) xk =X k (k=,...,n) y i := y i Y i = y i f i (X,...,X n ) (i =,...,m) x j := x j X j (j =,...,n) I modelli matematici statici non danno alcuna informazione sul regime transitorio, cioè sull andamento nel tempo delle uscite durante il passaggio da uno stato di regime stazionario ad un altro. R. Zanasi - Controlli Automatici - 20/2. SISTEMI, MODELLI E SCHEMI A BLOCCHI

5 .. SISTEMI E MODELLI. 5 Modello dinamico: è costituito da una o più equazioni differenziali esprimenti legami statici fra le variabili di ingresso, di uscita e le loro derivate rispetto al tempo. Il modello dinamico di un sistema permette di determinare l andamento del segnale di uscita corrispondente a un dato segnale di ingresso, cioè permette di determinare la risposta del sistema a una data eccitazione. Un modello matematico (o un sistema) si dice lineare quando soddisfa la proprietà di sovrapposizione degli effetti. In caso contrario il sistema si dice non lineare. Molti sistemi ammettono modelli matematici lineari purché i valori delle variabili non escano da determinati campi. Esempio: Modello matematico in forma integrale: z(t) = Z 0 + A t 0 ( q (τ) q 2 (τ) ) dτ = Z 0 + A t ( Kx(τ) q2 (τ) ) dτ Modello matematico in forma differenziale: dz dt = ( q (t) q 2 (t) ), z(0) = Z 0 A Tale modello è valido entro i limiti: X x(t) X 2, Z z(t) Z 2 0 R. Zanasi - Controlli Automatici - 20/2. SISTEMI, MODELLI E SCHEMI A BLOCCHI

6 .. SISTEMI E MODELLI. 6 Esempi di modelli fisici ) Dinamica del rotore di un motore elettrico. Si consideri un elemento meccanico con inerzia J, coefficiente di attrito lineare b che ruota alla velocità angolare ω al quale venga applicata una coppia esterna c(t). c(t) 0 t c(t) ω(t) J b ω(t) 0 t? L equazione differenziale che caratterizza il sistema è quella che si ricava dalla legge di conservazione della quantità di moto angolare: d[jω(t)] dt = c(t) bω(t) J ω(t)+bω(t) = c(t) Partendo da condizioni iniziali nulle e applicando Laplace si ottiene: J sω(s)+bω(s) = C(s) ω(s) = b+j s C(s) per cui il sistema fisico può essere descritto nel modo seguente: C(s) c(t) G(s) b+j s ω(s) ω(t) dove G(s) è la funzione di trasferimento che descrive il sistema fisico: G(s) = b+j s R. Zanasi - Controlli Automatici - 20/2. SISTEMI, MODELLI E SCHEMI A BLOCCHI

7 .. SISTEMI E MODELLI. 7 2) Sistema massa-molla-smorzatore. K x m b F Variabili e parametri del sistema fisico: x(t) : posizione ẋ(t) : velocità ẍ(t) : accelerazione F(t) : forza applicata m : massa K : rigidità della molla b : Coefficiente di attrito lineare P(t) : Quantità di moto Legge di conservazione della quantità di moto P(t) = mẋ(t): d dt [P(t)] = i F i (t) m d dt [ẋ(t)] = i Si ottiene quindi la seguente equazione differenziale: d [mẋ(t)] = F bẋ(t) Kx(t) dt che può essere riscritta nel seguente modo: mẍ(t)+bẋ(t)+kx(t) = F(t) Utilizzando le trasformate di Laplace (x(0) = ẋ(0) = 0) si ha: ms 2 X(s)+bsX(s)+KX(s) = F(s) X(s) = Il sistema può quindi essere rappresentato nel modo seguente: F i (t) F(s) ms 2 +bs+k F(s) G(s) ms 2 +bs+k X(s) R. Zanasi - Controlli Automatici - 20/2. SISTEMI, MODELLI E SCHEMI A BLOCCHI

8 .. SISTEMI E MODELLI. 8 3) Sistema elettrico RL. I i R I u = 0 V i L V u Legge fisica: la variazione del flusso concatenato φ c (t) = LI i (t) è uguale alla tensione V u (t) applicata ai capi dell induttanza. d dt [φ c(t)] = V u (t) L d dt [I i(t)] = V i (t) RI i (t) Applicando la trasformata di Laplace, con condizioni iniziali nulle, si ha: LsI i (s)+ri i (s) = V i (s) I i (s) = Ls+R } {{ } G(s) Il sistema può quindi essere rappresentato nel modo seguente: V i (s) V i (s) G(s) Ls+R I i (s) Il legame tra la tensione di ingresso V i (t) e la tensione di uscita V u (t) è descritto dalla seguente funzione di trasferimento (si utilizza la regola del partitore di tensione su impedenze complesse): G (s) = V u(s) V i (s) = Ls Ls+R e quindi dalle seguente equazione differenziale: L V u (t)+rv u (t) = L V i (t) R. Zanasi - Controlli Automatici - 20/2. SISTEMI, MODELLI E SCHEMI A BLOCCHI

9 .. SISTEMI E MODELLI. 9 4) Motore elettrico in corrente continua. I a V L R ω m + E J b C m C e θ m Schema a blocchi POG del motore: V E ω m K e R+Ls b+js I a K e C m C e Il sistema è descritto dalle seguenti 2 equazioni differenziali: { L Ia = RI a K e ω m +V J ω m = K e I a bω m C e Perilprincipiodiconservazionedell energia, lacostantek e èsialacostantediproporzionalitàchelegalacorrentediarmaturai a allacoppiamotrice C m, sia la costante di proporzionalità che lega la forza contromotrice E alla velocità angolare ω m : C m = K e I a E = K e ω m R. Zanasi - Controlli Automatici - 20/2. SISTEMI, MODELLI E SCHEMI A BLOCCHI

