FUNZIONI DI TRASFERIMENTO
|
|
|
- Clementina Porta
- 8 anni fa
- Visualizzazioni
Transcript
1 FUNZIONI DI TRASFERIMENTO
2 Funzioni Di Traferimento La difficoltà maggiore nel trattare i modelli matematici di itemi dinamici lineari è dovuta al fatto che le equazioni delle leggi fiiche che decrivono la dinamica del itema dipendono non olo dalle variabili di ingreo u(t) ed ucita y(t) ma anche dalle loro derivate temporali Eempio di modello dinamico di un itema lineare d y ( t ) ( ) ( ) ( ) dy t d u t du t a a a y( t) b b b u( t) CONVIENE PASSARE NEL DOMINIO DELLE TRASFORMATE DI LAPLACE f () t F
3 La traformata di Laplace Si conideri una funzione del tempo f(t) nulla per t<. La traformata di Laplace di f(t) è definita come: t F f t f t e Se tale integrale eite (converge) per = +jw, allora eite anche per tutti i valori di con Re()>.. Il valore Minimo di è detta acia di convergenza In generale il primo etremo dell integrale deve intenderi pari a - nel eno che eventuali impuli applicati a t= devono eere coniderati nell integrazione. Im Regione di eitenza della LT Re
4 f t F Laplace Traformata della Derivata Prima df t F f ( ) Laplace Traformata della Derivata econda d f F( ) f ( ) f ( )
5 FDT di Derivatore ed Integratore f t df t F F f t F df t F f t F f t F f t F
6 u( t) ( t) u( t) t ( t) u t t t ( ) ( )
7 Eempio d y ( t ) ( ) ( ) ( ) dy t d u t du t a a a y( t) b b b u( t) y( t) Y( ) u( t) U( ) dyt Y y( ) Facendo l ipotei c.i. nulle i ha: a Y ( ) a Y ( ) a Y ( ) b U ( ) b U ( ) b U ( ) a a a Y( ) ( b b b ) U ( )
8 a a a Y( ) ( b b b ) U ( ) b b b Y ( ) U ( ) a a a FUNZIONE DI TRASFERIMENTO TRA INGRESSO E USCITA W () a a b b b a Y( ) W) ( U( )
9 Funzione di traferimento e rappreentazione a blocchi Nel cao i conideri l evoluzione forzata ( quando i lavora con la L.T. i uppongono tacitamente nulle le condizioni iniziali), il comportamento ingreoucita è decritto in modo completo dalla F.D.T. X() Y () W() W () a a b b b a Quindi una FDT è un rapporto tra due polinomi in S W ( ) N ( ) D( )
10 Riaumendo Per trattare più emplicemente le equazioni DIFFERENZIALI che decrivono i itemi dinamici è molto utile fare riferimento alla Traformate di Laplace Bata fare la emplice otituzione: x( t) X ( ) dx() t X ( ) x( ) d x() t X ( ) x( ) x( )
11 ESEMPIO DI CALCOLO DI F.D.T. PER SISTEMI LINEARI
12 Regolazione automatica della velocità di una vettura (moto rettilineo) Come è fatto il modello matematico del itema? Si coniderano le leggi fiiche che decrivono il itema f inerzia Fi m a() t f mozatore f diturbo F Equilibrio delle forze direzione x f f f f eterna inerzia attrito diturbo
13 f f f f eterna inerzia attrito diturbo d x() t f m a() t m inerzia dx() t f c v() t c attrito d x( t) dx( t) f m c f et dit
14 Nel Problema in Studio Nel cao di condizioni iniziali nulle: x( t) X ( ) v( t) X ( ) V ( ) X ( ) a( t) X ( ) X ( ) V ( ) Facendo uo di uno chema a blocchi V() X() A () V() X()
15 Calcolo della LT d x( t) dx( t) f m c f et dit F( ) m X ( ) c X ( ) F( ) dit m X ( ) c X ( ) F( ) F( ) dit X ( ) m c F( ) F( ) dit
16 X ( ) m c F( ) F( ) dit X F( ) F( ) () dit m X ( ) F( ) F( ) m c m c dit c La relazione tra il egnale di Ingreo F() ed il egnale di ucita X() i chiama Funzione di Traferimento tra ingreo ed ucita. La relazione tra il egnale di Ingreo F di () ed il egnale di ucita X() i chiama Funzione di Traferimento tra diturbo ed ucita.
