CONTROLLI AUTOMATICI Ingegneria Gestionale MODELLI DI SISTEMI
|
|
|
- Antonia Gigli
- 9 anni fa
- Visualizzazioni
Transcript
1 CONTROLLI AUTOMATICI Ingegneria Gestionale MODELLI DI SISTEMI Ing. Federica Grossi Tel
2 Sistemi e Modelli - Dal sistema ad un modello Sistema: insieme, isolato artificialmente dal contesto, costituito da più parti tra loro interagenti di cui si vuole indagare il comportamento Variabili di ingresso Sistema (dinamico) Variabili di uscita Variabili di ingresso: azioni compiute sul sistema da agenti esterni che ne influenzano il comportamento variabili di uscita: grandezze del sistema in esame che, per qualche ragione, sono di interesse Rapporto causa-effetto tra le variabili Modelli di Sistemi -- 2
3 Sistemi e Modelli - Dal sistema ad un modello Sistema statico/dinamico modello matematico dei sistemi statici equazioni algebriche (sistemi privi di memoria) l'uscita del sistema dipende solo dal valore assunto dall'ingresso in quell'istante es: relazione tra tensione e corrente in un resistore modello dei sistemi dinamici (a parametri concentrati) equazioni differenziali (sistemi con memoria) l'uscita del sistema non dipende solo dal valore assunto dall'ingresso in quell'istante, ma anche da quelli passati es: relazione tra tensione e corrente in un condensatore Variabili di stato: variabili che descrivono la situazione interna del sistema (determinata dalla storia passata) necessarie per determinare l uscita Modelli di Sistemi -- 3
4 Sistemi e Modelli - Dal sistema ad un modello Ingresso Stato Uscita Rappresentazione interna Rappresentazione esterna Descritti dal modello matematico Modelli di Sistemi -- 4
5 Sistemi e Modelli Rappresentazione di stato (interna) Ingresso Stato Uscita Evoluzione dello stato in funzione dell ingresso e dello stato: Equazione di stato Derivata dello stato all istante t Vettore di stato Vettore di ingresso Dipendenza dell uscita dall ingresso e dallo stato Vettore di uscita Dato x(t 0 ) (valore dello stato all istante iniziale) e dato u(t), t t 0, sotto certe proprietà di regolarità di f( ), allora l equazione di stato definisce l andamento di x(t) e y(t). Modelli di Sistemi -- 5
6 Sistemi e Modelli Rappresentazione di stato (interna) - esempio Circuito RC Dalla legge delle tensioni i(t) e sapendo che v i (t) v R v c (t) si ottiene Avendo posto u(t) = v i (t), x(t) = v C (t), y(t) = v R (t) Modelli di Sistemi -- 6
7 Sistemi e Modelli Rappresentazione ingresso-uscita (esterna) - esempio Circuito RC Dalla legge delle tensioni i(t) e sapendo che v i (t) v R v c (t) si ottiene ovvero (derivando rispetto a t) Avendo posto u(t) = v i (t), y(t) = v R (t) Modelli di Sistemi -- 7
8 Schemi a blocchi Un sistema viene rappresentato graficamente con un blocco, e le sue variabili mediante collegamenti con l'ambiente esterno o con altri sistemi. S S 1 S 2 Modelli di Sistemi -- 8
9 Schemi a blocchi Un sistema orientato è un sistema in cui le variabili sono suddivise in Variabili di ingresso (cause) Variabili di uscita (effetti) ingressi Non sempre la suddivisione tra ingressi ed uscite (cause ed effetti) è univoca u 1 (t) u 2 (t) S u 3 (t) y(t) uscita i a (t) R a L a c(t), (t) v a (t) i e (t) v e (t) L e Modelli di Sistemi -- 9
10 Schemi a blocchi I sistemi (sottosistemi) possono essere connessi tra loro mediante le variabili di ingresso/uscita. Le variabili sono indicate con frecce, e in uno schema oltre ai blocchi che descrivono i sistemi vi possono essere nodi sommatori e punti di diramazione. u 1 (t) y 1 (t) u 2 (t) + + y(t) u(t) y 2 (t) - u 3 (t) y 3 (t) Modelli di Sistemi -- 10
11 Schemi a blocchi Connessione in cascata (serie): l uscita del primo costituisce l ingresso del secondo u(t) = u 1 (t) y y S 1 S 2 (t) = y(t) 1 (t) = u 2 (t) 2 Connessione in parallelo: stesso ingresso u(t) u 1 (t) u 2 (t) S 1 S 2 y 1 (t) y 2 (t) Modelli di Sistemi -- 11