10 .. SISTEMI E MODELLI. 0 Riducendo in forma minima il sistema (vedi Formula di Mason ) si ottiene il seguente legame tra la variabile di uscita ω m (t) e le variabili di ingresso V(t) e C e (t): ω m (s) = G (s)v(s)+g 2 (s)c e (s) dove G (s) lega l ingresso di controllo V(t) all uscita ω m (t) G (s) = K e (R+Ls)(b+J s)+k 2 e mentre G 2 (s) lega l ingresso di disturbo C e (t) all uscita ω m (t): G 2 (s) = (R+Ls) (R+Ls)(b+J s)+k 2 e La precedente relazione può essere riscritta come [ ] LJ s 2 +(RJ +Lb)s+Rb+Ke 2 ωm (s) = K e V(s) (R+Ls)C e (s) che corrisponde alla seguente equazione differenziale del secondo ordine: LJ ω m +(RJ +Lb) ω m +(Rb+K 2 e)ω m = K e V RC e LĊe R. Zanasi - Controlli Automatici - 20/2. SISTEMI, MODELLI E SCHEMI A BLOCCHI

11 .. SISTEMI E MODELLI. 5) Frizione idraulica. Si consideri il seguente modello idraulico semplificato di una frizione: P Pressione di alimentazione Q Portata volumetrica nella valvola K v Costante di prop. della valvola C m Capacità idraulica del cilindro P Pressione all interno del cilindro A Sezione del pistone x Posizione del pistone ẋ Velocità del pistone m p Massa del pistone b Attrito lineare del pistone K m Rigidità della molla F m Forza della molla sul pistone x K m m p b, A Q x Q Valvola (K v ) C m P P R = 0 Uno schema a blocchi che descrive la dinamica del sistema è il seguente: P P A F x F m Q K v C m s Q x A b+m p s ẋ K m s x 0 Riducendo il sistema in forma minima si ottiene la seguente f.d.t. G(s): G(s) = F m(s) P(s) = AK m K v C m m p s 3 +(C m b+k v m p )s 2 +(A 2 +C m K m +K v b)s+k m K v a cui corrisponde la seguente equazione differenziale del terzo ordine: C m m p... Fm+(C m b+k v m p ) F m +(A 2 +C m K m +K v b) F m +K m K v F m = AK m K v P(t) R. Zanasi - Controlli Automatici - 20/2. SISTEMI, MODELLI E SCHEMI A BLOCCHI

12 .. SISTEMI E MODELLI. 2 6) Sistema meccanico di trasmissione. Si consideri il sistema meccanico mostrato in figura, costituito da un albero di inerzia J, che ruota a velocità ω, a cui è applicata la coppia esterna τ. Tramite un rullo elastico avente rigidità torsionale K e raggio costante R, l albero spinge una massa M che comprime una molla lineare con coefficiente di rigidità K 2. x J b K 2 M K R b 2 Un possibile schema a blocchi che descrive la dinamica del sistema è il seguente: τ τ R F 2 F 2 b +J s K s b 2 +M s K 2 s ω ω R ẋ 0 La funzione di trasferimento G(s) che lega l ingresso τ all uscita F 2 si calcola facilmente utilizzando la formula di Mason : K K 2 R G(s) = a 4 s 4 +a 3 s 3 +a 2 s 2 +a s+a 0 dove: a 4 = J M R 2 a 3 = (b 2 J +b M)R 2 a 2 = J K +b b 2 R 2 +J K 2 R 2 +K M R 2 a = b K +b 2 K R 2 +b K 2 R 2 a 0 = K K 2 R 2 R. Zanasi - Controlli Automatici - 20/2. SISTEMI, MODELLI E SCHEMI A BLOCCHI

13 .. SISTEMI E MODELLI. 3 Rete elettrica a T Sia data la seguente rete elettrica a T: SupponendochelacorrenteI u assorbitainuscitasianulla, I u = 0, sidetermini la funzione di trasferimento G(s) che lega la tensione di ingresso V i (s) alla tensione di uscita V u (s). Un possibile schema a blocchi (non utilizzabile in simulazione) che descrive la dinamica del sistema è il seguente: v i v a v u C s R 2 C 2 s R I I La funzione di trasferimento di determina facilmente utilizzando Mason: G(s) = V u(s) V i (s) = +R 2 (C +C 2 )s+c C 2 R R 2 s 2 +C R 2 s+c 2 R 2 s+c 2 R s+c C 2 R R 2 s 2 I 2 R. Zanasi - Controlli Automatici - 20/2. SISTEMI, MODELLI E SCHEMI A BLOCCHI

14 .. SISTEMI E MODELLI. 4 Invertendo due dei tre anelli del sistema si ottiene uno schema a blocchi utilizzabile anche in simulazione: v i I V C s v a R 2 V 2 C 2 s v u Una corrispondente descrizione nello spazio degli stati è la seguente: [ V V 2 ] = { }} A [ { R C R 2 C R C R C 2 R C 2 ] v u = [ ] [ V } {{ } V 2 C ][ V V 2 + [ ] v i }{{} D R I 2 ] { B [ }} { ] R + 2 C 0 Il determinante del grafo è proporzionale al determinante della matrice(si A): det(si A) = +C R 2 s+c 2 R 2 s+c 2 R s+c C 2 R R 2 s 2 C C 2 R R 2 Si noti che la funzione di trasferimento G(s) può essere calcolata anche utilizzando la seguente formula: G(s) = C(sI A) B+D v i R. Zanasi - Controlli Automatici - 20/2. SISTEMI, MODELLI E SCHEMI A BLOCCHI

Sistemi e modelli matematici

Sistemi e modelli matematici 0.0. 1.1 1 Sistemi e modelli matematici L automazione è un complesso di tecniche volte a sostituire l intervento umano, o a migliorarne l efficienza, nell esercizio di dispositivi e impianti. Un importante

Dettagli

Esempi di modelli fisici

Esempi di modelli fisici 0.0..2 Esempi di modelli fisici ) Dinamica del rotore di un motore elettrico. Si consideri un elemento meccanico con inerzia J, coefficiente di attrito lineare che ruota alla velocità angolare ω al quale

Dettagli

Risposta temporale: esercizi

Risposta temporale: esercizi ...4 Risposta temporale: esercizi Esercizio. Calcolare la risposta al gradino del seguente sistema: G(s) X(s) = s (s+)(s+) Y(s) Per ottenere la risposta al gradino occorre antitrasformare la seguente funzione:

Dettagli

La funzione di trasferimento

La funzione di trasferimento Sommario La funzione di trasferimento La funzione di trasferimento Poli e zeri della funzione di trasferimento I sistemi del primo ordine Esempi La risposta a sollecitazioni La funzione di trasferimento

Dettagli

Controllo di velocità angolare di un motore in CC

Controllo di velocità angolare di un motore in CC Controllo di velocità angolare di un motore in CC Descrizione generale Il processo è composto da un motore in corrente continua, un sistema di riduzione, una dinamo tachimetrica ed un sistema di visualizzazione.

