Rappresentazione dei segnali con sequenze di numeri e simboli
|
|
|
- Demetrio Natali
- 8 anni fa
- Visualizzazioni
Transcript
1 Elaborazione numerica dei segnali Digital Signal Processing 1 Rappresentazione dei segnali con sequenze di numeri e simboli Elaborazione delle sequenze per stimare i parametri caratteristici di un segnale; trasformare un segnale in una forma piu vantaggiosa Vari elementi di sviluppo: - Disponibilita di calcolatori veloci - Progressi nella tecnologia dei circuiti integrati - Importanza in molti campi: radar, comunicazioni, biomedicina, navigazione, etc. Applicazioni: monodimensionali e bidimensionali.
2 SEQUENZE E SISTEMI DISCRETI
3 Sequenze 3 esempio x(n): indica la sequenza oppure il valore n-simo di essa x(n) non e definita per valori di n non interi interpretazione temporale di x(n): x(t) t=nt con T=quanto temporale
4 Impulso discreto (unitario) Esempi 4 e una sequenza di energia Gradino discreto (unitario) e una sequenza di potenza Esponenziale discreto
5 Energia e Potenza di una sequenza 5 ENERGIA Sequenza e di energia se s non e infinita POTENZA attenzione all origine! Sequenza e di potenza se P s non e infinita Sequenza e di potenza e periodica attenzione al numero di punti!
6 Traslazione di una sequenza 6
7 Sistemi discreti 7 LE 5 PROPRIETA DEL SISTEMA: LINEARITA INVARIANZA ALLA TRASLAZIONE CAUSALITA STABILITA MEMORIA (lunghezza) ENERGIA SE SISTEMA E LIT, CIOE Lineare E Invariante alla Traslazione (LTI = Linear and Time Invariant) LINEARITA ESISTE LA RISPOSTA IMPULSIVA h(n) E INVARIANZA ALLA TRASLAZIONE LA CONVOLUZIONE E COMMUTATIVA
8 8 STABILITA CAUSALITA' MEMORIA
9 Esempio di convoluzione discreta (1/3) 9 Sistema LIT con x(n) rettangolare di durata N e : Sequenze di partenza: x(n) e ribaltamento di h(n) Traslazioni di h(-n)=h(0-n)
10 Esempio di convoluzione discreta (2/3) 1. per n < 0 : h(n - k) e x(k) non hanno campioni non nulli che si sovrappongono y(n) = 0 2. per 0 n < N : h(n - k) e x(k) hanno valori non nulli che si sovrappongono da k=0 a k=n per n per n > N - 1 : i valori non nulli di h(n - k) e x(k) che si sovrappongono si estendono da k= 0 a k = N - 1
11 Esempio di convoluzione discreta (3/3) 11 IL RISULTATO FINALE DELL ESEMPIO DI CONVOLUZIONE E, DUNQUE: Zona 2 Zona 3 Zona 1
12 Esempi sulle proprieta dei sistemi 12 ESEMPIO SU CAUSALITA E STABILITA
13 Esempi sulle proprieta dei sistemi 13 ESEMPI SULLA MEMORIA
14 UN MODELLO PER SISTEMI DISCRETI 14 Il modello (equazione alle differenze a coefficienti costanti di ordine N) si applica a sistemi LIT che supporremo anche causali e, dunque, in forma esplicita diventa: L n.mo valore di uscita e calcolabile da: 1) n.mo valore ingresso; 2) M valori precedenti d ingresso; 3) N valori precedenti d uscita.
15 UN MODELLO PER SISTEMI DISCRETI 15 Se nel modello si pone N=0: cioe y(n) e dato dalla convoluzione discreta tra x(n) e: di durata finita pari a M+1.
16 CLASSIFICAZIONE DEI SISTEMI DISCRETI LIT 16 I sistemi LIT possono essere: 1. FIR (Finite Impulse Response), con risposta all impulso (di durata) finita. N.B. se N=0 nel modello, il sistema e FIR 2. IIR (Infinite Impulse Response), con risposta all impulso (di durata) infinita. N.B. se N 0 nel modello, il sistema e IIR Questa e una classificazione molto importante ai fini progettuali.