17 X ( ) F( ) F( ) m c m c dit W() W d () m c m c m Fdi c () F () m c _ X()
18 Come riponde il itema? F () m c V() X ( ) F( ) m c X() Parametri di imulazione m= c= Forza di Ingreo X(t) Velocità V(t) Poizione X(t)
19 Come riponde il itema e cambia il coefficiente di attrito? m= c=4.5 Forza di Ingreo F(t) c= c=4 Velocità V(t) Spotamento X(t)
20 Modello di riempimento del Serbatoio qt () A ht () h(t)= livello liquido nel erbatoio di ezione cotante A q(t)=portata volumetrica liquido in ingreo R q () u t q u (t)= Portata volumetrica liquido in ucita attravero una reitenza idraulica R tale che: q ( ) ( ) u t h t R Equazione di bilanciamento delle mae nel erbatoio Variazione Volume Serbatoio = Variazione Volume ingreo Variazione volume in ucita
21 qt () A h() t ht () q ( ) ( ) u t h t R q () u t Equazione di bilanciamento volumi V V V in out V Ah h A h V T in R La Velocità di variazione di volume arà (portata volumetria) A h V h T in T T R T
22 h V h T A in T T R T Per valori di T molto piccoli A dh q() t h() t R Paando alle LT: h( t) H( ) H() A H ( ) Q( ) R H ( ) A Q( ) R ( ) H A / ( R Q ) W() A / R
23 RISPOSTA DEL SERBATOIO AD INGRESSO A GRADINO Q () H () A / R Portata Volumetrica in ingreo m 3 /.8.6 Parametri di imulazione A= m q(t) = m 3 / R=, 4 /m Livello liqudo nel erbatoio [m] R= R=
24 RISPOSTA DEL SERBATOIO AD INGRESSO A RETTANGOLO Q () H () A / R Portata Volumetrica in ingreo m 3 / Parametri di imulazione A= m q(t) = m 3 / R=, 4 /m Livello liqudo nel erbatoio [m].4 R=.3 R=
25 t v ( t) Ri( t) i( t) i C C i( ) vi ( ) RC Circuito RC erie legge di Kirchoff alla maglia v ( t) v ( t) v ( t) v ( t) Ri( t) R i R c vc( ) vi( ) RC( / RC) t vc ( t) i( t) C v ( ) Ri( ) i( ) i C i( ) vi ( ) vc () C RC
26 C K feterna finerzia fmolla fmozatore Ingreo =forza applicata= F(t) x Sitema Meccanico M d x( t) dx( t) F( t) M Kx( t) C F Ucita = potamento maa=x(t) F( ) M x( ) Kx( ) C x( ) x( ) F( ) M CK Equilibrio delle forze direzione x f inerzia f mozatore f molla F( t) Mx( t) Kx( t) Cx( t) M F
27 Amplitude Ripota del itema ad un gradino della forza in ingreo al variare del coefficiente di morzamento vicoo.8 Step Repone M C.;;3 K Time (ec)
Trasformata di Laplace ESEMPI DI MODELLIZZAZIONE
Traformata di Laplace ESEMPI DI MODELLIZZAZIONE Introduzione La traformata di Laplace i utilizza nel momento in cui è tata individuata la funzione di traferimento La F.d.T è una equazione differenziale
3. Catene di Misura e Funzioni di Trasferimento
3.. Generalità 3. Catene di Miura e Funzioni di Traferimento 3.. Generalità Il egnale che rappreenta la grandezza da miurare viene trattato in modo da poter eprimere quet ultima con uno o più valori numerici
Modellistica dinamica di sistemi fisici
.. MODELLISTICA - Modellitica dinamica. Modellitica dinamica di itemi fiici Nella realtà fiica eitono vari ambiti energetici, per eempio: meccanico (tralazionale e rotazionale) elettrico-magnetico idraulico
Esempi di modelli fisici
0.0..2 Esempi di modelli fisici ) Dinamica del rotore di un motore elettrico. Si consideri un elemento meccanico con inerzia J, coefficiente di attrito lineare che ruota alla velocità angolare ω al quale
