RETI DI TELECOMUNICAZIONE
|
|
|
- Franco Casagrande
- 8 anni fa
- Visualizzazioni
Transcript
1 RETI DI TELECOMUNICAZIONE CATENE DI MARKOV TEMPO CONTINUE Definizioni Sia dato un processo stocastico x(t) che può assumere valori discreti appartenenti ad un insieme se accade che il processo è una catena di Markov tempo continua CATENE DI MARKOV TEMPO CONTINUE 2 1
2 Equazione di Chapman-Kolmogorov Si consideri la matrice di transizione tempo continua fra gli istanti s e t con s<t per l equazione di Chapman-Kolmogorov sarà e anche per qualunque intervallo t CATENE DI MARKOV TEMPO CONTINUE 3 Matrice delle frequenze di transizione In un tempo nullo non si avrà possibilità di transizione di stato quindi sarà con I n matrice identica Si ottiene quindi CATENE DI MARKOV TEMPO CONTINUE 4 2
3 Matrice delle frequenze di transizione Facendo tendere si trova Dove la matrice Q(t) è detta matrice delle frequenze (dei tassi) di transizione. Il generico elemento in posizione ij si può ottenere a partire dalle probabilità di transizione al tempo t dalle relazioni CATENE DI MARKOV TEMPO CONTINUE 5 Matrice delle frequenze di transizione Si trova che La soluzione dell equazione èdel tipo considerando che CATENE DI MARKOV TEMPO CONTINUE 6 3
4 Matrice delle frequenze di transizione Inoltre la somma per riga degli elementi della matrice sarà nulla: L elemento in posizione i,i sarà l opposto della somma di tutti gli altri elementi CATENE DI MARKOV TEMPO CONTINUE 7 Vettore delle probabilità di stato Il vettore delle probabilità di stato sarà tempo continuo della forma Ogni singolo elemento è una funzione che rappresenta la probabilità che il processo al tempo t si trovi in quello stato Analogamente alle catene discrete sarà dove Π(0) è la distribuzione delle probabilità di stato all origine dei tempi (t=0) CATENE DI MARKOV TEMPO CONTINUE 8 4
5 Vettore delle probabilità di stato Nota la matrice Q(t) delle frequenze di transizione sarà La cui soluzione è data dal sistema di equazioni differenziali (nota la condizione iniziale) CATENE DI MARKOV TEMPO CONTINUE 9 Matrice delle frequenze di transizione per catene di Markov omogenee Nel caso di catene tempo continue omogenee la probabilità di transizione non dipende dagli istanti assoluti di tempo ma esclusivamente dalla durata dell intervallo Sarà quindi costante la matrice Q CATENE DI MARKOV TEMPO CONTINUE 10 5
6 Vettore delle probabilità di stato per catene di Markov omogenee L evoluzione del vettore di probabilità di stato sarà legata quindi all equazione Che ha per soluzione CATENE DI MARKOV TEMPO CONTINUE 11 Vettore delle probabilità di stato per catene di Markov omogenee e stazionarie Nel caso di catena stazionaria si trova che devono valere le relazioni CATENE DI MARKOV TEMPO CONTINUE 12 6
7 Tempi di soggiorno e ricorrenza per catene di Markov omogenee e stazionarie Tempi di soggiorno Variabili casuali distribuite esponenzialmente Il tempo medio di permanenza nello stato i sarà CATENE DI MARKOV TEMPO CONTINUE 13 Esercizio Data la catena di Markov omogenea tempo continua il cui diagramma delle frequenze di transizione è dato in figura, determinare la matrice dei tassi di transizione Q e la probabilità che a regime il sistema si trovi nello stato 0. CATENE DI MARKOV TEMPO CONTINUE 14 7