Dettagli

6 Cenni sulla dinamica dei motori in corrente continua

6 Cenni sulla dinamica dei motori in corrente continua 6 Cenni sulla dinamica dei motori in corrente continua L insieme di equazioni riportato di seguito, costituisce un modello matematico per il motore in corrente continua (CC) che può essere rappresentato

Dettagli

Istituto d Istruzione Secondaria Superiore M.BARTOLO. A cura del Prof S. Giannitto

Istituto d Istruzione Secondaria Superiore M.BARTOLO. A cura del Prof S. Giannitto Istituto d Istruzione Secondaria Superiore M.BATOLO PACHINO (S) APPUNTI DI SISTEMI AUTOMATICI 3 ANNO MODELLIZZAZIONE A cura del Prof S. Giannitto MODELLI MATEMATICI di SISTEMI ELEMENTAI LINEAI, L, C ivediamo

Dettagli

Sistemi e modelli (ver. 1.2)

Sistemi e modelli (ver. 1.2) Sistemi e modelli (ver..2). Elementi introduttivi L Automatica studia l analisi dei sistemi dinamici ed il progetto dei controlli automatici, ovvero la realizzazione di dispositivi utilizzati per imporre

Dettagli

FONDAMENTI DI CONTROLLI AUTOMATICI Ingegneria Meccanica. http://web.ing.unimo.it/~lbiagiotti/fondamenticontrolli1415.html SISTEMI ELEMENTARI

FONDAMENTI DI CONTROLLI AUTOMATICI Ingegneria Meccanica. http://web.ing.unimo.it/~lbiagiotti/fondamenticontrolli1415.html SISTEMI ELEMENTARI FONDAMENTI DI CONTROLLI AUTOMATICI Ingegneria Meccanica http://web.ing.unimo.it/~lbiagiotti/fondamenticontrolli1415.html SISTEMI ELEMENTARI Ing. e-mail: luigi.biagiotti@unimore.it http://www.dii.unimore.it/~lbiagiotti

Dettagli

Modellistica e controllo dei motori in corrente continua

Modellistica e controllo dei motori in corrente continua Modellistica e controllo dei motori in corrente continua Note per le lezioni del corso di Controlli Automatici A.A. 2008/09 Prof.ssa Maria Elena Valcher 1 Modellistica Un motore in corrente continua si

Dettagli

Lezione 4 24 Gennaio

Lezione 4 24 Gennaio LabCont1: Laboratorio di Controlli 1 II Trim. 2007 Docente: Luca Schenato Lezione 4 24 Gennaio Stesori: Simone Valmorbida, Stefano Meloni, Matteo Marzilli 4.1 Il motore in corrente continua Il motore in

Dettagli

Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro

Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro Segnali e Sistemi Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici Gianni Borghesan e Giovanni Marro Indice Introduzione 2. Notazione............................. 2 2 Classificazione

Dettagli

Servomeccanismi 1. Cassa. Albero. 1. Il motore elettrico in corrente continua

Servomeccanismi 1. Cassa. Albero. 1. Il motore elettrico in corrente continua Servomeccanismi 1 1. Il motore elettrico in corrente continua Descrizione fisica Il motore è contenuto in una cassa che in genere è cilindrica. Da una base del cilindro fuoriesce l albero motore; sulla

Dettagli

analisi di sistemi retroazionati (2)

analisi di sistemi retroazionati (2) : analisi di sistemi retroazionati (2) Marco Lovera Dipartimento di Elettronica e Informazione Politecnico di Milano lovera@elet.polimi.it Indice Piccolo guadagno Stabilita ingresso-uscita Guadagno L 2

Dettagli

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1)

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1) Transitori Analisi nel dominio del tempo Ricordiamo che si definisce transitorio il periodo di tempo che intercorre nel passaggio, di un sistema, da uno stato energetico ad un altro, non è comunque sempre

Dettagli

Fondamenti di Automatica. Unità 2 Calcolo del movimento di sistemi dinamici LTI

Fondamenti di Automatica. Unità 2 Calcolo del movimento di sistemi dinamici LTI Fondamenti di Automatica Unità 2 Calcolo del movimento di sistemi dinamici LTI Calcolo del movimento di sistemi dinamici LTI Soluzione delle equazioni di stato per sistemi dinamici LTI a tempo continuo

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

Elettronica e Telecomunicazioni Classe Quinta. La trasformata di Laplace

Elettronica e Telecomunicazioni Classe Quinta. La trasformata di Laplace Elettronica e Telecomunicazioni Classe Quinta La trasformata di Laplace ELETTRONICA E TELECOMUNICAZIONI CLASSE QUINTA A INFORMATICA INDICE Segnali canonici Trasformata di Laplace Teoremi sulla trasformata

Dettagli

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω GIROSCOPIO Scopo dell esperienza: Verificare la relazione: ω p = bmg/iω dove ω p è la velocità angolare di precessione, ω è la velocità angolare di rotazione, I il momento principale d inerzia assiale,

Dettagli

Circuiti amplificatori

Circuiti amplificatori Circuiti amplificatori G. Traversi Strumentazione e Misure Elettroniche Corso Integrato di Elettrotecnica e Strumentazione e Misure Elettroniche 1 Amplificatori 2 Amplificatori Se A V è negativo, l amplificatore

Dettagli

V= R*I. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro.