Capitolo. Il comportamento dei sistemi di controllo in regime permanente. 6.1 Classificazione dei sistemi di controllo. 6.2 Errore statico: generalità
Capitolo 6 Il comportamento dei itemi di controllo in regime permanente 6. Claificazione dei itemi di controllo 6. Errore tatico: generalità 6. Calcolo dell errore a regime 6.4 Eercizi - Errori a regime
Slide del corso di. Controllo digitale
Slide del coro di Controllo digitale Coro di Laurea in Ingegneria Informatica e dell Informazione Univerità di Siena, Dip. Ing. dell Informazione e Sc. Matematiche Parte III Sitemi a dati campionati Gianni
Semplificazioni di schemi a blocchi
Semplificazioni di chemi a blocchi 4. Blocchi in cacata 4. Blocchi in parallelo 4.3 Blocchi in catena chiua (reazione negativa) 4.4 Blocchi in catena chiua (reazione poitiva) 4.5 Spotamento di blocchi
Introduzione a Matlab/Simulink
Introduzione a Matlab/Simulink Robotica Indutriale Prof. P. Rocco a.a.2003/2004 Ing. M. Gritti e Ing. L. Bacetta Introduzione a Matlab Contenuti Preentazione Control Sytem Toolbox Introduzione a Simulink
Modellazione e Analisi di Sistemi Meccanici
Modellazione e Analii di Sitemi Meccanici Modellazione e Analii di Sitemi Meccanici Davide Giglio Maa in movimento Si conideri il itema rappreentato in figura. Il itema conite in una maa che può correre
Le lettere x, y, z rappresentano i segnali nei vari rami.
Regole per l elaborazione di schemi a blocchi Oltre alle tre fondamentali precedenti regole (cascata, parallelo, retroazione), ne esiste una serie ulteriore che consente di semplificare i sistemi complessi,
ESERCIZI SVOLTI di ANALISI DEI SISTEMI
ESERCIZI SVOLTI di ANALISI DEI SISTEMI Davide Giglio DIST - Univerità di Genova Via Opera Pia, 3 645 - Genova, Italy Tel: +39 353748 Fax: +39 35354 [email protected] Queta raccolta di eercizi volti
SISTEMI LINEARI A COEFFICIENTE COSTANTE
SISTEMI LINEARI A COEFFICIENTE COSTANTE Per studiare la velocità, la precisione e la stabilità di un sistema bisogna individuare il modello matematico del sistema Abbiamo visto che un sistema di controllo
Ing. Mariagrazia Dotoli Controlli Automatici NO (9 CFU) Antitrasformata di Laplace PROCEDIMENTI DI ANTITRASFORMAZIONE
PROCEDIMENTI DI ANTITRASFORMAZIONE L'operazione di paaggio invero dal dominio della frequenza complea al dominio del tempo F() f(t) è detta antitraformata o traformazione invera di Laplace. Data una funzione
02. Modelli Matematici: Derivazione
Controlli Automatici 02. Modelli Matematici: Derivazione Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it
Meccanica Applicata alle Macchine Appello del 12/01/2012
Meccanica Applicata alle Macchine Appello del 12/01/2012 1. Eeguire l analii tatica del meccanimo in figura 2 (cala 1:1). Si calcoli l azione reitente ul membro 5 quando F m =1N. 2. In figura 1 è rappreentato
F = 150 N F 1 =? = 3,1 s. 3,2
ESERCIZI SVOLTI : Principi di Newton Lavoro Energia Prof.. Marletta ITC Zanon - Udine ESERCIZIO (): Una caa di 30 kg viene tirata con una corda che forma un angolo di 50 col pavimento u una uperficie licia.