ELABORAZIONE NUMERICA DEI SEGNALI 9CFU DIGITAL SIGNAL PROCESSING Prof. Marina Ruggieri. Ing. Tommaso Rossi
Università di Roma Tor Vergata Facolta di Ingegneria Benvenuti al al modulo di: di: ELABORAZIONE NUMERICA DEI SEGNALI 9CFU DIGITAL SIGNAL PROCESSING Prof. Marina Ruggieri [email protected] Ing. Tommaso
DIGITAL SIGNAL PROCESSING. Prof. Marina Ruggieri. Ing. Tommaso Rossi
Benvenuti al al modulo di: di: ELABORAZIONE NUMERICA DEI SEGNALI 6CFU DIGITAL SIGNAL PROCESSING macroarea: Ingegneria Prof. Marina Ruggieri [email protected] Ing. Tommaso Rossi [email protected]
Gianfranco Cariolaro, Gianfranco Pierobon, Giancarlo Calvagno Segnali e sistemi Indice analitico
Gianfranco Cariolaro, Gianfranco Pierobon, Giancarlo Calvagno Segnali e sistemi Indice analitico Copyright The McGraw-Hill Companies srl A aliasing, 443 fenomeno dell, 424f AMI, codificatore, 315 analiticità
Teoria dei Segnali Quantizzazione dei segnali; trasformata zeta
Teoria dei Segnali Quantizzazione dei segnali; trasformata zeta Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano [email protected] Teoria dei Segnali Quantizzazione;
Teoria dei Segnali Richiami di analisi matematica; alcune funzioni notevoli
Teoria dei Segnali Richiami di analisi matematica; alcune funzioni notevoli Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano [email protected] Teoria dei Segnali Richiami
Problemi di base di Elaborazione Numerica dei Segnali
Universita' di Roma TRE Corso di laurea in Ingegneria Elettronica Corso di laurea in Ingegneria Informatica Universita' di Roma "La Sapienza" Corso di laurea in Ingegneria delle Telecomunicazioni Problemi
La trasformata Zeta. Marco Marcon
La trasformata Zeta Marco Marcon ENS Trasformata zeta E l estensione nel caso discreto della trasformata di Laplace. Applicata all analisi dei sistemi LTI permette di scrivere in modo diretto la relazione
Filtraggio Digitale. Alfredo Pironti. Ottobre Alfredo Pironti Univ. di Napoli Federico II Corso Ansaldo Breda 1 / 20
Filtraggio Digitale Alfredo Pironti Ottobre 2012 Alfredo Pironti Univ. di Napoli Federico II Corso Ansaldo Breda 1 / 20 Filtri Analogici (1) Un filtro analogico è un sistema lineare tempo-invariante (LTI)
Fondamenti di Automatica
Fondamenti di Automatica Introduzione e modellistica dei sistemi Introduzione allo studio dei sistemi Modellistica dei sistemi dinamici elettrici Modellistica dei sistemi dinamici meccanici Modellistica
iv Indice c
Indice Prefazione ix 1 Numeri 1 1 Insiemi e logica 1 1.1 Concetti di base sugli insiemi 1 1.2 Un po di logica elementare 9 2 Sommatorie e coefficienti binomiali 13 2.1 Il simbolo di sommatoria 13 2.2 Fattoriale
Analisi dei sistemi nel dominio del tempo
Appunti di Teoria dei Segnali a.a. 010/011 L.Verdoliva In questa sezione studieremo i sistemi tempo continuo e tempo discreto nel dominio del tempo. Li classificheremo in base alle loro proprietà e focalizzeremo
Analisi dei segnali nel dominio della frequenza
Laboratorio di Telecomunicazioni - a.a. 2010/2011 Lezione n. 7 Analisi dei segnali nel dominio della frequenza docente L.Verdoliva In questa lezione affrontiamo il problema dell analisi dei segnali tempo
Corso di Laurea in Ingegneria Biomedica Corso di Trasmissione Numerica (6 crediti) Prova scritta 16.02.2006
Prova scritta 16.02.2006 D. 1 Si derivi l espressione dei legami ingresso-uscita, nel dominio del tempo per le funzioni di correlazione nel caso di sistemi LTI e di segnali d ingresso SSL. Si utilizzi
Comunicazione Elettriche L-A Identità ed equazioni
Comunicazione Elettriche L-A Identità ed equazioni Gennaio - Marzo 2009 Identità ed equazioni relative alle comunicazioni elettriche tratti dalle lezioni del corso di Comunicazioni Elettriche L-A alla
Circuiti a tempo discreto Raffaele Parisi
Università di Roma La Sapienza Laurea specialistica in Ingegneria Elettronica Circuiti a tempo discreto Raffaele Parisi Capitolo 7: Circuiti TD-LTI nel dominio delle trasformate Rappresentazioni nel dominio
Dispense del corso di Elettronica L Prof. Guido Masetti
Dispense del corso di Elettronica L Prof. Guido Masetti Teoria dei Segnali e Sistemi Sommario Architettura dei sistemi per l'elaborazione dell'informazione Informazione e segnali Teoria dei segnali Analisi