8 Catene di nascita e morte tempo continuo Il diagramma dei tassi di transizione diviene Gli elementi della matrice Q CATENE DI MARKOV TEMPO CONTINUE 15 Catene di nascita e morte tempo continuo Come nel caso continuo si può trovare la soluzione della catena in termini di probabilità di stato a regime a partire dal bilanciamento dei flussi La trattazione è del tutto analoga alle catene di nascita e morte tempo discrete CATENE DI MARKOV TEMPO CONTINUE 16 8
9 Catene di nascita e morte tempo continuo Quando la sommatoria al denominatore converge Gli stati sono tutti ricorrenti non nulli Le Π i trovate costituiscono la distribuzione stazionaria delle probabilità di stato La catena di nascita e morte è ergodica Condizione sufficiente per la convergenza è che Quando la sommatoria al denominatore non converge La catena di nascita e morte non è ergodica CATENE DI MARKOV TEMPO CONTINUE 17 Catene di nascita e morte tempo continuo state independent Frequenza state-independent I tassi di nascita e di morte sono costanti per ogni stato quindi Posto sarà CATENE DI MARKOV TEMPO CONTINUE 18 9
RETI DI TELECOMUNICAZIONE
RETI DI TELECOMUNICAZIONE CATENE DI MARKOV TEMPO DISCRETE Definizioni Catena: Processo stocastico in cui lo spazio degli stati è discreto o numerabile Processo stocastico tempo discreto: Si considerano
Note sulle Catene di Markov
Note sulle Catene di Markov ELAUT Prof. Giuseppe C. Calafiore Sommario Queste note contengono un estratto schematico ridotto di parte del materiale relativo alle Catene di Markov a tempo continuo e a tempo
RETI DI TELECOMUNICAZIONE
RETI DI TELECOMUNICAZIONE Modelli delle Sorgenti di Traffico Generalità Per la realizzazione di un modello analitico di un sistema di telecomunicazione dobbiamo tenere in considerazione 3 distinte sezioni
Processi di Markov. Processi di Markov
Processi Stocastici Processi Stocastici Processi Stocastici Catene o Catene o Catene di M Processi Stocastici Processi Stocastici Processi Stocastici Catene o Catene o Catene di M Processi Stocastici Un
1.4.2 Proprietà di Markov. Catene di Markov a tempo continuo
PROCESSI DI NASCITA E MORTE 35 14 PROCESSI DI NASCITA E MORTE Molti sistemi a coda possono essere ben rappresentati mediante i cosiddetti processi di nascita e morte che sono importanti processi in teoria
Markov Chains and Markov Chain Monte Carlo (MCMC)
Markov Chains and Markov Chain Monte Carlo (MCMC) Alberto Garfagnini Università degli studi di Padova December 11, 2013 Catene di Markov Discrete dato un valore x t del sistema ad un istante di tempo fissato,
UNIVERSITÀ di ROMA TOR VERGATA
UNIVERSITÀ di ROMA TOR VERGATA Corso di PS-Probabilità P.Baldi Tutorato 9, 19 maggio 11 Corso di Laurea in Matematica Esercizio 1 a) Volendo modellizzare l evoluzione della disoccupazione in un certo ambito
Processi stocastici. variabile casuale: funzione da uno spazio campione S a valori nello spazio E R X(t) : S E. spazio degli stati del processo
Processi stocastici Processo stocastico: famiglia di variabili casuali {X(t) t T} definite su uno spazio di probabilità indiciate dal parametro t (tempo) X(t) variabile casuale: funzione da uno spazio
PROCESSI STOCASTICI 1: ESERCIZI
PROCESSI STOCASTICI 1: ESERCIZI (1) ESERCIZIO: Date P e Q matrici stocastiche, dimostrare che la matrice prodotto P Q è una matrice stocastica. Dedurre che la potenza P n e il prodotto P 1 P 2 P n sono