Modelli di sistemi elementari. (Fondamenti di Automatica G. Ferrari Trecate)
Modelli di sistemi elementari (Fondamenti di Automatica G. Ferrari Trecate) Circuiti elettrici Resistore R i resistenza corrente v tensione v = Ri( Induttore L i induttanza corrente v tensione L i! = v(
Controllo di Azionamenti Elettrici. Lezione n 13
Controllo di Azionamenti Elettrici Lezione n 1 Coro di Laurea in Ingegneria dell Automazione Facoltà di Ingegneria Univerità degli Studi di Palermo CTROLLO DIRETTO DI COPPIA DI AZIAMENTI C MOTORE IN CORRENTE
Esercitazione 16 Novembre 2012 Circuiti dinamici del secondo ordine. t come riportato in figura.
Eercitazione Noembre ircuiti dinamici del econdo ordine ircuito L- erie Per quanto riguarda queto circuito, l eercizio egue la traccia della oluzione del compito d eame numero, reperibile in rete al olito
Fondamenti di Automatica
Fondamenti di Automatica Introduzione e modellistica dei sistemi Introduzione allo studio dei sistemi Modellistica dei sistemi dinamici elettrici Modellistica dei sistemi dinamici meccanici Modellistica
Controllore Processo. Le principali componenti del sistema sono: il rivelatore di errore, il controllore che ha il compito di trasformare il segnale
CONTROLLORI DI TIO ID rincipi di funzionamento Il termine controllo definice l azione volta per portare e mantenere ad un valore prefiato un parametro fiico di un impianto o di un proceo (ad eempio, la
01. Modelli di Sistemi
Controlli Automatici 01. Modelli di Sistemi Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it
Il motore a corrente continua
Il motore a corrente continua 15 marzo 2015 Ing. [email protected] Università degli Studi Roma TRE Agenda Il motore a corrente continua 2 Il motore elettrico a corrente continua è un componente
LAVORO ED ENERGIA. 1J = 1N 1m
ppunti di fiica LVORO ED ENERGI LVORO Nel linguaggio cientifico il termine lavoro ha un ignificato ben precio e talvolta divero da quello che queto termine aume nel linguaggio quotidiano. In fiica il concetto
d y d u + u y des C(s) F(s) Esercizio 1 Si consideri lo schema di controllo riportato in figura:
Eercizio Si conideri lo chema di controllo riportato in figura: y de e C() d u u F() d y y Applicando le regole di algebra dei blocchi, calcolare le eguenti funzioni di traferimento: y() a) W y,dy() =
ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1
Alcuni esercizi risolti su: - calcolo dell equilibrio di un sistema lineare e valutazione delle proprietà di stabilità dell equilibrio attraverso linearizzazione - calcolo del movimento dello stato e dell
Controllo di Azionamenti Elettrici. Lezione n 3. Caratteristiche e predisposizione dei regolatori PID
Controllo di Azionamenti Elettrici Lezione n 3 Coro di Laurea in Ingegneria dell Automazione Facoltà di Ingegneria Univerità degli Studi di alermo Caratteritiche e predipoizione dei regolatori ID 1 Introduzione
CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale TRASFORMATE DI LAPLACE
CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale TRASFORMATE DI LAPLACE Ing. Luigi Biagiotti Tel. 051 2093034 / 051 2093068 e-mail: [email protected] http://www-lar.deis.unibo.it/~lbiagiotti
Definizione delle specifiche per un sistema di controllo a retroazione unitaria
Definizione delle pecifiche per un itema di controllo a retroazione unitaria Obiettivi del controllo Il itema di controllo deve eere progettato in modo da garantire un buon ineguimento dei egnali di riferimento
PIANO DI LAVORO DEI DOCENTI
Pag. 1 di 5 Docente: Materia insegnamento: SISTEMI ELETTRONICI AUTOMATICI Dipartimento: ELETTRONICA Classe Anno scolastico: 1 Livello di partenza (test di ingresso, livelli rilevati) Per il modulo di automazione
Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile
Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,
Applicazioni delle leggi della meccanica: moto armnico
Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di
ERRORE STATICO. G (s) H(s) Y(s) E(s) X (s) YRET(s)
Preciione a regime: errore tatico ERRORE STATICO Alimentazione di potenza E() YRET() G() Y() H() Per errore tatico i intende lo cotamento, a regime, della variabile controllata Y() dal valore deiderato.
EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6
EQUAZIONI DIFFERENZIALI.. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x log t (d) x = e t x log x (e) y = y 5y+6 (f) y = ty +t t +y (g) y = y (h) xy = y (i) y y y = 0 (j) x = x (k)
Circuito Simbolico. Trasformazione dei componenti
Circuito Simbolico Principio di bae E poibile applicare a tutte le leggi matematiche che regolano un circuito la traformata di Laplace, in modo da ottenere un nuovo circuito con delle proprietà differenti.
Modellistica di sistemi elettromeccanici
Modellistica di sistemi elettromeccanici Legge di Lorentz: una carica elettrica q che si muove con velocità v(t) relativamente ad un campo magnetico di induzione B(t) è soggetta ad una forza v(t) q α B(t)
2.5 Stabilità dei sistemi dinamici 20. - funzioni di trasferimento, nella variabile di Laplace s, razionali fratte del tipo:
.5 Stabilità dei sistemi dinamici 9 Risulta: 3 ( s(s + 4).5 Stabilità dei sistemi dinamici Si è visto come un sistema fisico può essere descritto tramite equazioni differenziali o attraverso una funzione
Lezione 12. Regolatori PID
Lezione 1 Regolatori PD Legge di controllo PD Conideriamo un regolatore che eercita un azione di controllo dipendente dall errore attravero la eguente legge: t ut = K et K e d K de t P + τ τ+ D. dt La
Modellazione e Analisi di Sistemi Idraulici
Modellazione e Analii di Sitemi Idraulici Modellazione e Analii di Sitemi Idraulici Davide Giglio La ingola vaca Si conideri il itema rappreentato in figura. Il itema conite in una vaca contenente acqua.
SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE
CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/controlliautomatici.html SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE Ing. e-mail: [email protected]
Risposta a regime (per ingresso costante e per ingresso sinusoidale)
Risposta a regime (per ingresso costante e per ingresso sinusoidale) Esercizio 1 (es. 1 del Tema d esame del 18-9-00) s + 3) 10 ( s + 1)( s + 4s ) della risposta all ingresso u ( a gradino unitario. Non
Sintesi tramite il luogo delle radici
Sintei tramite il luogo delle radici Può eere utilizzata anche per progettare itemi di controllo per itemi intabili Le pecifiche devono eere ricondotte a opportuni limiti u %, ta, t di W(), oltre quelle
Esercizi per il corso di Fondamenti di Automatica I
Esercizi per il corso di Fondamenti di Automatica I Ing. Elettronica N.O. Docente: Dott. Ing. Luca De Cicco 2 Febbraio 2009 Exercise. Si determini la trasformata di Laplace dei segnali: x (t) = cos(ωt
Stabilità e risposte di sistemi elementari
Parte 4 Aggiornamento: Settembre 2010 Parte 4, 1 Stabilità e risposte di sistemi elementari Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: [email protected] URL: www-lar.deis.unibo.it/~lmarconi
Esercizi sul Moto Circolare Uniforme
Eercizi ul Moto Circolare Uniforme 1.Un oroloio ha tre lancette: quella delle ore luna 1 cm, quella dei minuti luna 1.4 cm e quella dei econdi luna 1.6 cm. Conidera il punto etremo di oni lancetta. Calcola
Derivata materiale (Lagrangiana) e locale (Euleriana)