12 Schemi a blocchi Connessione in retroazione: i sistemi sono collegati ad anello e si influenzano reciprocamente u 1 (t) y 1 (t) y 2 (t) S 1 S 2 u 2 (t) Modelli di Sistemi -- 12
13 Riduzione di schemi a blocchi Spesso i sistemi complessi vengono rappresentati con schemi a blocchi, i cui elementi hanno ciascuno un solo ingresso e una sola uscita. Blocchi elementari per la rappresentazione di sistemi puramente algebrici sono x y che rappresenta un elemento nonlineare, la cui caratteristica ingresso-uscita è tracciata schematicamente entro il blocco stesso x K y che rappresenta un elemento lineare, caratterizzato dalla costante di proporzionalità K che lega l'uscita all'ingresso y(t) = K x(t), specificata di regola entro il blocco stesso La seconda rappresentazione verrà estesa anche ai sistemi dinamici lineari stazionari, introducendo, al posto della costante di proporzionalità, la funzione di trasferimento, che comprende ogni informazione relativa al comportamento dinamico ingresso-uscita (a partire da una condizione iniziale di quiete). Modelli di Sistemi -- 13
14 Riduzione di schemi a blocchi - Regole Riduzione di blocchi in cascata: Riduzione di blocchi in parallelo: Modelli di Sistemi -- 14
15 Riduzione di schemi a blocchi - Regole Scambio di giunzioni sommanti Spostamento di un punto di prelievo di segnale a monte di un blocco: Modelli di Sistemi -- 15
16 Riduzione di schemi a blocchi - Regole Spostamento di un punto di prelievo a valle di un blocco: Spostamento di una giunzione sommante a monte di un blocco: Modelli di Sistemi -- 16
17 Riduzione di schemi a blocchi - Regole Spostamento di una giunzione sommante a valle di un blocco: Eliminazione di un anello: Modelli di Sistemi -- 17
18 Riduzione di schemi a blocchi Mediante queste otto regole fondamentali, si possono ridurre schemi a blocchi comunque complessi fino a giungere ad una forma minima, che consiste: Per i sistemi con un solo ingresso ed una sola uscita, in un solo blocco Per i sistemi con più ingressi e più uscite in un numero di blocchi pari al prodotto del n.o degli ingressi per il n.o delle uscite n b = n i n u Modelli di Sistemi -- 18
19 Sistemi e Modelli statici/dinamici modello matematico dei sistemi statici equazioni algebriche (sistemi privi di memoria) modello dei sistemi dinamici (a parametri concentrati) equazioni differenziali (sistemi con memoria) monovariabili/multivariabili (SISO MIMO) un ingresso-una uscita, più ingressi-più uscite lineari/nonlineari le variabili entrano linearmente/non linearmente invarianti/tempo varianti le loro caratteristiche sono costanti/variano nel tempo a parametri concentrati/distribuiti equazioni differenziali ordinarie/alle derivate parziali Modelli di Sistemi -- 19
20 Sistemi e Modelli Definizione: Un modello si dice causale quando l'uscita corrispondente ad una data sollecitazione si manifesta soltanto in istanti non anteriori a quello iniziale di applicazione della sollecitazione Un modello non causale si dice anticipativo. Un modello anticipativo non può corrispondere ad alcun sistema fisico non è immaginabile un sistema che reagisce ad una sollecitazione ancor prima che questa sia applicata! Il modello è non causale se consideriamo x come ingresso ed y come uscita (si pensi alla derivata come rapporto incrementale) occorrono sia il valore passato che quello futuro della variabile è causale se consideriamo y come ingresso ed x come uscita Non si può costruire un derivatore ideale Modelli non causali sono utilizzati per comodità di analisi e manipolazione Modelli di Sistemi -- 20
21 Modelli a parametri concentrati Le caratteristiche fisiche dei sistemi dinamici sono distribuite nel sistema fisico stesso: - massa - elasticità - resistenza -... Nella descrizione dei modelli dinamici, se possibile, è bene fare delle approssimazioni che permettono di concentrare in uno (o pochi) punti tali caratteristiche e quindi ottenere notevoli semplificazioni nelle loro espressioni matematiche. Si hanno i cosiddetti modelli a parametri concentrati. Nella pratica, anche se è chiaro che tutte le caratteristiche dei sistemi fisici sono distribuite, si cerca ove possibile di avere modelli a parametri concentrati. Modelli di Sistemi -- 21
