Introduzione ai sistemi dinamici

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Introduzione ai sistemi dinamici"

Transcript

1 Introduzione ai sistemi dinamici Prof. G. Ferrari Trecate, Prof. D.M. Raimondo Dipartimento di Ingegneria Industriale e dell Informazione (DIII) Università degli Studi di Pavia Fondamenti di Automatica Ferrari Trecate, Raimondo (DIII) Introduzione ai sistemi dinamici Fondamenti di Automatica 1 / 14

2 Variabili di un sistema dinamico Variabili di ingresso e uscita Variabili di ingresso (o ingressi): u 1 (t) R, u 2 (t) R,..., u m (t) R. m: numero di ingressi Variabili di uscita (o uscite): y 1 (t) R, y 2 (t) R,..., y p (t) R. p: numero di uscite Osservazione Ingressi/uscite = interfaccia col resto del mondo Ingressi = cause. Uscite = effetti. Ma non necessariamente ingresso = afflusso (di massa, energia...) o uscita = efflusso Ferrari Trecate, Raimondo (DIII) Introduzione ai sistemi dinamici Fondamenti di Automatica 2 / 14

3 Variabili di un sistema dinamico Problema Sia t 0 R un istante iniziale e t t 0. Basta conoscere u 1,..., u m tra t 0 e t per calcolare y 1 (t),..., y p (t)? In generale NO Esempio: ẏ 1 = u 1 c bisogna conoscere y 1(t 0 ) per calcolare y 1 (t) Variabili di stato (o stati) Variabili del processo la cui conoscenza all istante t 0 unita a quella degli ingressi tra t 0 e t permette di calcolare y 1 (t), y 2 (t),..., y p (t) Stati: x 1 (t) R, x 2 (t) R,..., x n (t) R. n= numero di stati = ordine del sistema Ferrari Trecate, Raimondo (DIII) Introduzione ai sistemi dinamici Fondamenti di Automatica 3 / 14

4 Equazioni di un sistema dinamico Equazioni di stato ẋ 1 (t) = f 1 (x 1 (t),..., x n (t), u 1 (t),..., u m (t), t) ẋ 2 (t) = f 2 (x 1 (t),..., x n (t), u 1 (t),..., u m (t), t). ẋ n (t) = f n (x 1 (t),..., x n (t), u 1 (t),..., u m (t), t) Sistema di equazioni differenziali del primo ordine. Incognite = stati. Gli ingressi sono fissati. Dato t 0 R, bisogna specificare gli stati iniziali x 1 (t 0 ), x 2 (t 0 ),..., x n (t 0 ) al fine di calcolare gli stati per t t 0 Gli argomenti delle funzioni f 1,,..., f n sono, al più, stati, ingressi e tempo Ferrari Trecate, Raimondo (DIII) Introduzione ai sistemi dinamici Fondamenti di Automatica 4 / 14

5 Equazioni di un sistema dinamico Trasformazioni di uscita y 1 (t) = g 1 (x 1 (t),..., x n (t), u 1 (t),..., u m (t), t) y 2 (t) = g 2 (x 1 (t),..., x n (t), u 1 (t),..., u m (t), t). y p (t) = g p (x 1 (t),..., x n (t), u 1 (t),..., u m (t), t) Equazioni algebriche Le uscite al tempo t possono essere calcolate a partire da stati e ingressi allo stesso istante di tempo Gli argomenti delle funzioni g 1,,..., g p sono, al più, stati, ingressi e tempo Ferrari Trecate, Raimondo (DIII) Introduzione ai sistemi dinamici Fondamenti di Automatica 5 / 14

6 Notazione vettoriale x 1 (t) u 1 (t) y 1 (t) x(t) =., u(t) =., y(t) =. x n (t) u m (t) y p (t) f 1 (x(t), u(t), t) g 1 (x(t), u(t), t) f (x(t), u(t), t) =., g(x(t), u(t), t) =. f n (x(t), u(t), t) g p (x(t), u(t), t) Sistema dinamico ẋ(t) = f (x(t), u(t), t) y(t) = g(x(t), u(t), t) Ferrari Trecate, Raimondo (DIII) Introduzione ai sistemi dinamici Fondamenti di Automatica 6 / 14

7 Movimento di stato Definizione Il movimento di stato generato da x(t 0 ) = x 0 e u(t), t t 0 è la soluzione x(t), t t 0, delle equazioni di stato. Il corrispondente movimento d uscita è la funzione y(t), t t 0, calcolata tramite le trasformazioni d uscita. Notazione ove φ è detta funzione di transizione. x(t) = φ(t, t 0, x 0, u) Ferrari Trecate, Raimondo (DIII) Introduzione ai sistemi dinamici Fondamenti di Automatica 7 / 14