λ è detto intensità e rappresenta il numero di eventi che si
ESERCITAZIONE N 1 STUDIO DI UN SISTEMA DI CODA M/M/1 1. Introduzione Per poter studiare un sistema di coda occorre necessariamente simulare gli arrivi, le partenze e i tempi di ingresso nel sistema e di
Reti nel dominio del tempo. Lezione 7 1
Reti nel dominio del tempo Lezione 7 1 Poli (o frequenze naturali) di una rete Lezione 7 2 Definizione 1/2 Il comportamento qualitativo di una rete dinamica dipende dalle sue frequenze naturali o poli
Un modello di Markov per la determinazione del rendimento atteso di un obbligazione rischiosa
Un modello di Markov per la determinazione del rendimento atteso di un obbligazione rischiosa Analisi dei Sistemi Finanziari 1 Giugno, 2007 Cristina Manfredotti Dipartimento di Informatica, Sistemistica
Processi stocastici A.A Corso di laurea Magistrale in Statistica Univ. degli Studi di Palermo
Processi stocastici A.A. 09 0 Corso di laurea Magistrale in Statistica Univ. degli Studi di Palermo G. Sanfilippo 20 maggio 200 Registro delle lezioni. Lezione del 3 Marzo 200, 8-, ore complessive 3 Richiami
Capitolo 6. Variabili casuali continue. 6.1 La densità di probabilità
Capitolo 6 Variabili casuali continue Le definizioni di probabilità che abbiamo finora usato sono adatte solo per una variabile casuale che possa assumere solo valori discreti; vediamo innanzi tutto come
ESERCIZI SULLE CATENE DI MARKOV. Docente titolare: Irene Crimaldi 18/11/2009 P =
ESERCIZI SULLE CATENE DI MARKOV Docente titolare: Irene Crimaldi 8//9 ESERCIZIO Una catena di Markov (X n ) n con insieme degli stati S = {,,} ha matrice di transizione µ() =, µ() =, µ() =. a) Calcolare
Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2016/17 - Prima prova in itinere
Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica 69AA) A.A. 06/7 - Prima prova in itinere 07-0-03 La durata della prova è di tre ore. Le risposte devono essere adeguatamente giustificate.
Reti di Telecomunicazioni 1
Reti di Telecomunicazioni 1 AA2011/12 Sistemi a coda Blocco E2 Ing. Francesco Zampognaro e-mail: [email protected] Lucidi Prof. Stefano Salsano 1 Definizione di traffico e utilizzazione di un
MATRICI E SISTEMI LINEARI
1 Rappresentazione di dati strutturati MATRICI E SISTEMI LINEARI Gli elementi di una matrice, detti coefficienti, possono essere qualsiasi e non devono necessariamente essere omogenei tra loro; di solito
ANALISI DELLE SERIE STORICHE
ANALISI DELLE SERIE STORICHE De Iaco S. [email protected] UNIVERSITÀ del SALENTO DIP.TO DI SCIENZE ECONOMICHE E MATEMATICO-STATISTICHE FACOLTÀ DI ECONOMIA 24 settembre 2012 Indice 1 Funzione di
Esame di FONDAMENTI DI AUTOMATICA (9 crediti) SOLUZIONE
Esame di FONDAMENTI DI AUTOMATICA (9 crediti) Prova scritta 16 luglio 2014 SOLUZIONE ESERCIZIO 1. Dato il sistema con: si determinino gli autovalori della forma minima. Per determinare la forma minima
Esercizi svolti. delle matrici
Esercizi svolti. astratti. Si dica se l insieme delle coppie reali (x, y) soddisfacenti alla relazione x + y è un sottospazio vettoriale di R La risposta è sì, perchè l unica coppia reale che soddisfa
TEORIA DEI SISTEMI SISTEMI LINEARI
TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI SISTEMI LINEARI Ing. Cristian Secchi Tel.
