Esempi di modelli fisici
|
|
|
- Adriana Grande
- 9 anni fa
- Visualizzazioni
Transcript
1 Esempi di modelli fisici ) Dinamica del rotore di un motore elettrico. Si consideri un elemento meccanico con inerzia J, coefficiente di attrito lineare che ruota alla velocità angolare ω al quale venga applicata una coppia esterna c(t). c(t) c(t) ω(t) ω(t)? 0 t J 0 t L equazione differenziale che caratterizza il sistema è quella che si ricava dalla legge di conservazione della quantità di moto angolare: d[jω(t)] dt = c(t) ω(t) J ω(t) + ω(t) = c(t) Partendo da condizioni iniziali nulle e applicando Laplace si ottiene: J s ω(s) + ω(s) = C(s) ω(s) = + J s C(s) per cui il sistema fisico può essere descritto nel modo seguente: C(s) c(t) + J s ω(s) ω(t) dove è la funzione di trasferimento che descrive il sistema fisico: = + J s R. Zanasi, R. Morselli - Controlli Automatici /06. CONCETTI FONDAMENTALI
2 .2. MODELLI FISICI E SCHEMI A BLOCCHI.2 2 2) Sistema massa-molla-smorzatore. K m F Variaili e parametri del sistema fisico: (t) : posizione m : massa ẋ(t) : velocità K : rigidità della molla ẍ(t) : accelerazione : Coefficiente di attrito lineare F (t) : forza applicata P (t) : Quantità di moto Legge di conservazione della quantità di moto P (t) = m ẋ(t): d dt [P (t)] = i F i (t) m d dt [ẋ(t)] = i Si ottiene quindi la seguente equazione differenziale: d [m ẋ(t)] = F ẋ(t) K (t) dt che può essere riscritta nel seguente modo: mẍ(t) + ẋ(t) + K (t) = F (t) Utilizzando le trasformate di Laplace ((0) = ẋ(0) = 0) si ha: m s 2 X(s)+ s X(s)+K X(s) = F (s) X(s) = Il sistema può quindi essere rappresentato nel modo seguente: F i (t) F (s) m s 2 + s + K F (s) m s 2 + s + K X(s) R. Zanasi, R. Morselli - Controlli Automatici /06. CONCETTI FONDAMENTALI
3 .2. MODELLI FISICI E SCHEMI A BLOCCHI.2 3 3) Sistema elettrico RLC. I L R Iu=0 V i L V u Legge fisica: la variazione del flusso concatenato φ c (t) è uguale alla tensione V L (t) applicata ai capi dell induttanza. d dt [φ(t)] = V L(t) L d dt [I L(t)] = V i (t) R I L (t) Applicando la trasformata di Laplace, con condizioni iniziali nulle, si ha: L s I L (s) + R I L (s) = V i (s) I L (s) = L s + R }{{} Il sistema può quindi essere rappresentato nel modo seguente: V i (s) V i (s) L s + R I L (s) R. Zanasi, R. Morselli - Controlli Automatici /06. CONCETTI FONDAMENTALI
4 .2. MODELLI FISICI E SCHEMI A BLOCCHI.2 4 4) Motore elettrico in corrente continua. I a L R ω m V E + J C e θ m Schema a locchi POG del motore: V E ω m K e R + Ls + Js I a K e C e Il sistema è descritto dalle seguenti 2 equazioni differenziali: { LIa = RI a K e ω m + V J ω m = K e I a ω m C e Per il principio di conservazione dell energia, la costante K e è sia la costante di proporzionalità che lega la corrente di armatura I a alla coppia motrice, sia la costante di proporzionalità che lega la forza contromotrice E alla velocità angolare ω m : = K e I a E = K e ω m R. Zanasi, R. Morselli - Controlli Automatici /06. CONCETTI FONDAMENTALI
5 .2. MODELLI FISICI E SCHEMI A BLOCCHI.2 5 Riducendo in forma minima il sistema (vedi Formula di Mason ) si ottiene il seguente legame tra la variaile di uscita ω m (t) e le variaili di ingresso V (t) e C e (t): ω m (s) = G (s)v (s) + G 2 (s)c e (s) dove G (s) lega l ingresso di controllo V (t) all uscita ω m (t) G (s) = K e (R + L s)( + J s) + K 2 e mentre G 2 (s) lega l ingresso di disturo C e (t) all uscita ω m (t): G 2 (s) = (R + L s) (R + L s)( + J s) + K 2 e La precedente relazione può essere riscritta come [ ] L J s 2 + (R J + L )s + R + Ke 2 ωm (s) = K e V (s) (R + L s)c e (s) che corrisponde alla seguente equazione differenziale del secondo ordine: L J ω m + (R J + L ) ω m + (R + K 2 e )ω m = K e V R C e L Ċe R. Zanasi, R. Morselli - Controlli Automatici /06. CONCETTI FONDAMENTALI