Fondamenti di Automatica. Unità 3 Equilibrio e stabilità di sistemi dinamici
Fondamenti di Automatica Unità 3 Equilibrio e stabilità di sistemi dinamici Equilibrio e stabilità di sistemi dinamici Equilibrio di sistemi dinamici Linearizzazione di sistemi dinamici Stabilità interna
Esercitazione di laboratorio per il corso di SISTEMI DI TELECOMUNICAZIONI 1 Ritardo Frazionario
Esercitazione di laboratorio per il corso di SISTEMI DI TELECOMUNICAZIONI Ritardo Frazionario 8 marzo 2009 Indice Scopo dell esercitazione A La struttura di Farrow B Norme per la consegna dell esercitazione
PROCESSING NEL DOMINIO OMEGA Scardinare la teoria: DFT (Discrete Fourier Transform)
1 PROCESSING NEL DOMINIO OMEGA Scardinare la teoria: DFT (Discrete Fourier Transform) Si desidera una rappresentazione delle sequenze in dominio ω «adatta» a fare processing con filtri digitali 2 E stato
4 Analisi nel dominio del tempo delle rappresentazioni in
Indice del libro Alessandro Giua, Carla Seatzu Analisi dei sistemi dinamici, Springer-Verlag Italia, II edizione, 2009 Pagina web: http://www.diee.unica.it/giua/asd/ Prefazione.....................................................
Reti nel dominio delle frequenze. Lezione 10 2
Lezione 10 1 Reti nel dominio delle frequenze Lezione 10 2 Introduzione Lezione 10 3 Cosa c è nell Unità 3 In questa sezione si affronteranno Introduzione all Unità Trasformate di Laplace Reti nel dominio
Campionamento e quantizzazione
Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Campionamento e quantizzazione A.A. 2008-09 Alberto Perotti DELEN-DAUIN Conversione analogico-digitale L elaborazione
Analisi dei segnali nel dominio del tempo
Laboratorio di Telecomunicazioni - a.a. 200/20 Lezione n. 3 Analisi dei segnali nel dominio del tempo L.Verdoliva In questa seconda lezione determiniamo, con l uso di Matlab, i parametri che caratterizzano
Oscillatore semplice: risposta ad eccitazioni arbitrarie. In molte applicazioni pratiche l eccitazione dinamica non è né armonica nè periodica.
Oscillatore semplice: risposta ad eccitazioni arbitrarie In molte applicazioni pratiche l eccitazione dinamica non è né armonica nè periodica. È necessario dunque sviluppare una procedura generale per
Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro
Segnali e Sistemi Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici Gianni Borghesan e Giovanni Marro Indice Introduzione 2. Notazione............................. 2 2 Classificazione
Corso di Teoria dei Circuiti 1 - II modulo
Università di Roma La Sapienza - Sede di Latina - Laurea in Ingegneria dell Informazione Capitolo 1 Corso di Teoria dei Circuiti 1 - II modulo Docente: Fabio Massimo Frattale Mascioli Capitolo 1: Elementi
Corso di Fondamenti di Telecomunicazioni Esercizi Teoria dei segnali Prof. Giovanni Schembra
Corso di Fondamenti di Telecomunicazioni Esercizi Teoria dei segnali Prof. Giovanni Schembra Sommario CARATTERISTICHE DEI SEGNALI DETERMINATI.... ESERCIZIO.... ESERCIZIO... 5.3 ESERCIZIO 3 CONVOLUZIONE...
Cristian Secchi Pag. 1
INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica STRUMENTI MATEMATICI PER L ANALISI DEI SISTEMI DISCRETI Ing. Tel. 0522 522235 e-mail: [email protected]
Funzione di trasferimento
Funzione ditrasferimento - 1 Corso di Laurea in Ingegneria Meccanica Funzione di trasferimento DEIS-Università di Bologna Tel. 51 2932 Email: [email protected] URL: www-lar.deis.unibo.it/~crossi Definizione
Grandezze fisiche e loro misura
Grandezze fisiche e loro misura Cos è la fisica? e di che cosa si occupa? - Scienza sperimentale che studia i fenomeni naturali suscettibili di sperimentazione e che implicano grandezze misurabili. - Sono
In realtà i segnali con i quali dobbiamo confrontarci più frequentemente sono limitati nel tempo
Segnali trattati sino ad ora: continui, durata infinita,.. Su essi sono stati sviluppati strumenti per analizzare output di circuiti e caratteristiche del segnale: Risposta all impulso, prodotto di convoluzione,
TEORIA DEI SISTEMI SISTEMI LINEARI
TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI SISTEMI LINEARI Ing. Cristian Secchi Tel.