V= R*I. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro. PREMESSA: Anche intuitivamente dovrebbe a questo punto essere ormai chiaro

Dettagli

Capitolo. La funzione di trasferimento. 2.1 Funzione di trasferimento di un sistema. 2.2 L-trasformazione dei componenti R - L - C

Capitolo. La funzione di trasferimento. 2.1 Funzione di trasferimento di un sistema. 2.2 L-trasformazione dei componenti R - L - C Capitolo La funzione di trasferimento. Funzione di trasferimento di un sistema.. L-trasformazione dei componenti R - L - C. Determinazione delle f.d.t. di circuiti elettrici..3 Risposta al gradino . Funzione

Dettagli

COMANDI PER CICLI. Ciclo: un insieme di operazioni (movimentazioni, ecc.) che evolvono secondo una sequenza prestabilita.

COMANDI PER CICLI. Ciclo: un insieme di operazioni (movimentazioni, ecc.) che evolvono secondo una sequenza prestabilita. COMANDI PER CICLI Ciclo: un insieme di operazioni (movimentazioni, ecc.) che evolvono secondo una sequenza prestabilita. Tipologie di comandi per cicli: 1. MANUALI o ARBITRARI : ogni azione della sequenza

Dettagli

Transitori del primo ordine

Transitori del primo ordine Università di Ferrara Corso di Elettrotecnica Transitori del primo ordine Si consideri il circuito in figura, composto da un generatore ideale di tensione, una resistenza ed una capacità. I tre bipoli

Dettagli

Riduzione degli schemi a blocchi

Riduzione degli schemi a blocchi 0.0. 2. delle fasi Riduzione degli schemi a blocchi I sistemi complessi vengono spesso rappresentati graficamente mediante schemi a blocchi ottenuti dalla connessione serie/parallelo di singoli elementi

Dettagli

2.2.3 Comportamento degli organi che trasformano l energia meccanica 32 2.2.3.1 Effetti inerziali 32 2.2.3.2 Effetto della rigidezza e dello

2.2.3 Comportamento degli organi che trasformano l energia meccanica 32 2.2.3.1 Effetti inerziali 32 2.2.3.2 Effetto della rigidezza e dello Indice Prefazione IX 1. Un nuovo approccio alla progettazione e costruzione di macchine 1 1.1 Sistemi tecnici nella costruzione di macchine: esempi 1 1.2 Concetti essenziali del nuovo approccio alla progettazione

Dettagli

Sistema dinamico a tempo continuo

Sistema dinamico a tempo continuo Sistema dinamico a tempo continuo Un sistema è un modello matematico di un fenomeno fisico: esso comprende le cause e gli effetti relativi al fenomeno, nonché la relazione matematica che li lega. X INGRESSO

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Controlli Automatici - A.A. 1/11 Ingegneria Gestionale 13 Settembre 11 - Esercizi Nome: Nr. Mat. Firma: Rispondere alle seguenti domande. a) Calcolare la trasformata di Laplace X(s) dei seguenti segnali

Dettagli

LEZIONI DEL CORSO DI SISTEMI DEL QUINTO ANNO

LEZIONI DEL CORSO DI SISTEMI DEL QUINTO ANNO LEZIONI DEL CORSO DI SISTEMI DEL QUINTO ANNO MOD. 1 Sistemi di controllo e di regolazione. Si tratta di un ripasso di una parte di argomenti effettuati l anno scorso. Introduzione. Schemi a blocchi di

Dettagli

MODELLISTICA DINAMICA DI SISTEMI FISICI

MODELLISTICA DINAMICA DI SISTEMI FISICI CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm MODELLISTICA DINAMICA DI SISTEMI FISICI Ing. Federica Grossi Tel. 059 2056333

Dettagli

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici. a Corrente Alternata. Sergio Benenti 7 settembre 2013

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici. a Corrente Alternata. Sergio Benenti 7 settembre 2013 Complementi di Analisi per nformatica *** Capitolo 2 Numeri Complessi e Circuiti Elettrici a Corrente Alternata Sergio Benenti 7 settembre 2013? ndice 2 Circuiti elettrici a corrente alternata 1 21 Circuito

Dettagli

SISTEMA DI ATTUAZIONE DEI GIUNTI

SISTEMA DI ATTUAZIONE DEI GIUNTI SISTEMA DI ATTUAZIONE DEI GIUNTI Organi di trasmissione Moto dei giunti basse velocità elevate coppie Ruote dentate variano l asse di rotazione e/o traslano il punto di applicazione denti a sezione larga

Dettagli

FONDAMENTI DI AUTOMATICA. Michele Basso, Luigi Chisci e Paola Falugi

FONDAMENTI DI AUTOMATICA. Michele Basso, Luigi Chisci e Paola Falugi FONDAMENTI DI AUTOMATICA Michele Basso, Luigi Chisci e Paola Falugi 3 novembre 2006 2 Indice 1 Modellistica 7 1.1 Introduzione............................. 7 1.2 Sistemi elettrici...........................