Il metodo delle osservazioni indirette
Il metodo delle osservazioni indirette Teoria della stima ai minimi quadrati Il criterio di massima verosimiglianza Sia data una grandezza η e si abbiano n osservazioni indipendenti l i (i=1,...,n) di
Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni
Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni ANALISI NUMERICA - Primo Parziale - TEMA A (Prof. A.M.Perdon)
Luigi Piroddi
Automazione industriale dispense del corso (a.a. 2008/2009) 10. Reti di Petri: analisi strutturale Luigi Piroddi [email protected] Analisi strutturale Un alternativa all analisi esaustiva basata sul
Catene di Markov. 8 ottobre 2009
Catene di Markov 8 ottobre 2009 Definizione 1. Si dice catena di Markov (finita) un sistema dotato di un numero finito n di stati {1, 2,..., n} che soddisfi la seguente ipotesi: la probabilità che il sistema
Ottimizzazione su grafi: massimo flusso (parte 1) Ottimizzazione su grafi:massimo flusso (parte 1) p. 1/33
Ottimizzazione su grafi: massimo flusso (parte 1) Ottimizzazione su grafi:massimo flusso (parte 1) p. 1/33 Ottimizzazione su grafi:massimo flusso (parte 1) p. 2/33 Reti di flusso Una rete di flusso è una
Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni
Corso di Geometria Ing. Informatica e Automatica Test : soluzioni k Esercizio Data la matrice A = k dipendente dal parametro k, si consideri il k sistema lineare omogeneo AX =, con X = x x. Determinare
Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari
Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Antonio Lanteri e Cristina Turrini UNIMI - 2016/2017 Antonio Lanteri e Cristina Turrini (UNIMI - 2016/2017 Elementi di Algebra Lineare
MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI. Anna TORRE
MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI Anna TORRE Dipartimento di Matematica, Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy. E-mail: [email protected] 1 SOLUZIONI:
PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07
PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 006/07 Esercizio 1 Prova scritta del 16/1/006 In un ufficio postale lavorano due impiegati che svolgono lo stesso compito in maniera indipendente, sbrigando
SIMULAZIONE - 29 APRILE QUESITI
www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione
Probabilità e Statistica
Diario delle lezioni e del tutorato di Probabilità e Statistica a.a. 2015/2016 www.mat.uniroma2.it/~caramell/did 1516/ps.htm 01/03/2016 - Lezioni 1, 2 [Caramellino] Breve introduzione al corso. Fenomeni
RETI DI TELECOMUNICAZIONE
RETI DI TELECOMUNICAZIONE TEORIA DELLE CODE Teoria delle code Obiettivo Avere uno strumento analitico per determinare le condizioni di funzionamento di una rete in termini prestazionali La teoria delle
Analisi dei Sistemi Esercitazione 1
Analisi dei Sistemi Esercitazione Soluzione 0 Ottobre 00 Esercizio. Sono dati i seguenti modelli matematici di sistemi dinamici. ÿ(t) + y(t) = 5 u(t)u(t). () t ÿ(t) + tẏ(t) + y(t) = 5sin(t)ü(t). () ẋ (t)
INTRODUZIONE AL CONTROLLO OTTIMO
INTRODUZIONE AL CONTROLLO OTTIMO Teoria dei Sistemi Ingegneria Elettronica, Informatica e TLC Prof. Roberto Zanasi, Dott. Giovanni Azzone DII - Università di Modena e Reggio Emilia AUTOLAB: Laboratorio
a + 2b + c 3d = 0, a + c d = 0 c d
SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,
Variabili casuali multidimensionali
Capitolo 1 Variabili casuali multidimensionali Definizione 1.1 Le variabili casuali multidimensionali sono k-ple ordinate di variabili casuali unidimensionali definite sullo stesso spazio di probabilità.