6 .2. MODELLI FISICI E SCHEMI A BLOCCHI.2 6 5) Frizione idraulica. P Q Si consideri il seguente modello idraulico semplificato di una frizione: K v P A ẋ m p K m F m Pressione di alimentazione Portata volumetrica nella valvola Costante di prop. della valvola Capacità idraulica del cilindro Pressione all interno del cilindro Sezione del pistone Posizione del pistone Velocità del pistone Massa del pistone Attrito lineare del pistone Rigidità della molla Forza della molla sul pistone K m m p, A Q Q Valvola (K v ) P P R = 0 Uno schema a locchi che descrive la dinamica del sistema è il seguente: P P A F F m Q K v s Q A +m p s ẋ K m s 0 Riducendo il sistema in forma minima si ottiene la seguente f.d.t. : = F m(s) P (s) = AK m K v m p s 3 + ( + K v m p )s 2 + (A 2 + K m + K v )s + K m K v a cui corrisponde la seguente equazione differenziale del terzo ordine: m p... F m +( +K v m p ) F m +(A 2 + K m +K v ) F m +K m K v F m = AK m K v P (t) R. Zanasi, R. Morselli - Controlli Automatici /06. CONCETTI FONDAMENTALI
7 .2. MODELLI FISICI E SCHEMI A BLOCCHI.2 7 6) Sistema meccanico di trasmissione. Si consideri il sistema meccanico mostrato in figura, costituito da un alero di inerzia J, che ruota a velocità ω, a cui è applicata la coppia esterna τ. Tramite un rullo elastico avente rigidità torsionale K e raggio costante R, l alero spinge una massa M che comprime una molla lineare con coefficiente di rigidità K 2. J K 2 M K R 2 Un possiile schema a locchi che descrive la dinamica del sistema è il seguente: τ τ R F 2 F 2 + J s K s 2 + M s K 2 s ω ω R ẋ 0 La funzione di trasferimento che lega l ingresso τ all uscita F 2 si calcola facilmente utilizzando la formula di Mason : = K K 2 R a 4 s 4 + a 3 s 3 + a 2 s 2 + a s + a 0 dove: a 4 = J M R 2 a 3 = ( 2 J + M)R 2 a 2 = J K + 2 R 2 + J K 2 R 2 + K M R 2 a = K + 2 K R 2 + K 2 R 2 a 0 = K K 2 R 2 R. Zanasi, R. Morselli - Controlli Automatici /06. CONCETTI FONDAMENTALI
Sistemi e modelli matematici
0.0.. Sistemi e modelli matematici L automazione è un complesso di tecniche volte a sostituire l intervento umano, o a migliorarne l efficienza, nell esercizio di dispositivi e impianti. Un importante
Risposta temporale: esempi
...4 Risposta temporale: esempi Esempio. Calcolare la risposta al gradino unitario del seguente sistema: x(t) = u(t) s + 5 (s + )(s + ) y(t) Il calcolo della trasformata del segnale di uscita è immediato:
Modelli di sistemi elementari. (Fondamenti di Automatica G. Ferrari Trecate)
Modelli di sistemi elementari (Fondamenti di Automatica G. Ferrari Trecate) Circuiti elettrici Resistore R i resistenza corrente v tensione v = Ri( Induttore L i induttanza corrente v tensione L i! = v(
Il motore a corrente continua
Il motore a corrente continua 15 marzo 2015 Ing. [email protected] Università degli Studi Roma TRE Agenda Il motore a corrente continua 2 Il motore elettrico a corrente continua è un componente
Controlli Automatici e Teoria dei Sistemi Esempi di sistemi dinamici
Controlli Automatici e Teoria dei Sistemi Esempi di sistemi dinamici Prof. Roberto Guidorzi Dipartimento di Elettronica, Informatica e Sistemistica Università di Bologna Viale del Risorgimento 2, 40136
Attuatori. Gli attuatori costituiscono gli elementi che controllano e permettono il movimento delle parti
Attuatori Gli attuatori costituiscono gli elementi che controllano e permettono il movimento delle parti meccaniche di una macchina automatica. Sono una componente della parte operativa di una macchina
Le lettere x, y, z rappresentano i segnali nei vari rami.