ispense di Meccanica dei Fluidi 0 0 det 0 = [ (0 ) + ( ( ) ) + (0 0 ) ] = 0. Pertanto, v e µ sono indipendenti tra loro e costituiscono una nuova base. Con essi è possibile descrivere altre grandezze,
Oggetto del Corso. Sistema di controllo. Fondamenti di Automatica
Parte 1, 1 Parte 1, 2 ESAMI Solo prova scritta Prove parziali (facoltative ma consigliate ) Iscrizione elettronica (http://studenti.units.it) CORSI A MONTE Analisi I e II Geometria DEEI-Università di Trieste
I.T.I.S. TRASFORMATA DI LAPLACE DIAGRAMMI DI BODE
I.T.I.S. APPUNTI DI ELETTRONICA TRASFORMATA DI LAPLACE E DIAGRAMMI DI BODE PREMESSA Per lo studio dei sistemi di controllo si utilizzano modelli matematici dinamici lineari. L analisi o il progetto di
Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza p. 2
Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013
CAPITOLO 8. SINTONIZZAZIONE DI CONTROLLORI PID 3 8. Struttura di un PID Il regolatore PID e un itema dinamico ce elabora il egnale di ingreo errore co
Capitolo 8 Sintonizzazione di Controllori PID Lo cema del controllo in retroazione di gura 8. e comunemente uato nelle applicazioni indutriali della teoria del controllo automatico. L'obiettivo dello cema
Stato limite ultimo di sezioni in c.a. soggette. SLU per sezioni rettangolari in c.a. con. determinazione del campo di rottura
Univerità degli Studi di Roma Tre Coro di Progetto di trutture - A/A 2008-0909 Stato limite ultimo di ezioni in c.a. oggette a preoleione SLU per ezioni rettangolari in c.a. con doppia armatura determinazione
La trasformata di Fourier in Ottica
Edoardo Milotti 5/11/2007 La traformata di Fourier in Ottica Queta nota contiene una breviima introduzione alle traformate di Fourier in Ottica 1. Il principio di Huygen Il principio di Huygen afferma
Con riferimento ad uno schema di trave semplicemente appoggiata di lunghezza L = 6 m il momento flettente massimo in mezzeria è pari a:
Eempio Verifica dell apertura delle feure Si conidera la ezione rettangolare caratterizzata dalle eguenti proprietà: - bae b = 00 mm, - altezza totale h = 00 mm, - copriferro c =0 mm, - altezza utile d
Programma di fisica. Classe 1^ sez. F A. S. 2015/2016. Docente: prof. ssa Laganà Filomena Donatella
Programma di fisica. Classe 1^ sez. F A. S. 2015/2016 Docente: prof. ssa Laganà Filomena Donatella MODULO 1: LE GRANDEZZE FISICHE. Notazione scientifica dei numeri, approssimazione, ordine di grandezza.
Esercitazioni di Meccanica Razionale
Esercitazioni di Meccanica Razionale a.a. 2002/2003 Esempi di forze conservative Maria Grazia Naso [email protected] Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica
CONTROLLI AUTOMATICI Ingegneria Gestionale MODELLI DI SISTEMI
CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm MODELLI DI SISTEMI Ing. Federica Grossi Tel. 059 2056333 e-mail: [email protected]
Esercizi per il corso di Fondamenti di Automatica I
Esercizi per il corso di Fondamenti di Automatica I Ing. Elettronica N.O. Docente: Dott. Ing. Luca De Cicco 2 novembre 2009 Parte I Exercise. Si determini la trasformata di Laplace dei segnali: x (t) =
ANTITRASFORMATA DI LAPLACE MODI DI UN SISTEMA
CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANTITRASFORMATA DI LAPLACE MODI DI UN SISTEMA Ing. Federica Grossi Tel.