22 Modelli a parametri concentrati I modelli a parametri concentrati sono espressi da equazioni differenziali ordinarie (tempo continuo) o equazioni alle differenze (tempo discreto), che sono funzioni solo del tempo: Se non è possibile considerare come concentrati alcuni dei parametri del modello, allora si deve ricorrere a equazioni alle differenze parziali. Infatti, la dinamica non dipende solo dal tempo ma anche, per esempio, dallo spazio: Modelli di Sistemi -- 22
23 x, y x, y Modelli a parametri costanti nel tempo Se le proprietà di un dato sistema sono indipendenti dal tempo (costanti), allora i relativi parametri sono costanti. I relativi modelli sono detti stazionari o invarianti. Per tali sistemi si ha la ripetibilità degli esperimenti: l'uscita che si ottiene applicando al sistema con un dato stato iniziale x 0 un ingresso al tempo t 0 è uguale (a parte una traslazione nel tempo) a quella che si ottiene (con lo stesso stato iniziale x 0 ) applicando lo stesso ingresso all'istante t Tempo (s) Tempo (s) Modelli di Sistemi -- 23
24 Modelli a parametri costanti nel tempo Da un punto di vista pratico, è raro che i parametri di un sistema non cambino nel tempo. D'altra parte, è sufficiente che essi non varino in modo apprezzabile in un arco temporale confrontabile alla durata dell'esperimento. Nei modelli stazionari, non ha importanza l'istante di inizio dell'osservazione, che viene quindi solitamente considerato uguale a zero: t 0 = 0 Modelli di Sistemi -- 24
25 Risposta da stato zero, con ingresso zero, completa In generale, l'uscita y(t) di un sistema dinamico per t t 0 dipende: dall'ingresso u( ) applicato in [t 0, t]; dallo stato iniziale x 0 che ha il sistema per t =t 0. Risposta da stato zero (o risposta forzata) Si dice risposta da stato zero o risposta forzata la risposta y ZS (t) di un sistema che è inizialmente in quiete (ingresso ed uscita nulli) e che viene sollecitato da un ingresso non nullo. Il sistema, senza l'applicazione dell'ingresso non nullo, rimarrebbe indefinitamente nella condizione di quiete. Modelli di Sistemi -- 25
26 Pos, Vel Risposta da stato zero, con ingresso zero, completa Risposta da stato zero f Risposta all`impulso (caso ideale) x(t) Tempo [sec] Palla inizialmente in quiete (v 0 = 0), sollecitata da una forza impulsiva (piano con attrito non nullo). Modelli di Sistemi -- 26
27 i(t) Risposta da stato zero, con ingresso zero, completa Risposta con ingresso zero (o risposta libera) Si dice risposta con ingresso zero o risposta libera la risposta y ZI (t) di un sistema che è sollecitato da un ingresso nullo. Se il sistema è inizialmente in quiete (ingresso ed uscita nulli), vi permane per t > t 0, altrimenti vi è una evoluzione dell'uscita Condensatore inizialmente carico (q(t 0 ) = q 0 0); la variabile di uscita è la corrente i(t) nel circuito Tempo 0.6 [sec] x 10-5 Modelli di Sistemi -- 27
28 Risposta da stato zero, con ingresso zero, completa Risposta completa Si dice risposta completa la risposta di un sistema che si trova inizialmente in condizioni non di quiete ed è sollecitato con ingresso non nullo. E in questo caso necessario conoscere sia l'ingresso applicato che lo stato iniziale in cui si trova il sistema. ESEMPIO: Data una massa m che nell'intervallo [t 0, t 1 ] cade in caduta libera, soggetta alla sola forza di gravità -g, non è possibile in t = t 1 calcolarne la posizione e/o la velocità se non si conoscono la posizione e la velocità iniziali. Modelli di Sistemi -- 28