Regole per l elaborazione di schemi a blocchi Oltre alle tre fondamentali precedenti regole (cascata, parallelo, retroazione), ne esiste una serie ulteriore che consente di semplificare i sistemi complessi,
La formula di Mason. l ingresso X all uscita Y: P i i T = Y X = 1
0.0. 5. La formula di Mason Dato uno scema a blocci, un ingresso X e un uscita Y, la formula di Mason permette di calcolare in modo semplice e diretto il coefficiente di trasmittanza T = Y (ovvero la funzione
Fondamenti di Meccanica Esame del
Politecnico di Milano Fondamenti di Meccanica Esame del 0.02.2009. In un piano verticale un asta omogenea AB, di lunghezza l e massa m, ha l estremo A vincolato a scorrere senza attrito su una guida verticale.
1 Amplificatore a transconduttanza per pilotaggio in corrente di minuscoli R 2. v out R 1
Prova scritta di fine corso di Meccanica Applicata alle Macchine, modulo da 5CFU Amplificatore a transconduttanza per pilotaggio in corrente di minuscoli motori DC Il circuito mostrato in figura è uno
Modellistica di sistemi elettromeccanici
Modellistica di sistemi elettromeccanici Legge di Lorentz: una carica elettrica q che si muove con velocità v(t) relativamente ad un campo magnetico di induzione B(t) è soggetta ad una forza v(t) q α B(t)
Introduzione e modellistica dei sistemi
Introduzione e modellistica dei sistemi Modellistica dei sistemi dinamici meccanici Sistemi meccanici in traslazione: elementi base Sistemi in traslazione: equazioni del moto Sistemi in traslazione: rappresentazione
Modellistica grafica: Bond Graphs
1. - Bond Graphs 1.1 1 Modellistica grafica: Bond Graphs In qualsiasi campo energetico è sempre possibile scomporre il sistema in parti elementari che si interconnettono ad altre tramite delle porte energetiche,
Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile
Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,
Applicazioni delle leggi della meccanica: moto armnico
Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di
02. Modelli Matematici: Derivazione
Controlli Automatici 02. Modelli Matematici: Derivazione Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it
Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1
Grandezze angolari Lineare Angolare Relazione x θ x = rθ v ω v = ωr a α a = αr m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 2 Iω 2 Energia cinetica In forma vettoriale: v = ω r questa collega la velocità angolare
SISTEMI LINEARI A COEFFICIENTE COSTANTE
SISTEMI LINEARI A COEFFICIENTE COSTANTE Per studiare la velocità, la precisione e la stabilità di un sistema bisogna individuare il modello matematico del sistema Abbiamo visto che un sistema di controllo
Esercizio 1 Meccanica del Punto
Esercizio 1 Meccanica del Punto Una molla di costante elastica k e lunghezza a riposo L 0 è appesa al soffitto di una stanza di altezza H. All altra estremità della molla è attaccata una pallina di massa
FUNZIONI DI TRASFERIMENTO
FUNZIONI DI TRASFERIMENTO Funzioni Di Traferimento La difficoltà maggiore nel trattare i modelli matematici di itemi dinamici lineari è dovuta al fatto che le equazioni delle leggi fiiche che decrivono
Attrito statico e attrito dinamico
Forza di attrito La presenza delle forze di attrito fa parte dell esperienza quotidiana. Se si tenta di far scorrere un corpo su una superficie, si sviluppa una resistenza allo scorrimento detta forza
Esercizi per il corso di Fondamenti di Automatica I
Esercizi per il corso di Fondamenti di Automatica I Ing. Elettronica N.O. Docente: Dott. Ing. Luca De Cicco 2 Febbraio 2009 Exercise. Si determini la trasformata di Laplace dei segnali: x (t) = cos(ωt
DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA
DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema
Errata Corrige. Quesiti di Fisica Generale
1 Errata Corrige a cura di Giovanni Romanelli Quesiti di Fisica Generale per i C.d.S. delle Facoltà di Scienze di Prof. Carla Andreani Dr. Giulia Festa Dr. Andrea Lapi Dr. Roberto Senesi 2 Copyright@2010
TEORIA DEI SISTEMI SISTEMI LINEARI
TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI SISTEMI LINEARI Ing. Cristian Secchi Tel.