Controlli Automatici e Teoria dei Sistemi Esempi di sistemi dinamici
Controlli Automatici e Teoria dei Sistemi Esempi di sistemi dinamici Prof. Roberto Guidorzi Dipartimento di Elettronica, Informatica e Sistemistica Università di Bologna Viale del Risorgimento 2, 40136
Introduzione alla Meccanica: Cinematica
Introduzione alla Meccanica: Cinematica La Cinematica si occupa della descrizione geometrica del moto, senza riferimento alle sue cause. E invece compito della Dinamica mettere in relazione il moto con
2 I METODI DI ANALISI DEI SISTEMI DI CONTROLLO AD ANELLO CHIUSO LINEARI 12
COSO DI SISTEMI Sommario 1 I SISTEMI DI CONTOLLO...4 1.1 Introduzione...4 1.1.1 Sitemi di controllo ad anello aperto...5 1.1.2 Sitemi di controllo a previione...7 1.1.3 Sitemi di controllo ad anello chiuo
RICHIAMI MATEMATICI. x( t)
0.0. 0.1 1 RICHIAMI MATEMATICI Funzioni reali del tempo: (t) : t (t) (t) ( t) Funzioni reali dell ingresso: y() t t y( ) y() : y() Numeri complessi. Un numero complesso è una coppia ordinata di numeri
CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica
CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica CONTROLLO DI SISTEMI ROBOTICI ANALISI DEI SISTEMI LTI Ing. Tel. 0522 522235 e-mail: [email protected] http://www.dismi.unimo.it/members/csecchi
Sistema dinamico a tempo continuo
Sistema dinamico a tempo continuo Un sistema è un modello matematico di un fenomeno fisico: esso comprende le cause e gli effetti relativi al fenomeno, nonché la relazione matematica che li lega. X INGRESSO
Fondamenti di Automatica. Unità 2 Calcolo del movimento di sistemi dinamici LTI
Fondamenti di Automatica Unità 2 Calcolo del movimento di sistemi dinamici LTI Calcolo del movimento di sistemi dinamici LTI Soluzione delle equazioni di stato per sistemi dinamici LTI a tempo continuo
Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari
Sistemi differenziali : esercizi svolti 1 Sistemi lineari Stabilità nei sistemi lineari 14 1 Sistemi differenziali : esercizi svolti 1 Sistemi lineari Gli esercizi contrassegnati con il simbolo * presentano
Complementi di Controllo Digitale
Complementi di Controllo Digitale Alberto Bemporad Dipartimento di Ingegneria dell Informazione Università degli Studi di Siena [email protected] http://www.dii.unisi.it/~bemporad Corso di Laurea in
TRASDUTTORI DI UMIDITA. II trasduttore di umidità (capacitivo)
lez. 3 TASDUTTOI DI UMIDITA I traduttori di umidità rilevano l'umidità relativa definita come il rapporto tra l'umidità aoluta(quantità di vapore acqueo (maa) contenuta in m 3 d aria) e l umidità di aturazione
Capitolo 12. Moto oscillatorio
Moto oscillatorio INTRODUZIONE Quando la forza che agisce su un corpo è proporzionale al suo spostamento dalla posizione di equilibrio ne risulta un particolare tipo di moto. Se la forza agisce sempre
Le ipotesi di base che si utilizzano sono le stesse quattro già viste con riferimento al caso della flessione semplice e cioè:
LEZIONI N 44 E 45 CALCOLO A ROTTURA DELLA SEZIONE PRESSOINFLESSA PROBLEMI DI VERIFICA La procedura di verifica dei pilatri di c.a., ottopoti a forzo normale e momento flettente, è baata ulla cotruzione
Costruzioni in zona sismica
Costruzioni in zona sismica Lezione 7 Sistemi a più gradi di libertà Il problema dinamico viene formulato con riferimento a strutture con un numero finito di gradi di libertà. Consideriamo le masse concentrate
A tal fine consideriamo un esempio come punto di partenza per le nostre considerazioni.