Elaborazione nel dominio della frequenza
Appunti di Elaborazione dei Segnali Multimediali a.a. 29/2 L.Verdoliva Il dominio della frequenza è un potente strumento per l analisi e l elaborazione delle immagini e permette di comprendere meglio il
Circuiti e algoritmi per l elaborazione dell informazione
Università di Roma La Sapienza Facoltà di Ingegneria Laurea Specialistica in Ingegneria Elettronica Orientamento: Circuiti e algoritmi per l elaborazione dell informazione L x[n] y[n] Circuito: V g (t)
Cristian Secchi Pag. 1
CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: [email protected] http://www.dismi.unimo.it/members/csecchi Richiami di Controlli
Cos è una wavelet? Applicazioni della trasformata wavelet. Analisi multirisoluzione
Cos è una wavelet? Applicazioni della trasformata wavelet Analisi multirisoluzione Tre tecniche: Piramidi di immagine Trasformata di Haar Codifica per sottobande Il numero totale di pixel nel caso di una
TRASFORMATA DISCRETA DI FOURIER (DFT) [Cap. 5] E. Del Re Fondamenti di Elaborazione Numerica dei Segnali 1
TRASFORMATA DISCRETA DI FOURIER (DFT) [Cap. 5] E. Del Re Fondamenti di Elaborazione umerica dei Segnali TRASFORMATA DISCRETA DI FOURIER (DFT) Definita per sequenze periodiche (o finite) periodo (o durata)
CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI
CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI 1 Fondamenti di segnali Fondamenti e trasmissione TLC Segnali in formato numerico Nei moderni sistemi di memorizzazione e trasmissione i segnali in ingresso sono
Grandezze fisiche e loro misura
Grandezze fisiche e loro misura Cos è la fisica? e di che cosa si occupa? - Scienza sperimentale che studia i fenomeni naturali suscettibili di sperimentazione e caratterizzati da grandezze misurabili.
Elaborazione nel dominio della frequenza
Elaborazione dei Segnali Multimediali a.a. 2009/2010 Elaborazione nel dominio della frequenza L.Verdoliva In questa esercitazione esamineremo la trasformata di Fourier discreta monodimensionale e bidimensionale.
ANTITRASFORMATA DI LAPLACE MODI DI UN SISTEMA
CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANTITRASFORMATA DI LAPLACE MODI DI UN SISTEMA Ing. Federica Grossi Tel.
Aritmetica dei Calcolatori Elettronici
Aritmetica dei Calcolatori Elettronici Prof. Orazio Mirabella L informazione Analogica Segnale analogico: variabile continua assume un numero infinito di valori entro l intervallo di variazione intervallo
Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2
Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: [email protected]
Grandezze fisiche e loro misura
Grandezze fisiche e loro misura Cos è la fisica? e di che cosa si occupa? - Scienza sperimentale che studia i fenomeni naturali suscettibili di sperimentazione e caratterizzati da entità o grandezze misurabili.