Risposta al gradino di un sistema del primo ordine
0.0..4 Risposta al gradino di un sistema del primo ordine Diagramma Si consideri il seguente sistema lineare del primo ordine: G(s) = +τ s L unico parametro che caratterizza il sistema è la costante di
I.T.I.S. TRASFORMATA DI LAPLACE DIAGRAMMI DI BODE
I.T.I.S. APPUNTI DI ELETTRONICA TRASFORMATA DI LAPLACE E DIAGRAMMI DI BODE PREMESSA Per lo studio dei sistemi di controllo si utilizzano modelli matematici dinamici lineari. L analisi o il progetto di
Lezione 18. Motori elettrici DC a magneti permanenti. F. Previdi - Controlli Automatici - Lez. 18
Lezione 18. Motori elettrici DC a magneti permanenti F. Previdi - Controlli Automatici - Lez. 18 1 1. Struttura di un motore elettrico DC brushed Cilindro mobile di materiale ferromagnetico detto rotore;
Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila A
Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila A Massimo Vassalli 1 Dicembre 007 NB: dal momento che i dati numerici degli esercizi non sono comuni a tutti i compiti, i risultati
Modellistica dinamica di sistemi fisici
.. MODELLISTICA - Modellitica dinamica. Modellitica dinamica di itemi fiici Nella realtà fiica eitono vari ambiti energetici, per eempio: meccanico (tralazionale e rotazionale) elettrico-magnetico idraulico
Problemi di Fisica per l ammissione alla Scuola Galileiana Problema 1
Problemi di Fisica per l ammissione alla Scuola Galileiana 2015-2016 Problema 1 Un secchio cilindrico di raggio R contiene un fluido di densità uniforme ρ, entrambi ruotanti intorno al loro comune asse
MECCANICA APPLICATA - CdS in Ingegneria Industriale (Lecce) A.A Appello del
Esercizio 2 Per il freno a tamburo riportato in Fig. 2 (le misure sono in mm), nota la forza F agente in D, determinare il momento frenante sul tamburo e la reazione risultante della cerniera fissa O.