Dettagli

Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza p. 2

Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza p. 2 Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondamenti di Controlli Automatici - A.A. 7/8 4 Dicembre 7 - Esercizi Compito A Nr. Nome: Nr. Mat. Firma: a) Determinare la trasformata di Laplace X i (s) dei seguenti segnali temporali x i (t): x (t)

Dettagli

CONTROLLO SCALARE V/Hz DEL MOTORE ASINCRONO. Prof. Silvio Stasi Dott. Ing. Nadia Salvatore Dott. Ing. Michele Debenedictis

CONTROLLO SCALARE V/Hz DEL MOTORE ASINCRONO. Prof. Silvio Stasi Dott. Ing. Nadia Salvatore Dott. Ing. Michele Debenedictis CONTROLLO SCALARE V/Hz DEL MOTORE ASINCRONO SCHEMA DELL AZIONAMENTO A CATENA APERTA AZIONAMENTO L azionamento a catena aperta comprende il motore asincrono e il relativo convertitore statico che riceve

Dettagli

ISTITUTO D ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2015/2016

ISTITUTO D ISTRUZIONE SUPERIORE L. EINAUDI ALBA ANNO SCOLASTICO 2015/2016 ISTITUTO D ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2015/2016 CLASSE 5 I Disciplina: Sistemi automatici Docenti: Linguanti Vincenzo Gasco Giovanni PROGETTAZIONE DIDATTICA ANNUALE COMPETENZE

Dettagli

ISTITUTO D ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA

ISTITUTO D ISTRUZIONE SUPERIORE L. EINAUDI ALBA ISTITUTO D ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA CLASSE 5H Docenti: Raviola Giovanni Moreni Riccardo Disciplina: Sistemi elettronici automaticih PROGETTAZIONE DIDATTICA ANNUALE COMPETENZE FINALI Al termine

Dettagli

Lezione 16. Motori elettrici: introduzione

Lezione 16. Motori elettrici: introduzione Lezione 16. Motori elettrici: introduzione 1 0. Premessa Un azionamento è un sistema che trasforma potenza elettrica in potenza meccanica in modo controllato. Esso è costituito, nella sua forma usuale,

Dettagli

APPUNTI SUL CAMPO MAGNETICO ROTANTE

APPUNTI SUL CAMPO MAGNETICO ROTANTE APPUTI UL CAPO AGETICO ROTATE Campo agnetico Rotante ad una coppia polare Consideriamo la struttura in figura che rappresenta la vista, in sezione trasversale, di un cilindro cavo, costituito da un materiale

Dettagli

Electrical motor Test-bed

Electrical motor Test-bed EM_Test_bed Page 1 of 10 Electrical motor Test-bed 1. INTERFACCIA SIMULINK... 2 1.1. GUI CRUSCOTTO BANCO MOTORE... 2 1.2. GUIDE... 3 1.3. GUI PARAMETRI MOTORE... 3 1.4. GUI VISUALIZZAZIONE MODELLO 3D MOTORE...

Dettagli

SENSORI E TRASDUTTORI

SENSORI E TRASDUTTORI SENSORI E TRASDUTTORI Il controllo di processo moderno utilizza tecnologie sempre più sofisticate, per minimizzare i costi e contenere le dimensioni dei dispositivi utilizzati. Qualsiasi controllo di processo

Dettagli

6. Trasformate e Funzioni di Trasferimento

6. Trasformate e Funzioni di Trasferimento 6. Trasformate e Funzioni di Trasferimento 6.3 Richiami sulla Trasformata di Laplace Definizione La trasformata di Laplace di f(t) è la funzione di variabile complessa s C, (s = σ + jω), F (s) = e st f(t)dt

Dettagli

Dispositivo di conversione di energia elettrica per aerogeneratori composto da componenti commerciali.

Dispositivo di conversione di energia elettrica per aerogeneratori composto da componenti commerciali. Sede legale: Viale Vittorio Veneto 60, 59100 Prato P.IVA /CF 02110810971 Sede operativa: Via del Mandorlo 30, 59100 Prato tel. (+39) 0574 550493 fax (+39) 0574 577854 Web: www.aria-srl.it Email: info@aria-srl.it

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Risposte canoniche e sistemi elementari Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1

Dettagli

La dinamica degli edifici e le prove sperimentali. Studio del comportamento dinamico di una struttura

La dinamica degli edifici e le prove sperimentali. Studio del comportamento dinamico di una struttura La dinamica degli edifici e le prove sperimentali La Norma UNI 9916 prende in considerazione in modo esplicito il caso della misura delle vibrazioni finalizzata allo: Studio del comportamento dinamico

Dettagli

Riduzione degli schemi a blocchi

Riduzione degli schemi a blocchi 0.0..2 delle Riduzione degli schemi a blocchi I sistemi complessi vengono spesso rappresentati graficamente mediante schemi a blocchi ottenuti dalla connessione serie/parallelo di singoli elementi orientati

Dettagli

Alcune applicazioni delle equazioni differenziali ordinarie alla teoria dei circuiti elettrici

Alcune applicazioni delle equazioni differenziali ordinarie alla teoria dei circuiti elettrici Alcune applicazioni delle equazioni differenziali ordinarie alla teoria dei circuiti elettrici Attilio Piana, Andrea Ziggioto 1 egime variabile in un circuito elettrico. Circuito C. 1.1 Carica del condensatore

Dettagli

MODELLIZZAZIONE, CONTROLLO E MISURA DI UN MOTORE A CORRENTE CONTINUA

MODELLIZZAZIONE, CONTROLLO E MISURA DI UN MOTORE A CORRENTE CONTINUA MODELLIZZAZIONE, CONTROLLO E MISURA DI UN MOTORE A CORRENTE CONTINUA ANDREA USAI Dipartimento di Informatica e Sistemistica Antonio Ruberti Andrea Usai (D.I.S. Antonio Ruberti ) Laboratorio di Automatica

Dettagli

Indice. 1 Introduzione 1

Indice. 1 Introduzione 1 Indice Prefazione XIII 1 Introduzione 1 2 Elementi di modellistica 9 2.1 Introduzione... 9 2.2 Equazioni di conservazione per processi a fluido... 9 2.2.1 Portata massica e volumetrica... 9 2.2.2 Principio

Dettagli

Regole della mano destra.

Regole della mano destra. Regole della mano destra. Macchina in continua con una spira e collettore. Macchina in continua con due spire e collettore. Macchina in continua: schematizzazione di indotto. Macchina in continua. Schematizzazione

Dettagli

La formula di Mason. l ingresso X all uscita Y: P i i T = Y X = 1

La formula di Mason. l ingresso X all uscita Y: P i i T = Y X = 1 0.0. 5. La formula di Mason Dato uno scema a blocci, un ingresso X e un uscita Y, la formula di Mason permette di calcolare in modo semplice e diretto il coefficiente di trasmittanza T = Y (ovvero la funzione

Dettagli

Controllo del moto e robotica industriale

Controllo del moto e robotica industriale Controllo del moto e robotica industriale (Prof. Rocco) Appello del 27 Febbraio 2008 Cognome:... Nome:... Matricola:... Firma:... Avvertenze: Il presente fascicolo si compone di 8 pagine (compresa la copertina).