Moto Parabolico Sino ad ora abbiamo ito due tipi di moto: moto rettilineo uniforme moto uniformemente accelerato lo tudio che è tato condotto fino a queto punto ha preo in coniderazione un moto alla olta,
Controlli Automatici I
Ingegneria Elettrica Politecnico di Torino Luca Carlone Controlli Automatici I LEZIONE V Sommario LEZIONE V Proprietà strutturali Controllabilità e raggiungibilità Raggiungibilità nei sistemi lineari Forma
Paolo Rocco. Automatica
Paolo Rocco Dipene ad uo degli tudenti del Politecnico di Milano per i cori da cinque crediti didattici Automatica Ingegneria Aeropaziale E vietato l uo commerciale di queto materiale Avvertenza Queta
Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo
Parte 2, 1 Parte 2, 2 Elementi di Teoria dei Sistemi Definizione di sistema dinamico Parte 2, 3 Sistema dinamico a tempo continuo Cosa significa Dinamico? Parte 2, 4? e` univocamente determinata? Ingresso
a) Caso di rottura duttile con armatura compressa minore di quella tesa
LEZIONI N 39 E 40 FLESSIONE SEMPLICE: LA DOPPIA ARMATURA E LA SEZIONE A T LA VERIFICA DELLA SEZIONE INFLESSA CON DOPPIA ARMATURA a) Cao di rottura duttile con armatura comprea minore di quella tea Si può
MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO. Sistema lineare stazionario a tempo continuo in equazioni di stato. = Cx(t) + Du(t) x(0) = x 0
MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO Sistema lineare stazionario a tempo continuo in equazioni di stato ẋ(t) y(t) = Ax(t) + Bu(t) = Cx(t) + Du(t) x() = x Risposta completa (risposta libera e
3. Sistemi Lineari a Tempo Discreto
. Sistemi Lineari a Tempo Discreto .5 y(t), y(kt) 4 y(t), y(kt).5.5.5.5.5 4 5 4 5 Campionamento di un segnale continuo Fig. (a) Segnale discreto Fig. (b) Esprimono relazioni fra variabili campionate ad
Elettronica e Telecomunicazioni Classe Quinta. La trasformata di Laplace
Elettronica e Telecomunicazioni Classe Quinta La trasformata di Laplace ELETTRONICA E TELECOMUNICAZIONI CLASSE QUINTA A INFORMATICA INDICE Segnali canonici Trasformata di Laplace Teoremi sulla trasformata
rapporto tra ingresso e uscita all equilibrio.
Sistemi Dinamici: Induttore: Condensatore: Massa: Oscillatore meccanico: Pendolo: Serbatoio cilindrico: Serbatoio cilindrico con valvola d efflusso: Funzione di Trasferimento: Stabilità del sistema: (N.B.
Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo
Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione
Risposta al gradino di un sistema del primo ordine
0.0..4 Risposta al gradino di un sistema del primo ordine Diagramma Si consideri il seguente sistema lineare del primo ordine: G(s) = +τ s L unico parametro che caratterizza il sistema è la costante di
ELETTRONICA ANALOGICA INDUSTRIALE PARTE 4. Retroazione
Retroazione Eetto della retroazione ul guadagno Riduzione della ditorione Impedenze di ingreo e di ucita Reti di retroazione Ripota in requenza Eetto della retroazione ui poli Margini di guadagno e di
1. Il moto della sbarretta (OLIMPIADI della FISICA 1991)
1. Il moto della sbarretta (OLIMPIADI della FISICA 1991) Obiettivi Determinare la f.e.m. indotta agli estremi di un conduttore rettilineo in moto in un campo magnetico Applicare il secondo principio della
Brevi appunti di Fondamenti di Automatica 1. prof. Stefano Panzieri Dipartimento di Informatica e Automazione Universitá degli Studi ROMA TRE
Brevi appunti di Fondamenti di Automatica prof. Dipartimento di Informatica e Automazione Universitá degli Studi ROMA RE ROMA RE UNIVERSIÀ DEGLI SUDI 4 marzo 05 Rev. 0. INDICE Indice La rasfomata di Laplace.0.
Lezione 2. Campionamento e Aliasing. F. Previdi - Controlli Automatici - Lez. 2 1
Lezione 2. Campionamento e Aliaing F. Previdi - Controlli Automatici - Lez. 2 1 Schema della lezione 1. Introduzione 2. Il campionatore ideale 3. Traformata di un egnale campionato 4. Teorema del campionamento
Banda passante e sviluppo in serie di Fourier
CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/controlliautomatici.html Banda passante e sviluppo in serie di Fourier Ing. e-mail: [email protected]