Appunti di Simulazione
Appunti di Simulazione M. Gianfelice Corso di modelli probabilistici per le applicazioni Master di II livello in Matematica per le Applicazioni a.a. 2004/2005 1 Simulazione di numeri aleatori con distribuzione
ha come obiettivo quello di costruire a partire da A una matrice U, m n, che abbia il
Facoltà di Scienze Statistiche, Algebra Lineare 1 A, G.Parmeggiani LEZIONE 6 Eliminazione di Gauss con scambi di righe Sia A O una matrice m n. Abbiamo illustrato nella Lezione 5 un algoritmo che ha come
equazione della popolazione o bilancio demografico:
La dimensione della popolazione Consideriamo un conto corrente bancario: il saldo (fenomeno statico) è riferito ad un certo istante, ad es. inizio anno. Nel corso dell anno si verificano entrate ed uscite
Fondamenti di Automatica
Fondamenti di Automatica Introduzione e modellistica dei sistemi Introduzione allo studio dei sistemi Modellistica dei sistemi dinamici elettrici Modellistica dei sistemi dinamici meccanici Modellistica
Chi non risolve esercizi non impara la matematica.
5.5 esercizi 9 Per trovare la seconda equazione ragioniamo così: la parte espropriata del primo terreno è x/00, la parte espropriata del secondo è y/00 e in totale sono stati espropriati 000 m, quindi
Manuale di Matematica per le applicazioni economiche Algebra lineare Funzioni di due variabili
Manuale di Matematica per le applicazioni economiche Algebra lineare Funzioni di due variabili Juan Gabriel Brida Nicoletta Colletti School of Economics and Manangement Free University of Bozen - Bolzano
01. Modelli di Sistemi
Controlli Automatici 01. Modelli di Sistemi Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it
PROBABILITA DI TRANSIZIONE PER ALCUNI PROCESSI DELLA TEORIA DELLE CODE
Alma Mater Studiorum Università di Bologna FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea Triennale in Matematica PROBABILITA DI TRANSIZIONE PER ALCUNI PROCESSI DELLA TEORIA DELLE CODE
SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI
SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4B) January 17, 005 1 SISTEMI LINEARI Se a ik, b i R,
CATENE DI MARKOV. Esempio 1 Consideriamo la catena di Markov avente spazio degli stati S = {1, 2, 3, 4} e matrice di transizione 1/2 1/2 0 0
CATENE DI MARKOV Esempio Consideriamo la catena di Markov avente spazio degli stati S = {, 2, 3, 4} e matrice di transizione /2 /2 0 0 /2 /2 0 0 /4 /4 /4 /4. 0 0 0 La classe costituita dagli stati e 2
TEMI D ESAME DI ANALISI MATEMATICA I
TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare
Assemblaggio degli Elementi: Soluzione del Problema Strutturale Discreto
Il Metodo degli Elementi Finiti Assemblaggio degli Elementi: Soluzione del Problema Strutturale Discreto Dalle dispense del prof. Dario Amodio e dalle lezioni del prof. Giovanni Santucci Per ottenere la
II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17
II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 6/7 Martedì 4 febbraio 7 Cognome: Nome: Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile
Modelli e Metodi per l Automazione
Prof. Davide Giglio Modelli e Metodi per l Automazione Facoltà di Ingegneria Anno Accademico 20/202 ESEMPI ED ESERCIZI RETI DI CODE 7. Un sistema di produzione è costituito da 4 macchine M, M 2, M 3 e
LICEO SCIENTIFICO QUESTIONARIO QUESITO 1
www.matefilia.it LICEO SCIENTIFICO 7 - QUESTIONARIO QUESITO Definito il numero E come: E = e d, dimostrare che risulta: e d = e E esprimere e d in termini di e ed E. Cerchiamo una primitiva di e integrando
Esercizi con catene di Markov Pietro Caputo 12 dicembre 2006