Dettagli

INTRODUZIONE AL CONTROLLO OTTIMO

INTRODUZIONE AL CONTROLLO OTTIMO INTRODUZIONE AL CONTROLLO OTTIMO Teoria dei Sistemi Ingegneria Elettronica, Informatica e TLC Prof. Roberto Zanasi, Dott. Giovanni Azzone DII - Università di Modena e Reggio Emilia AUTOLAB: Laboratorio

Dettagli

SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO

SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO Ing. Cristian Secchi Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

Oscillazioni: il pendolo semplice

Oscillazioni: il pendolo semplice Oscillazioni: il pendolo semplice Consideriamo il pendolo semplice qui a fianco. La cordicella alla quale è appeso il corpo (puntiforme) di massa m si suppone inestensibile e di massa trascurabile. Per

Dettagli

Anche nel caso che ci si muova e si regga una valigia il lavoro compiuto è nullo: la forza è verticale e lo spostamento orizzontale quindi F s =0 J.

Anche nel caso che ci si muova e si regga una valigia il lavoro compiuto è nullo: la forza è verticale e lo spostamento orizzontale quindi F s =0 J. Lavoro Un concetto molto importante è quello di lavoro (di una forza) La definizione di tale quantità scalare è L= F dl (unità di misura joule J) Il concetto di lavoro richiede che ci sia uno spostamento,

Dettagli

Estensimetro. in variazioni di resistenza.

Estensimetro. in variazioni di resistenza. Estensimetro La misura di una forza incidente su di un oggetto può essere ottenuta misurando la deformazione o la variazione di geometria che l oggetto in questione subisce. L estensimetro estensimetro,

Dettagli

. Si determina quindi quale distanza viene percorsa lungo l asse y in questo intervallo di tempo: h = v 0y ( d

. Si determina quindi quale distanza viene percorsa lungo l asse y in questo intervallo di tempo: h = v 0y ( d Esercizio 1 Un automobile viaggia a velocità v 0 su una strada inclinata di un angolo θ rispetto alla superficie terrestre, e deve superare un burrone largo d (si veda la figura, in cui è indicato anche

Dettagli

I SISTEMI TRIFASI B B A N B B

I SISTEMI TRIFASI B B A N B B I SISTEMI TRIFSI ITRODUZIOE Un sistema polifase consiste in due o più tensioni identiche, fra le quali esiste uno sfasamento fisso, che alimentano, attraverso delle linee di collegamento, dei carichi.

Dettagli

Relazioni statistiche: regressione e correlazione

Relazioni statistiche: regressione e correlazione Relazioni statistiche: regressione e correlazione È detto studio della connessione lo studio si occupa della ricerca di relazioni fra due variabili statistiche o fra una mutabile e una variabile statistica

Dettagli

Scelta e verifica dei motori elettrici per gli azionamenti di un mezzo di trazione leggera

Scelta e verifica dei motori elettrici per gli azionamenti di un mezzo di trazione leggera Scelta e verifica dei motori elettrici per gli azionamenti di un mezzo di trazione leggera Si consideri un convoglio ferroviario per la trazione leggera costituito da un unità di trazione, la quale è formata

Dettagli

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6 EQUAZIONI DIFFERENZIALI.. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x log t (d) x = e t x log x (e) y = y 5y+6 (f) y = ty +t t +y (g) y = y (h) xy = y (i) y y y = 0 (j) x = x (k)

Dettagli

2.5 Stabilità dei sistemi dinamici 20. - funzioni di trasferimento, nella variabile di Laplace s, razionali fratte del tipo:

2.5 Stabilità dei sistemi dinamici 20. - funzioni di trasferimento, nella variabile di Laplace s, razionali fratte del tipo: .5 Stabilità dei sistemi dinamici 9 Risulta: 3 ( s(s + 4).5 Stabilità dei sistemi dinamici Si è visto come un sistema fisico può essere descritto tramite equazioni differenziali o attraverso una funzione

Dettagli

La caratteristica meccanica rappresenta l'andamento della coppia motrice C in

La caratteristica meccanica rappresenta l'andamento della coppia motrice C in MOTORI CORRENTE ALTERNATA: CARATTERISTICA MECCANICA La caratteristica meccanica rappresenta l'andamento della coppia motrice C in funzione della velocità di rotazione del rotore n r Alla partenza la C

Dettagli

Pressione. Esempio. Definizione di pressione. Legge di Stevino. Pressione nei fluidi EQUILIBRIO E CONSERVAZIONE DELL ENERGIA NEI FLUIDI

Pressione. Esempio. Definizione di pressione. Legge di Stevino. Pressione nei fluidi EQUILIBRIO E CONSERVAZIONE DELL ENERGIA NEI FLUIDI Pressione EQUILIBRIO E CONSERVAZIONE DELL ENERGIA NEI FLUIDI Cos è la pressione? La pressione è una grandezza che lega tra di loro l intensità della forza e l aerea della superficie su cui viene esercitata

Dettagli

La funzione di risposta armonica

La funzione di risposta armonica 0.0. 3.1 1 La funzione di risposta armonica Se ad un sistema lineare stazionario asintoticamente stabile si applica in ingresso un segnale sinusoidale x(t) = sen ωt di pulsazione ω: x(t) = sin ωt (s) =