SISTEMI DIGITALI DI CONTROLLO
Sistemi Digitali di Controllo A.A. 2009-2010 p. 1/45 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza [email protected] Lucidi tratti dal libro C. Bonivento,
Risposta temporale: esempi
...4 Risposta temporale: esempi Esempio. Calcolare la risposta al gradino unitario del seguente sistema: x(t) = u(t) s + 5 (s + )(s + ) y(t) Il calcolo della trasformata del segnale di uscita è immediato:
1) Codici convoluzionali. 2) Circuito codificatore. 3) Diagramma a stati e a traliccio. 4) Distanza libera. 5) Algoritmo di Viterbi
Argomenti della Lezione 1) Codici convoluzionali 2) Circuito codificatore 3) Diagramma a stati e a traliccio 4) Distanza libera 5) Algoritmo di Viterbi 1 Codici convoluzionali I codici convoluzionali sono
Teoria dei Segnali. 1 Proprietà della trasformata di Fourier. correlazione tra segnali; autocorrelazione
Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano [email protected]
Sistemi LSTD: rappresentazione esplicita
Trasformata Zeta Outline Sistemi LSTD: rappresentazione esplicita x(k+1) = Ax(k)+Bu(k), x R n, u R m, k Z y(k) = Cx(k)+Du(k), y R p x R n : vettore delle variabili di stato; u R m : vettore dei segnali
Introduzione all elaborazione dei segnali
Università degli Studi di Milano - Dipartimento di Scienze dell Informazione - Introduzione all elaborazione dei segnali Alberto Bertoni Paola Campadelli Giuliano Grossi Η(ω) H( )ω δ δ 2 Banda Passante
SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE
CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/controlliautomatici.html SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE Ing. e-mail: [email protected]
Modulazione PAM Multilivello, BPSK e QPSK
Modulazione PAM Multilivello, BPSK e QPSK P. Lombardo DIET, Univ. di Roma La Sapienza Modulazioni PAM Multilivello, BPSK e QPSK - 1 Rappresentazione analitica del segnale Sia {b(n)} una qualsiasi sequenza
ATTRATTORI CAOTICI. Attrattori. Classificazione degli attrattori: equilibri, cicli, tori, caos. Esponenti di Liapunov di attrattori
ARAORI CAOICI Attrattori Classificazione degli attrattori: equilibri, cicli, tori, caos Esponenti di Liapunov di attrattori Sistemi dissipativi C. Piccardi e F. Dercole Politecnico di Milano - 06/12/2012
Sviluppo in serie di Fourier
Laboratorio di Telecomunicazioni - a.a. 2010/2011 Lezione n. 6 Sviluppo in serie di Fourier docente L.Verdoliva In questa quinta lezione affrontiamo il problema dell analisi di un segnale periodico discreto
RM Formazione dell immagine
RM Formazione dell immagine Marco Serafini [email protected] FUNZIONE, VARIABILE e DOMINIO Funzione: y = f(x) y = variabile dipendente x = variabile indipendente Esempio: Rappresentazione grafica:
Teoria dei Segnali Densità spettrale di energia e di potenza; campionamento e teorema di Shannon
Teoria dei Segnali Densità spettrale di energia e di potenza; campionamento e teorema di Shannon Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano [email protected] Teoria
Progetto Matlab N 2. Calcolo Numerico 6 CFU. Corso di Laurea in Ingegneria delle Comunicazioni 31/05/2014
Progetto Matlab N 2 Calcolo Numerico 6 CFU Corso di Laurea in Ingegneria delle Comunicazioni 31/05/2014 Procedimento 1. Scrivere una function che implementi il prodotto matrice-vettore AX con A matrice
01. Modelli di Sistemi
Controlli Automatici 01. Modelli di Sistemi Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it
Elaborazione Numerica dei Segnali
Università degli Studi di Milano - Dipartimento di Scienze dell Informazione - Dispensa del corso di Elaborazione Numerica dei Segnali Alberto Bertoni Giuliano Grossi Anno Accademico 2009-200 Indice Segnali
Note sull implementazione in virgola fissa di filtri numerici
Note sull implementazione in virgola fissa di filtri numerici 4 settembre 2006 1 Introduction Nonostante al giorno d oggi i processori con aritmetica in virgola mobili siano molto comuni, esistono contesti
Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo
Parte 2, 1 Parte 2, 2 Elementi di Teoria dei Sistemi Definizione di sistema dinamico Parte 2, 3 Sistema dinamico a tempo continuo Cosa significa Dinamico? Parte 2, 4? e` univocamente determinata? Ingresso
Tecniche di progettazione dei filtri FIR
Tecniche di progettazione dei filtri FIR 9.0 Introduzione I filtri FIR sono filtri nei quali la risposta all'impulso è generalmente limitata. I filtri FIR hanno la proprietà di essere facilmente vincolati
Fondamenti di Automatica
Fondamenti di Automatica Analisi dei sistemi dinamici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: [email protected] pag. 1 Analisi dei
Prova di AUTOVALUTAZIONE (novembre 2009). nota: l esame ha validità solo se incluso nel piano degli studi per l anno accademico corrente.
UNIVERSITA DEGLI STUDI ROMA TRE CdS in Ingegneria Informatica corso di FONDAMENTI DI TELECOMUNICAZIONI Prova di AUTOVALUTAZIONE (novembre 2009). COMPITO A nota: l esame ha validità solo se incluso nel
Elaborazione numerica. Teoria dei segnali
Elaborazione numerica e Teoria dei segnali Raccolta di Esercizi Fiandrino Claudio agosto 00 II Indice I Teoria dei segnali 5 Esercizi di base 7. Esercizio............................. 7. Esercizio.............................