Esercizi per il corso di Fondamenti di Automatica I
Esercizi per il corso di Fondamenti di Automatica I Ing. Elettronica N.O. Docente: Dott. Ing. Luca De Cicco 2 novembre 2009 Parte I Exercise. Si determini la trasformata di Laplace dei segnali: x (t) =
ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1
Alcuni esercizi risolti su: - calcolo dell equilibrio di un sistema lineare e valutazione delle proprietà di stabilità dell equilibrio attraverso linearizzazione - calcolo del movimento dello stato e dell
5. Per ω = 1/τ il diagramma reale di Bode delle ampiezze della funzione G(jω) =
Fondamenti di Controlli Automatici - A.A. 211/12 3 luglio 212 - Domande Teoriche Cognome Nome: Matricola: Corso di Laurea: Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni
CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo. SCHEMI A BLOCCHI
CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/controlliautomatici.html SCHEMI A BLOCCHI Ing. e-mail: [email protected] http://www.dii.unimore.it/~lbiagiotti
Esercitazioni di Meccanica Razionale
Esercitazioni di Meccanica Razionale a.a. 2002/2003 Dinamica dei sistemi materiali Maria Grazia Naso [email protected] Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica
Esercitazione 2. Soluzione
Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale
268 MECCANICA DEL VEICOLO
LISTA SIMBOLI a accelerazione longitudinale veicolo [ms -2 ]; a distanza tra il baricentro e l avantreno veicolo [m]; a parametro caratterizzante la taratura del giunto viscoso; a fm decelerazione veicolo
RICHIAMI MATEMATICI. x( t)
0.0. 0.1 1 RICHIAMI MATEMATICI Funzioni reali del tempo: (t) : t (t) (t) ( t) Funzioni reali dell ingresso: y() t t y( ) y() : y() Numeri complessi. Un numero complesso è una coppia ordinata di numeri
Esercizio 1 L/3. mg CM Mg. La sommatoria delle forze e dei momenti deve essere uguale a 0 M A. ω è il verso di rotazione con cui studio il sistema
Esercizio 1 Una trave omogenea di lunghezza L e di massa M è appoggiata in posizione orizzontale su due fulcri lisci posti alle sue estremità. Una massa m è appoggiata sulla trave ad una distanza L/3 da
Meccanica e Macchine esame 2008 MECCANICA APPLICATA E MACCHINE A FLUIDO
Meccanica e Macchine esame 008 MECCANICA APPLICATA E MACCHINE A FLUIDO Sessione ordinaria 008 Lo schema riportato in figura rappresenta un motore elettrico che eroga una potenza nominale di 0 kw ad un
ESERCIZIO SOLUZIONE. 13 Aprile 2011
ESERCIZIO Un corpo di massa m è lasciato cadere da un altezza h sull estremo libero di una molla di costante elastica in modo da provocarne la compressione. Determinare: ) la velocità del corpo all impatto
Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE
Lavoro ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Cos è il lavoro? Il lavoro è la grandezza fisica che mette in relazione spostamento e forza. Il lavoro dipende sia dalla direzione della forza sia dalla
Rotazioni. Debora Botturi ALTAIR. Debora Botturi. Laboratorio di Sistemi e Segnali
Rotazioni ALTAIR http://metropolis.sci.univr.it Argomenti Propietá di base della rotazione Argomenti Argomenti Propietá di base della rotazione Leggi base del moto Inerzia, molle, smorzatori, leve ed ingranaggi
Problemi di Fisica per l ammissione alla Scuola Galileana Problema 1
Problemi di Fisica per l ammissione alla Scuola Galileana 014-015 Problema 1 Nella regione di spazio interna alla sfera S 1, centrata in O 1 e di raggio R 1, è presente una densità di carica di volume
(trascurare la massa delle razze della ruota, e schematizzarla come un anello; momento d inerzia dell anello I A = MR 2 )
1 Esercizio Una ruota di raggio R e di massa M può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2, ed è collegato tramite un filo inestensibile ad un blocco di massa m, che a sua volta
Programma di fisica. Classe 1^ sez. F A. S. 2015/2016. Docente: prof. ssa Laganà Filomena Donatella
Programma di fisica. Classe 1^ sez. F A. S. 2015/2016 Docente: prof. ssa Laganà Filomena Donatella MODULO 1: LE GRANDEZZE FISICHE. Notazione scientifica dei numeri, approssimazione, ordine di grandezza.
Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero
Facoltà di Farmacia - Anno Accademico 2009-2010 A 18 febbraio 2010 primo esonero Corso di Laurea: Laurea Specialistica in FARMACIA Nome: Cognome: Matricola Aula: Canale: Docente: Riportare sul presente
Capitolo 12. Moto oscillatorio
Moto oscillatorio INTRODUZIONE Quando la forza che agisce su un corpo è proporzionale al suo spostamento dalla posizione di equilibrio ne risulta un particolare tipo di moto. Se la forza agisce sempre
CLASSE 3 D. CORSO DI FISICA prof. Calogero Contrino IL QUADERNO DELL ESTATE
LICEO SCIENTIFICO GIUDICI SAETTA E LIVATINO RAVANUSA ANNO SCOLASTICO 2013-2014 CLASSE 3 D CORSO DI FISICA prof. Calogero Contrino IL QUADERNO DELL ESTATE 20 esercizi per restare in forma 1) Un corpo di
b) DIAGRAMMA DELLE FORZE
DELLO SCRITTO DELL SETTEMBRE 5 - ESERCIZIO - Un corpo di massa m = 9 g e dimensioni trascurabili è appeso ad uno dei capi di una molla di costante elastica k = 5 N/m e lunghezza a riposo L = cm. L'altro
1) Per quale valore minimo della velocità angolare iniziale il cilindro riesce a compiere un giro completo.
Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I): 04-02-2016 Problema 1. Un punto materiale si muove nel piano su una guida descritta dall equazione y = sin kx [ = 12m, k
Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007
Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007 y Nel sistema di figura posto in un piano verticale il carrello A scorre con vinco- q, R M lo liscio lungo l asse verticale. Il
Risposta temporale: esercizi
...4 Risposta temporale: esercizi Esercizio. Calcolare la risposta al gradino del seguente sistema: G(s) X(s) = s (s+)(s+) Y(s) Per ottenere la risposta al gradino occorre antitrasformare la seguente funzione:
Compito del 14 giugno 2004
Compito del 14 giugno 004 Un disco omogeneo di raggio R e massa m rotola senza strisciare lungo l asse delle ascisse di un piano verticale. Il centro C del disco è collegato da una molla di costante elastica
Problema (tratto dal 7.42 del Mazzoldi 2)
Problema (tratto dal 7.4 del azzoldi Un disco di massa m D e raggio R ruota attorno all asse verticale passante per il centro con velocità angolare costante ω. ll istante t 0 viene delicatamente appoggiata
Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 6 INDUZIONE ELETTROMAGNETICA
Fisica enerale Modulo di Fisica II A.A. 05-6 INDUZIONE EETTOMANETIA Eb. Una spira rettangolare di altezza l 0 cm è 0. T completata da un contatto mobile che viene spostato verso destra alla velocità costante
OSCILLATORE ARMONICO SEMPLICE
OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato
Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 2010/2011 Prova in itinere del 4/3/2011.
Cognome Nome Numero di matricola Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 00/0 Prova in itinere del 4/3/0. Tempo a disposizione: h30 Modalità di risposta: scrivere la formula
Compito di Fisica Generale (Meccanica) 16/01/2015
Compito di Fisica Generale (Meccanica) 16/01/2015 1) Un cannone spara un proiettile di massa m con un alzo pari a. Si calcoli in funzione dell angolo ed in presenza dell attrito dell aria ( schematizzato
Esame di Meccanica Razionale (Dinamica) Allievi Ing. Edile II Anno Prova intermedia del 23 novembre 2012 durata della prova: 2h
Prova intermedia del 23 novembre 2012 durata della prova: 2h CINEMTIC E CLCL DI QUNTITÀ MECCNICHE Nelsistemadifiguraildiscodicentro ruoy ta intorno al suo centro; il secondo disco rotola senza strisciare
Dinamica del punto materiale
Dinamica del punto materiale Formule fondamentali L. P. 5 Aprile 2010 N.B.: Le relazioni riportate sono valide in un sistema di riferimento inerziale. Princìpi della dinamica Secondo principio della dinamica
Prova scritta del corso di Fisica e Fisica 1 con soluzioni
Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prof. F. Ricci-Tersenghi 17/02/2014 Quesiti 1. Un frutto si stacca da un albero e cade dentro una piscina. Sapendo che il ramo da cui si è staccato
Principio di inerzia
Dinamica abbiamo visto come si descrive il moto dei corpi (cinematica) ma oltre a capire come si muovono i corpi è anche necessario capire perchè essi si muovono Partiamo da una domanda fondamentale: qual
Fisica Generale I (primo e secondo modulo) A.A , 2 settembre 2009
Fisica Generale I (primo e secondo modulo) A.A. 2008-2009, 2 settembre 2009 Esercizi di meccanica relativi al primo modulo del corso di Fisica Generale I, anche equivalente ai corsi di Fisica Generale
sfera omogenea di massa M e raggio R il momento d inerzia rispetto ad un asse passante per il suo centro di massa vale I = 2 5 MR2 ).