Dettagli

MATERIA : SISTEMI ELETTRICI AUTOMATICI INS. TEORICO: PROF. CIVITAREALE ALBERTO

MATERIA : SISTEMI ELETTRICI AUTOMATICI INS. TEORICO: PROF. CIVITAREALE ALBERTO PIANO DI LAVORO CLASSE 5 ES A.S. 2014-2015 MATERIA : SISTEMI ELETTRICI AUTOMATICI INS. TEORICO: PROF. CIVITAREALE ALBERTO INS. TECNICO-PRATICO: PROF. BARONI MAURIZIO MODULO 1: ALGEBRA DEGLI SCHEMI A BLOCCHI

Dettagli

Strumentazione Biomedica

Strumentazione Biomedica Sensori induttivi, capacitivi, piezoelettrici Univ. degli studi Federico II di Napoli ing. Paolo Bifulco Sensori induttivi Sensori induttivi di spostamento basati su variazioni di autoinduttanza e mutua

Dettagli

A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO

A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO Sono stati trattati gli elementi base per l'analisi e il dimensionamento dei sistemi di controllo nei processi continui. E' quindi importante:

Dettagli

FUNZIONE. Si scrive: A B f: A B x y=f(x) (si legge: f funzione da A in B) x f y= f(x)

FUNZIONE. Si scrive: A B f: A B x y=f(x) (si legge: f funzione da A in B) x f y= f(x) 1 FUNZIONE Dati gli insiemi A e B, si definisce funzione da A in B una relazione o legge o corrispondenza che ad ogni elemento di A associa uno ed un solo elemento di B. Si scrive: A B f: A B f() (si legge:

Dettagli

Componenti per la robotica: Generalità e Attuatori

Componenti per la robotica: Generalità e Attuatori Corso di Robotica 1 Componenti per la robotica: Generalità e Attuatori Prof. Alessandro De Luca Robotica 1 1 Robot come sistema programma di lavoro comandi Robot azioni ambiente di lavoro organi meccanici

Dettagli

Introduzione all analisi dei segnali digitali.

Introduzione all analisi dei segnali digitali. Introduzione all analisi dei segnali digitali. Lezioni per il corso di Laboratorio di Fisica IV Isidoro Ferrante A.A. 2001/2002 1 Segnali analogici Si dice segnale la variazione di una qualsiasi grandezza

Dettagli

I sistemi di controllo possono essere distinti in due categorie: sistemi ad anello aperto e sistemi ad anello chiuso:

I sistemi di controllo possono essere distinti in due categorie: sistemi ad anello aperto e sistemi ad anello chiuso: 3.1 GENERALITÀ Per sistema di controllo si intende un qualsiasi sistema in grado di fare assumere alla grandezza duscita un prefissato andamento in funzione della grandezza di ingresso, anche in presenza

Dettagli

Elettronica I Grandezze elettriche e unità di misura

Elettronica I Grandezze elettriche e unità di misura Elettronica I Grandezze elettriche e unità di misura Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

Prova scritta di Controlli Automatici - Compito A

Prova scritta di Controlli Automatici - Compito A Prova scritta di Controlli Automatici - Compito A 21 Marzo 27 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare quali sono le affermazioni vere. 1. Si consideri

Dettagli

ENERGIA. Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica

ENERGIA. Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica 1 ENERGIA Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica 2 Energia L energia è ciò che ci permette all uomo di compiere uno sforzo o meglio

Dettagli

E1. IMPLEMENTAZIONE in MATLAB-SIMULINK del MODELLO e del CONTROLLO di un MOTORE ELETTRICO a CORRENTE CONTINUA

E1. IMPLEMENTAZIONE in MATLAB-SIMULINK del MODELLO e del CONTROLLO di un MOTORE ELETTRICO a CORRENTE CONTINUA E1. IMPLEMENTAZIONE in MATLAB-SIMULINK del MODELLO e del CONTOLLO di un MOTOE ELETTICO a COENTE CONTINUA 1. EQUAZIONI DEL MODELLO Equazioni nel dominio del tempo descrittive del Modello elettromagnetico

Dettagli

2. Leggi finanziarie di capitalizzazione

2. Leggi finanziarie di capitalizzazione 2. Leggi finanziarie di capitalizzazione Si chiama legge finanziaria di capitalizzazione una funzione atta a definire il montante M(t accumulato al tempo generico t da un capitale C: M(t = F(C, t C t M

Dettagli

Controllo di motori in corrente continua. A cura di: Ing. Massimo Cefalo Ing. Fabio Zonfrilli

Controllo di motori in corrente continua. A cura di: Ing. Massimo Cefalo Ing. Fabio Zonfrilli Controllo di motori in corrente continua A cura di: Ing. Massimo Cefalo Ing. Fabio Zonfrilli Sistema di Controllo d rif - C(s) P(s) y T(s) n C(s) P(s) Controllore Sistema d n Disturbo Rumore T(s) Trasduttore

Dettagli

Con gli esperimenti di Faraday ( 1831 ) l'elettromagnetismo si complica

Con gli esperimenti di Faraday ( 1831 ) l'elettromagnetismo si complica Elettromagnetismo prima di Faraday: campi elettrici e campi magnetici Correnti elettriche creano campi magnetici Cariche elettriche creano campi elettrici Con gli esperimenti di Faraday ( 1831 ) l'elettromagnetismo

Dettagli

di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, Adesso sostituiamo nella

di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, Adesso sostituiamo nella Equazione di Ohm nel dominio fasoriale: Legge di Ohm:. Dalla definizione di operatore di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, dove Adesso sostituiamo nella

Dettagli

Indice. Prefazione all edizione italiana Prefazione all edizione americana. Capitolo 1 Introduzione: onde e fasori 1

Indice. Prefazione all edizione italiana Prefazione all edizione americana. Capitolo 1 Introduzione: onde e fasori 1 Indice Prefazione all edizione italiana Prefazione all edizione americana VII IX Capitolo 1 Introduzione: onde e fasori 1 Generalità 1 1.1 Dimensioni, unità di misura e notazione 2 1.2 La natura dell elettromagnetismo

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

Moto circolare uniforme

Moto circolare uniforme Moto circolare uniforme 01 - Moto circolare uniforme. Il moto di un corpo che avviene su una traiettoria circolare (una circonferenza) con velocità (in modulo, intensità) costante si dice moto circolare

Dettagli

Gestione dei segnali analogici nei sistemi di automazione industriale con PLC.