Esercizi con catene di Markov Pietro Caputo dicembre 006 Esercizio. Si considerino i lanci di un dado (6 facce equiprobabili). Sia X n il minimo tra i risultati ottenuti nei lanci,,..., n. Si calcoli la
Extracorrente di chiusura in un circuito
prof. Alessandro ALTERIO (FISICA) 5ªD (P.N.I.) liceo scientifico Marconi di Grosseto pagina 1 di 5 Extracorrente di chiusura in un circuito Consideriamo il circuito in figura: All istante di tempo viene
Appunti sulle Catene di Markov
Appunti sulle Catene di Markov Calcolo delle Probabilità, L.S. in Informatica, A.A. 2006/2007 A.Calzolari 1 Indice 1 Definizioni di base 3 2 Classificazione degli stati 20 3 Misure invarianti e proprietà
Sistemi lineari - Parte Seconda - Esercizi
Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione
VIII Indice 2.6 Esperimenti Dicotomici Ripetuti: Binomiale ed Ipergeometrica Processi Stocastici: Bernoul
1 Introduzione alla Teoria della Probabilità... 1 1.1 Introduzione........................................ 1 1.2 Spazio dei Campioni ed Eventi Aleatori................ 2 1.3 Misura di Probabilità... 5
Secondo parziale di Matematica per l Economia (esempio)
Corso di Laurea in Economia e Management Secondo parziale di Matematica per l Economia (esempio) lettere E-Z, a.a. 206 207 prof. Gianluca Amato Regole generali Si svolga il primo esercizio e, a scelta
Luigi Piroddi
Automazione industriale dispense del corso (a.a. 2008/2009) 8. Reti di Petri: rappresentazione algebrica Luigi Piroddi [email protected] Rappresentazione matriciale o algebrica E possibile analizzare
Indice generale. Prefazione
Prefazione vii 1 Classificazione dei sistemi e dei modelli 1 1.1 Introduzione 1 1.2 Principi di base della teoria dei sistemi e del controllo 2 1.2.1 I concetti di sistema e di modello 3 1.2.2 Il concetto
Catene di Markov - Foglio 1
Catene di Markov - Foglio 1 1. Una pedina si muove su un circuito circolare a 4 vertici, numerati da 1 a 4. La pedina si trova inizialmente nel vertice 1. Ad ogni passo un giocatore lancia un dado equilibrato:
Vedi: Probabilità e cenni di statistica
Vedi: http://www.df.unipi.it/~andreozz/labcia.html Probabilità e cenni di statistica Funzione di distribuzione discreta Istogrammi e normalizzazione Distribuzioni continue Nel caso continuo la probabilità
Coordiante omogenee e proiezioni
CAPITOLO 15 Coordiante omogenee e proiezioni Esercizio 15.1. Utilizzando le coordinate omogenee, determinare l equazione della retta r passante per i punti A(2,) e B( 1,0) e della retta s passante per
Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara
Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ [email protected] Lorenzo Pareschi (Univ. Ferrara)
Pulse Amplitude Modulation (PAM) 2 Scelta delle risposte impulsive dei filtri in trasmissione e ricezione
Pulse Amplitude Modulation (PAM 1 Definizione La trasmissione di una sequenza di numeri {a k } mediante un onda PAM consiste nel generare, a partire dalla sequenza {a k } il segnale a tempo continuo u(t
Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni
Corso di Geometria 2- BIAR, BSIR Esercizi 2: soluzioni Esercizio Calcolare il determinante della matrice 2 3 : 3 2 a) con lo sviluppo lungo la prima riga, b) con lo sviluppo lungo la terza colonna, c)
TEORIA DELL INFORMAZIONE ED ENTROPIA FEDERICO MARINI
TEORIA DELL INFORMAZIONE ED ENTROPIA DI FEDERICO MARINI 1 OBIETTIVO DELLA TEORIA DELL INFORMAZIONE Dato un messaggio prodotto da una sorgente, l OBIETTIVO è capire come si deve rappresentare tale messaggio
Adams, Calcolo Differenziale I, Casa Editrice Ambrosiana
Argomenti da studiare sui testi di riferimento: Adams, Calcolo Differenziale I, Casa Editrice Ambrosiana P - Preliminari 1 Limiti e continuità 1.1 Velocità, rapidità di crescita, area: alcuni esempi Velocità