PIANO DI LAVORO DEI DOCENTI
Pag. 1 di 5 Docente: Materia insegnamento: SISTEMI ELETTRONICI AUTOMATICI Dipartimento: ELETTRONICA Classe Anno scolastico: 1 Livello di partenza (test di ingresso, livelli rilevati) Per il modulo di automazione
Trasformate di Laplace
TdL 1 TdL 2 Trasformate di Laplace La trasformata di Laplace e un OPERATORE funzionale Importanza dei modelli dinamici Risolvere equazioni differenziali (lineari a coefficienti costanti) Tempo t Dominio
Calcolo della DFT. Complessità del calcolo diretto. X(k) = x(n)w kn DFT. x(n) = 1 N. X(k)W kn. con W N = e j2π/n. Se x(n) è complessa: j{r[x(n)]
Calcolo della DFT Complessità del calcolo diretto DFT X(k) = x(n) = 1 1 n=0 1 x(n)w kn k = 0,..., 1 DFT k=0 con W = e j2π/. Se x(n) è complessa: X(k) = = 1 n=0 {R[x(n)] + ji[x(n)]}{r[w kn 1 n=0 }{{} (
CONTROLLI AUTOMATICI Ingegneria Gestionale ANALISI ARMONICA
CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Ing. Federica Grossi Tel. 059 2056333 e-mail: [email protected]
Corso di Matematica per la Chimica
Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis Dipartimento di Matematica, Informatica e Economia Università della Basilicata a.a. 2014-15 Introduzione La MATEMATICA è uno strumento
Elaborazione numerica dei segnali
POLITECNICO DI TORINO Elaborazione numerica dei segnali Progetto di un filtro FIR Fiandrino Claudio Matricola: 138436 18 giugno 21 Relazione sul progetto di un filtro FIR Descrizione del progetto L obbiettivo
Forma canonica di Jordan
Capitolo INTRODUZIONE Forma canonica di Jordan Siano λ i, per i =,, h, gli autovalori distinti della matrice A e siano r i i corrispondenti gradi di molteplicità all interno del polinomio caratteristico:
Risposta temporale: esercizi
...4 Risposta temporale: esercizi Esercizio. Calcolare la risposta al gradino del seguente sistema: G(s) X(s) = s (s+)(s+) Y(s) Per ottenere la risposta al gradino occorre antitrasformare la seguente funzione:
FUNZIONAMENTO TRANSITORIO DEL TRASFORMATORE TRANSITORIO DI INSERZIONE A VUOTO
FUNZIONAMENTO TRANSITORIO DEL TRASFORMATORE TRANSITORIO DI INSERZIONE A VUOTO t = 0 Z 1 Z 2 Z 0 CIRCUITO EQUIVALENTE DI UNA FASE 1 FUNZIONAMENTO TRANSITORIO DEL TRASFORMATORE A VUOTO Per lo studio del
ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica
CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Analisi
Complementi sui filtri
Elaborazione numerica dei segnali Appendice ai capitoli 4 e 5 Complementi sui filtri Introduzione... Caratteristiche dei filtri ideali... Filtri passa-basso...4 Esempio...7 Filtri passa-alto...8 Filtri
9.9.1 Applicazione al calcolo di aree Esercizi Soluzioni...361
Indice 1 Nozioni di base... 1 1.1 Insiemi... 1 1.2 Elementi di logica matematica... 5 1.2.1 Connettivi logici... 5 1.2.2 Predicati... 7 1.2.3 Quantificatori... 7 1.3 Insiemi numerici... 9 1.3.1 L ordinamento
Trasformata Zeta e Sistemi LTI a Tempo Discreto
Capitolo 7 Trasformata Zeta e Sistemi LTI a Tempo Discreto Questo capitolo è dedicato allo studio della trasformata zeta, strumento di analisi dei sistemi LTI a tempo discreto così come la trasformata
RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI
RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI Fondamenti di Segnali e Trasmissione Risposta in requenza e banda passante La risposta in requenza di un sistema LTI e la trasormata di Fourier
Studio dei segnali nel dominio della frequenza. G. Traversi
Studio dei segnali nel dominio della frequenza G. Traversi Segnali periodici e serie di Fourier Una funzione periodica f(t) di periodo T (purché integrabile) è esprimibile con una serie del tipo: f (t)