Gestione dei segnali analogici nei sistemi di automazione industriale con PLC. Gestione dei segnali analogici nei sistemi di automazione industriale con PLC. Nelle automazioni e nell industria di processo si presenta spesso il problema di gestire segnali analogici come temperature,

Dettagli

Fondamenti sui sistemi di Attuazione nella Robotica. Corso di Robotica Prof. Gini Giuseppina 2006/2007

Fondamenti sui sistemi di Attuazione nella Robotica. Corso di Robotica Prof. Gini Giuseppina 2006/2007 Fondamenti sui sistemi di Attuazione nella Robotica PhD. Ing. Folgheraiter Michele Corso di Robotica Prof. Gini Giuseppina 2006/2007 1 Definizione di Attuatore (Robotica) Si definisce attuatore, quella

Dettagli

LA CORRENTE ELETTRICA CONTINUA

LA CORRENTE ELETTRICA CONTINUA LA CORRENTE ELETTRICA CONTINUA (Fenomeno, indipendente dal tempo, che si osserva nei corpi conduttori quando le cariche elettriche fluiscono in essi.) Un conduttore metallico è in equilibrio elettrostatico

Dettagli

Fondamenti di macchine elettriche Corso SSIS 2006/07

Fondamenti di macchine elettriche Corso SSIS 2006/07 9.13 Caratteristica meccanica del motore asincrono trifase Essa è un grafico cartesiano che rappresenta l andamento della coppia C sviluppata dal motore in funzione della sua velocità n. La coppia è legata

Dettagli

Dinamica di un impianto ascensore

Dinamica di un impianto ascensore Dinamica di un impianto ascensore rev. 1.2 L ascensore rappresentato schematicamente in figura è azionato da un motore elettrico tramite un riduttore ed una puleggia sulla quale si avvolge la fune di sollevamento.

Dettagli

Analisi della risposta dinamica

Analisi della risposta dinamica Analisi della risposta dinamica Risposta dinamica del trasduttore: descrive, in termini di un modello matematico basato su equazioni differenziali alle derivate parziali, le relazioni, basate su opportune

Dettagli

Esercizi in MATLAB-SIMULINK

Esercizi in MATLAB-SIMULINK Appendice A Esercizi in MATLAB-SIMULINK A.1 Implementazione del modello e del controllo di un motore elettrico a corrente continua A.1.1 Equazioni del modello Equazioni nel dominio del tempo descrittive

Dettagli

Corrente ele)rica. Cariche in movimento e legge di Ohm

Corrente ele)rica. Cariche in movimento e legge di Ohm Corrente ele)rica Cariche in movimento e legge di Ohm Corrente ele)rica Nei metalli si possono avere elettroni che si muovono anche velocemente fra un estremo e l altro del metallo, ma la risultante istante

Dettagli

Motore in Corrente Continua

Motore in Corrente Continua Motore in Corrente Continua Motore in corrente continua Schema elettrico Modello MotoreCarico (medio) (piccolo) automatica ROMA TRE Stefano Panzieri Motore a corrente continua automatica ROMA TRE Stefano

Dettagli

Laboratorio di Automazione. Azionamenti Elettrici: Generalità e Motore DC

Laboratorio di Automazione. Azionamenti Elettrici: Generalità e Motore DC Laboratorio di Automazione Azionamenti Elettrici: Generalità e Motore DC Prof. Claudio Bonivento DEIS - Università degli Studi di Bologna E-Mail: cbonivento@deis.unibo.it Indice Definizione Struttura Modello

Dettagli

IMPIANTI DI TERRA Appunti a cura dell Ing. Emanuela Pazzola Tutore del corso di Elettrotecnica per meccanici, chimici e biomedici A.A.

IMPIANTI DI TERRA Appunti a cura dell Ing. Emanuela Pazzola Tutore del corso di Elettrotecnica per meccanici, chimici e biomedici A.A. IMPIANTI DI TERRA Appunti a cura dell Ing. Emanuela Pazzola Tutore del corso di Elettrotecnica per meccanici, chimici e biomedici A.A. 2005/2006 Facoltà d Ingegneria dell Università degli Studi di Cagliari

Dettagli

INTRODUZIONE ALLO STUDIO DEI SISTEMI DI CONTROLLLO AUTOMATICO: APPROCCIO CLASSICO APPROCCIO MODERNO

INTRODUZIONE ALLO STUDIO DEI SISTEMI DI CONTROLLLO AUTOMATICO: APPROCCIO CLASSICO APPROCCIO MODERNO INTRODUZIONE ALLO STUDIO DEI SISTEMI DI CONTROLLLO AUTOMATICO: APPROCCIO CLASSICO APPROCCIO MODERNO CARATTERISTICHE DELLE METODOLOGIE E DELL APPROCCIO CLASSICO : a) Fa riferimento essenzialmente al dominio

Dettagli

Sistemi Web! per il turismo! - lezione 3 -

Sistemi Web! per il turismo! - lezione 3 - Sistemi Web per il turismo - lezione 3 - I computer sono in grado di eseguire molte operazioni, e di risolvere un gran numero di problemi. E arrivato il momento di delineare esplicitamente il campo di

Dettagli

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo Moto armonico semplice Consideriamo il sistema presentato in figura in cui un corpo di massa m si muove lungo l asse delle x sotto l azione della molla ideale di costante elastica k ed in assenza di forze

Dettagli

Motori brushless. Alimentando il motore e pilotando opportunamente le correnti I in modo che siano come nella figura 2 si nota come

Motori brushless. Alimentando il motore e pilotando opportunamente le correnti I in modo che siano come nella figura 2 si nota come 49 Motori brushless 1. Generalità I motori brushless sono idealmente derivati dai motori in DC con il proposito di eliminare il collettore a lamelle e quindi le spazzole. Esistono due tipi di motore brushless:

Dettagli