ESERCIZI 1) Un razzo viene lanciato verticalmente dalla Terra e sale con accelerazione a = 20 m/s 2. Dopo 100 s il combustibile si esaurisce e il razzo continua a salire fino ad un altezza massima h. a)
Formulario Elettromagnetismo
Formulario Elettromagnetismo. Elettrostatica Legge di Coulomb: F = q q 2 u 4 0 r 2 Forza elettrostatica tra due cariche puntiformi; ε 0 = costante dielettrica del vuoto; q = cariche (in C); r = distanza
Esercizio (tratto dal problema 7.36 del Mazzoldi 2)
Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante
Problemi di dinamica del punto materiale
Problemi di dinamica del punto materiale 1. Un corpo di massa M = 200 kg viene lanciato con velocità v 0 = 36 km/ora su un piano inclinato di un angolo θ = 30 o rispetto all orizzontale. Nel salire, il
Modellistica dei Sistemi Meccanici
1 Prof. Carlo Cosentino Fondamenti di Automatica, A.A. 016/17 Corso di Fondamenti di Automatica A.A. 016/17 odellistica dei Sistemi eccanici Prof. Carlo Cosentino Dipartimento di edicina Sperimentale e
Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 2013
Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 013 Problema 1 Un cubo di legno di densità ρ = 800 kg/m 3 e lato a = 50 cm è inizialmente in quiete, appoggiato su un piano orizzontale.
Fisica 1 Anno Accademico 2011/2012
Matteo Luca Ruggiero DISAT@Politecnico di Torino Anno Accademico 2011/2012 (26 Marzo - 30 Marzo 2012) 1 ESERCIZI SVOLTI AD ESERCITAZIONE Sintesi Abbiamo studiato da vicino alcuni esempi di forza: partendo
ESERCIZIO 1 (Punti 9)
UNIVERSITA DI PISA - ANNO ACCADEMICO 007-8 CORSO DI LAUREA IN ING. ELETTRICA (N.O.) CORSO DI MECCANICA E TECNICA DELLE COSTRUZIONI MECCANICHE VERIFICA INTERMEDIA DEL 15-06-009 ESERCIZIO 1 (Punti 9) Data
INTERPRETAZIONE CINEMATICA DELLA DERIVATA
INTERPRETAZIONE CINEMATICA DELLA DERIVATA Consideriamo un punto mobile sopra una qualsiasi linea Fissiamo su tale linea un punto O, come origine degli archi, e un verso di percorrenza come verso positivo;
Traslazioni. Debora Botturi ALTAIR. Debora Botturi. Laboratorio di Sistemi e Segnali
Traslazioni ALTAIR http://metropolis.sci.univr.it Argomenti Velocitá ed accelerazione di una massa che trasla Esempio: massa che trasla con condizioni iniziali date Argomenti Argomenti Velocitá ed accelerazione
Sistemi vibranti ad 1 gdl
Università degli Studi di Bergamo Dipartimento di Ingegneria Sistemi vibranti ad 1 gdl - vibrazioni forzate - rev. 1. Le vibrazioni forzate di un sistema ad 1 gdl sono descritte dall equazione: mẍ + cẋ
Le macchine in corrente continua sono composte da una parte fissa (statore o induttore) e da una parte rotante (rotore o indotto).