29 Modelli lineari Una funzione f è lineare se gode delle seguenti proprietà: 1) Additività 2) Omogeneità Un modello dinamico è lineare se valgono le seguenti tre proprietà: 1) la risposta con ingresso zero è lineare rispetto allo stato iniziale; 2) la risposta da stato zero è lineare rispetto all'ingresso; 3) la risposta completa coincide con la somma della risposta con ingresso zero e della risposta da stato zero: Spesso, l'ipotesi di linearità di un sistema è una approssimazione che si applica considerando opportune limitazioni sugli ingressi e uscite del sistema stesso. In generale infatti i sistemi fisici NON sono lineari, e possono essere considerati tali solo entro opportuni intervalli di `funzionamento'. Modelli di Sistemi -- 29
30 Modelli lineari ESEMPIO: Si consideri la risposta completa di un sistema dinamico in cui x 0 = x(t 0 ) è lo stato iniziale. La risposta è somma della risposta con ingresso zero e da stato zero, però il sistema è non lineare poiché la risposta non è lineare né rispetto allo stato iniziale (x 02 ) né rispetto all'ingresso (u 2 ). Modelli di Sistemi -- 30
31 Modelli lineari ESEMPIO: Si consideri la risposta completa del sistema dinamico Il sistema è non lineare poiché la risposta non è lineare rispetto all'ingresso (u 2 ). ESEMPIO: Si consideri la risposta completa del sistema dinamico Il sistema è lineare poiché: la risposta è somma della risposta con ingresso zero e da stato zero; la risposta è lineare rispetto allo stato iniziale; la risposta è lineare rispetto all'ingresso. Modelli di Sistemi -- 31
32 Modelli lineari Proprietà di sovrapposizione degli effetti Per i sistemi lineari vale una proprietà molto importante: La sovrapposizione degli effetti. Linearità rispetto allo stato iniziale Questo caratteristica dei sistemi dinamici risulta evidente (ed utile) nello studio dei sistemi nello spazio degli stati. Viene qui citata solo per completezza, ma non verrà utilizzata nel seguito, in quanto si è maggiormente interessati ad una rappresentazione dei sistemi non basata sul concetto di stato. Modelli di Sistemi -- 32
33 Modelli lineari Proprietà di sovrapposizione degli effetti Linearità rispetto all'ingresso Sia dato un sistema inizialmente in quiete. Si applichino (singolarmente) i q ingressi u i (t), i=1,, q, t 0, ottenendo le corrispondenti risposte forzate y ZS,i (t): u(t) y(t) La linearità rispetto all'ingresso implica che se si applica al sistema l'ingresso allora si ottiene l'uscita Modelli di Sistemi -- 33
34 Modelli lineari Proprietà di sovrapposizione degli effetti Esempio: Additività delle risposte Proprietà di additività della risposta libera e della risposta forzata. Modelli di Sistemi -- 34
35 Linearizzazione Modelli di Sistemi -- 35
36 Linearizzazione Modelli di Sistemi -- 36
37 Linearizzazione Modelli di Sistemi -- 37
38 CONTROLLI AUTOMATICI Ingegneria Gestionale SISTEMI E MODELLI FINE Ing. Federica Grossi Tel [email protected]
01. Modelli di Sistemi
Controlli Automatici 01. Modelli di Sistemi Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it
SISTEMI E MODELLI. Ingresso Stato Uscita
CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm Sistemi e Modelli - Dal
CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo. SCHEMI A BLOCCHI
CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/controlliautomatici.html SCHEMI A BLOCCHI Ing. e-mail: [email protected] http://www.dii.unimore.it/~lbiagiotti
Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE I
Ingegneria Elettrica Politecnico di Torino Luca Carlone ControlliAutomaticiI LEZIONE I Sommario LEZIONE I Introduzione al concetto di sistema Notazione e tassonomia Rappresentazione in variabili di stato
Analisi dei Sistemi Esercitazione 1
Analisi dei Sistemi Esercitazione Soluzione 0 Ottobre 00 Esercizio. Sono dati i seguenti modelli matematici di sistemi dinamici. ÿ(t) + y(t) = 5 u(t)u(t). () t ÿ(t) + tẏ(t) + y(t) = 5sin(t)ü(t). () ẋ (t)
TEORIA DEI SISTEMI SISTEMI LINEARI
TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI SISTEMI LINEARI Ing. Cristian Secchi Tel.