Il motore in c.c. è stato il motore elettrico maggiormente impiegato negli azionamenti a velocità variabile; ciò è dovuto sia alla maggiore semplicità costruttiva dei convertitori con uscita in corrente
ESERCIZI PER L ATTIVITA DI RECUPERO CLASSE III FISICA
ESERCIZI PER L ATTIVITA DI RECUPERO CLASSE III FISICA 1) Descrivi, per quanto possibile, il moto rappresentato in ciascuno dei seguenti grafici: s a v t t t S(m) 2) Il moto di un punto è rappresentato
4. Su di una piattaforma rotante a 75 giri/minuto è posta una pallina a una distanza dal centro di 40 cm.
1. Una slitta, che parte da ferma e si muove con accelerazione costante, percorre una discesa di 60,0 m in 4,97 s. Con che velocità arriva alla fine della discesa? 2. Un punto materiale si sta muovendo
Giovanna Grossi L ATTENUAZIONE DEL COLPO D ARIETE
Giovanna Grossi L ATTENUAZIONE DEL COLPO D ARIETE INQUADRAMENTO V. Milano, Acquedotti, 1996 Moto vario di una corrente in pressione provocato da Q Corrente lineare (h=z+p/) H=z+p/+V 2 /(2g) Potenza della
DINAMICA DI SISTEMI AEROSPAZIALI
DINAMICA DI SISTEMI AEROSPAZIALI Tema d esame 18-09 - Esercizio 1. Un disco di raggio R, massa m e momento d inerzia baricentrico J, posto in un piano verticale, rotola senza strisciare su una guida circolare
Motore in Corrente Continua
Motore in Corrente Continua Motore in corrente continua Schema elettrico Modello MotoreCarico (medio) (piccolo) automatica ROMA TRE Stefano Panzieri Motore a corrente continua automatica ROMA TRE Stefano
Fondamenti di Controlli Automatici
Cognome: Nome: N. Matr.: Fondamenti di Controlli Automatici Ingegneria Meccanica Compito del 11 settembre 215 - Quiz Per ciascuno dei seguenti quesiti, segnare con una crocetta le risposte che si ritengono
Fisica Generale II (prima parte)
Corso di Laurea in Ing. Medica Fisica Generale II (prima parte) Cognome Nome n. matricola Voto 4.2.2011 Esercizio n.1 Determinare il campo elettrico in modulo direzione e verso generato nel punto O dalle
Unità didattica 2. Seconda unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia
Unità didattica 2 Dinamica Leggi di Newton.. 2 Le forze 3 Composizione delle forze 4 Esempio di forza applicata...5 Esempio: il piano inclinato.. 6 Il moto del pendolo.. 7 La forza gravitazionale 9 Lavoro
FISICA (modulo 1) PROVA SCRITTA 23/06/2014
FISICA (modulo 1) PROVA SCRITTA 23/06/2014 ESERCIZI E1. Un corpo puntiforme di massa m = 2 Kg si muove su un percorso che ha la forma di un quarto di circonferenza di raggio R = 50 cm ed è disposta su
Invert. a PWM. abc. Figura 1: Schema azionamento
ESERCIZIO Si consideri il controllo di coppia di figura che fa uso di un azionamento a corrente alternata con un motore sincrono a magneti permanenti con rotore isotropo avente i seguenti dati di targa:
La fisica di Feynmann Meccanica
La fisica di Feynmann Meccanica 1.1 CINEMATICA Moto di un punto Posizione r = ( x, y, z ) = x i + y j + z k Velocità v = dr/dt v = vx 2 + vy 2 + vz 2 Accelerazione a = d 2 r/dt 2 Moto rettilineo Spazio
Formulario per Fisica con Esercitazioni (LT Chimica Industriale - Bologna)
Formulario per Fisica con Esercitazioni (LT Chimica Industriale - Bologna) 7 giugno 2013 1 Errori di misura Errore sulle misure dirette: Errore massimo (il risultato della misura non fluttua): 1 oppure
N. Nervegna - 6/6/2000 INDICE
INDICE INDICE...1 EQUILIBRAMENTO ASSIALE DI CASSETTI E OTTURATORI DI VALVOLE OLEODINAMICHE...12 1. Riflessioni sulle forze di flusso...12 1.1 Applicazioni...13 1.2 Analisi della dipendenza delle forze
UNIVERSITA DEGLI STUDI DI GENOVA SCUOLA POLITECNICA FISICA GENERALE I
FISICA GENERALE I - Sede di Spezia Prova A del 15/02/2016 ME 1 Un pezzetto di plastilina di massa m=100 g cade partendo da fermo da un altezza h= 5.0 m su una lastrina orizzontale di massa M=120 g attaccata