Le lettere x, y, z rappresentano i segnali nei vari rami.
Regole per l elaborazione di schemi a blocchi Oltre alle tre fondamentali precedenti regole (cascata, parallelo, retroazione), ne esiste una serie ulteriore che consente di semplificare i sistemi complessi,
Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo
Parte 2, 1 Parte 2, 2 Elementi di Teoria dei Sistemi Definizione di sistema dinamico Parte 2, 3 Sistema dinamico a tempo continuo Cosa significa Dinamico? Parte 2, 4? e` univocamente determinata? Ingresso
CONTROLLI AUTOMATICI Ingegneria Gestionale ANALISI ARMONICA
CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Ing. Federica Grossi Tel. 059 2056333 e-mail: [email protected]
Fondamenti di Automatica
Fondamenti di Automatica Introduzione e modellistica dei sistemi Introduzione allo studio dei sistemi Modellistica dei sistemi dinamici elettrici Modellistica dei sistemi dinamici meccanici Modellistica
Funzione di trasferimento
Funzione ditrasferimento - 1 Corso di Laurea in Ingegneria Meccanica Funzione di trasferimento DEIS-Università di Bologna Tel. 51 2932 Email: [email protected] URL: www-lar.deis.unibo.it/~crossi Definizione
Teoria dei circuiti reazionati
Teoria dei circuiti reazionati Differenze tra lo schema di reazione ideale e il circuito con retroazione: Ogni blocco dello schema a blocchi ha una direzione e un trasferimento che non dipende dai blocchi
Elementi di Teoria dei Sistemi
Parte 2, 1 Elementi di Teoria dei Sistemi Parte 2, 2 Sistema dinamico a tempo continuo Ingresso Uscita Parte 2, 3 Cosa significa Dinamico?? e` univocamente determinata? Se la risposta e` no Sistema dinamico
Controlli Automatici I
Ingegneria Elettrica Politecnico di Torino Luca Carlone Controlli Automatici I LEZIONE V Sommario LEZIONE V Proprietà strutturali Controllabilità e raggiungibilità Raggiungibilità nei sistemi lineari Forma
Modellistica dei Sistemi Elettrici
1 Corso di Fondamenti di Automatica A.A. 2017/18 Modellistica dei Sistemi Elettrici Prof. Carlo Cosentino Dipartimento di Medicina Sperimentale e Clinica Università degli Studi Magna Graecia di Catanzaro
Modellistica dei Sistemi Elettrici
Prof. Carlo Cosentino Fondamenti di Automatica, A.A. 206/7 Corso di Fondamenti di Automatica A.A. 206/7 Modellistica dei Sistemi Elettrici Prof. Carlo Cosentino Dipartimento di Medicina Sperimentale e
ANTITRASFORMATA DI LAPLACE MODI DI UN SISTEMA
CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANTITRASFORMATA DI LAPLACE MODI DI UN SISTEMA Ing. Federica Grossi Tel.
Prof. Capuzzimati Mario - ITIS Magistri Cumacini - Como SISTEMI
Sistemi - Definizioni SISTEMI DEFINIZIONI SISTEMA: insieme di elementi, parti, che interagiscono coordinati per svolgere una deteminata funzione. COMPONENTI: parti di cui il sistema è costituito. PARAMETRI:
ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1
Alcuni esercizi risolti su: - calcolo dell equilibrio di un sistema lineare e valutazione delle proprietà di stabilità dell equilibrio attraverso linearizzazione - calcolo del movimento dello stato e dell
ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica
CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Analisi
RIDUZIONE DEI DIAGRAMMI A BLOCCHI
RIDUZIONE DEI DIARAMMI A LOCCHI Nei controlli automatici spesso il legame fra due variabili viene indicato con un blocco. Ad esempio nella figura seguente si vuole intendere che la variabile (t) è dipendente
Sistemi Dinamici. Corrado Santoro
ARSLAB - Autonomous and Robotic Systems Laboratory Dipartimento di Matematica e Informatica - Università di Catania, Italy [email protected] Programmazione Sistemi Robotici Definizione di Sistema Un
TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI
TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI Ing. Cristian
Dinamica delle Strutture
Corso di Laurea magistrale in Ingegneria Civile e per l Ambiente e il Territorio Dinamica delle Strutture Prof. Adolfo SANTINI Ing. Francesco NUCERA Prof. Adolfo Santini - Dinamica delle Strutture 1 Dinamica
LA RAPPRESENTAZIONE CON GLI SCHEMI A BLOCCHI
1 LA RAPPRESENTAZIONE CON GLI SCHEMI A BLOCCHI Un qualunque sistema può essere rappresentato graficamente mediante uno schema a blocchi. Lo schema a blocchi permette di evidenziare i vari componenti di
ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica. CONTROLLI AUTOMATICI Ingegneria Meccatronica
CONTROLLI AUTOMATICI Ingegneria Meccatronica http://www.automazione.ingre.unimore.it/pages/corsi/automazione%2industriale.htm ANALISI ARMONICA Analisi armonica di sistemi dinamici Analisi nel dominio del
Proprietà strutturali: Controllabilità e Osservabilità
CONTROLLI AUTOMATICI LS Ingegneria Informatica Proprietà strutturali: Controllabilità e Osservabilità Prof. Claudio Melchiorri DEIS-Università di Bologna Tel. 051 2093034 e-mail: [email protected]
SISTEMI ELEMENTARI. Prof. Laura Giarré https://giarre.wordpress.com/ca/ Sistemi Elementari CA Prof.
SISTEMI ELEMENTARI Prof. Laura Giarré [email protected] https://giarre.wordpress.com/ca/ Sistemi Elementari CA 2017 2018 Prof. Laura Giarré 1 Principi di modellistica Problema: determinare il modello
SOLUZIONE della Prova TIPO E per:
SOLUZIONE della Prova TIPO E per: Esame di FONDAMENTI DI AUTOMATICA (9 crediti): 6 dei 10 esercizi numerici (nell effettiva prova d esame verranno selezionati a priori dal docente) + domande a risposta
CONTROLLI AUTOMATICI Ingegneria Meccatronica
) CONTROLLI AUTOMATICI Ingegneria Meccatronica ANALISI ARMONICA Prof. Cesare Fantuzzi Ing. Cristian Secchi e-mail: [email protected], [email protected] http://www.automazione.ingre.unimore.it
Esercizi per il corso di Fondamenti di Automatica I
Esercizi per il corso di Fondamenti di Automatica I Ing. Elettronica N.O. Docente: Dott. Ing. Luca De Cicco 2 Febbraio 2009 Exercise. Si determini la trasformata di Laplace dei segnali: x (t) = cos(ωt
Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE
Esame di FONDAMENTI DI AUTOMATICA (9 CFU) Prova scritta 9 giugno 2017 SOLUZIONE ESERCIZIO 1. Si consideri un altoparlante ad attrazione magnetica per la riproduzione sonora, rappresentato dalla seguente
Esame scritto di Teoria dei Sistemi - Modena - 22 Giugno Domande
Esame scritto di Teoria dei Sistemi - Modena - Giugno 5 - Domande Per ciascuno dei seguenti test a risposta multipla segnare con una crocetta le affermazioni che si ritengono giuste. Alcuni test sono seguiti
Ingegneria e Tecnologie dei Sistemi di Controllo ANALISI ARMONICA
Ingegneria e Tecnologie dei Sistemi di Controllo ANALISI ARMONICA Luigi Biagiotti DEIS-Università di Bologna Tel. 5 29334 e-mail: [email protected] Analisi armonica di sistemi dinamici Analisi nel
TRASFORMATA DI LAPLACE
TRASFORMATA DI LAPLACE La Trasformata di Laplace è un operatore funzionale che stabilisce una corrispondenza biunivoca tra una funzione di variabile reale (tempo t), definita per t, e una funzione di variabile
08. Analisi armonica. Controlli Automatici
8. Analisi armonica Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Alessio Levratti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it http://www.arscontrol.org/teaching