8 Classi di sistemi dinamici ẋ(t) = f (x(t), u(t), t) y(t) = g(x(t), u(t), t) x(t 0 ) = x 0, t t 0 x(t) R n u(t) R m y(t) R p Sistema SISO (Single-Input Single-Output) se m = p = 1. Sistema MIMO (Multi-Input Multi-Output) altrimenti. Sistema strettamente proprio se g non dipende da u. Se no, proprio Sistema statico se g non dipende da x descritto dalle sole trasformazioni di uscita y(t) = g(u(t), t). Si può assumere n = 0. Ferrari Trecate, Raimondo (DIII) Introduzione ai sistemi dinamici Fondamenti di Automatica 8 / 14

9 Classi di sistemi dinamici ẋ(t) = f (x(t), u(t), t) y(t) = g(x(t), u(t), t) x(t 0 ) = x 0 x(t) R n u(t) R m y(t) R p Sistema tempo-invariante se f e g non dipendono esplicitamente da t ẋ(t) = f (x(t), u(t)) y(t) = g(x(t), u(t)) Ferrari Trecate, Raimondo (DIII) Introduzione ai sistemi dinamici Fondamenti di Automatica 9 / 14

10 Classi di sistemi dinamici Sistema tempo-invariante Proprietà chiave Siano ẋ(t) = f (x(t), u(t)) y(t) = g(x(t), u(t)) t 1 > t 0 e Δt = t 1 t 0 x(t) = φ(t, t 0, x 0, u) e y(t) il movimento d uscita corrispondente x(t) = φ(t, t 1, x 0, ũ), ove ũ(t) = u(t Δt), t t 1 e ỹ(t) il movimento d uscita corrispondente Allora x(t) = x(t Δt) e ỹ(t) = y(t Δt) Conseguenza L istante iniziale non modifica le proprietà delle traiettorie. Non è limitativo assumere t 0 = 0. Ferrari Trecate, Raimondo (DIII) Introduzione ai sistemi dinamici Fondamenti di Automatica 10 / 14

11 Classi di sistemi dinamici Sistema tempo-invariante ẋ(t) = f (x(t), u(t)) y(t) = g(x(t), u(t)) u u ~ t 0 1 t t x x ~ t 0 1 t t Ferrari Trecate, Raimondo (DIII) Introduzione ai sistemi dinamici Fondamenti di Automatica 11 / 14

12 Classi di sistemi dinamici Sistema lineare Un sistema è lineare se f e g sono funzioni lineari in x e u ẋ(t) = A(t)x(t) + B(t)u(t) y(t) = C(t)x(t) + D(t)u(t) A(t), B(t), C(t), D(t) matrici Sistema Lineare Tempo Invariante (LTI) ẋ(t) = Ax(t) + Bu(t) y(t) = Cx(t) + Du(t) A, B, C, D matrici Ferrari Trecate, Raimondo (DIII) Introduzione ai sistemi dinamici Fondamenti di Automatica 12 / 14

13 Classi di sistemi dinamici Sistemi a dimensione infinita I sistemi precedenti sono anche detti a dimensione finita (o a parametri concentrati) perchè x(t) è costituito da n < + componenti Un sistema è a dimensione infinita (o a parametri distribuiti) se lo stato è x(t, ξ) ove ξ R q sono parametri addizionali Usualmente le equazioni di stato sono equazioni differenziali alle derivate parziali t,,..., ξ 1 ξ q Ferrari Trecate, Raimondo (DIII) Introduzione ai sistemi dinamici Fondamenti di Automatica 13 / 14

14 Classi di sistemi dinamici Un sistema a dimensione infinita Il ritardo di tempo è il sistema SISO descritto dalla relazione di ingresso-uscita y(t) = u(t τ), τ > 0 Esempio: nastro trasportatore che si muove con velocità costante v ove u(t) e y(t) sono le portate di sabbia in ingresso e uscita τ = l v. Stato: densità di sabbia x(t, ξ 1 ) in ogni punto ξ 1 del nastro. Fenomeno di trasporto: stato e ingresso sono legati da un equazione differenziale alle derivate parziali Ferrari Trecate, Raimondo (DIII) Introduzione ai sistemi dinamici Fondamenti di Automatica 14 / 14

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Introduzione e modellistica dei sistemi Introduzione allo studio dei sistemi Modellistica dei sistemi dinamici elettrici Modellistica dei sistemi dinamici meccanici Modellistica

Dettagli

Analisi dei Sistemi Esercitazione 1

Analisi dei Sistemi Esercitazione 1 Analisi dei Sistemi Esercitazione Soluzione 0 Ottobre 00 Esercizio. Sono dati i seguenti modelli matematici di sistemi dinamici. ÿ(t) + y(t) = 5 u(t)u(t). () t ÿ(t) + tẏ(t) + y(t) = 5sin(t)ü(t). () ẋ (t)

Dettagli

TEORIA DEI SISTEMI SISTEMI LINEARI

TEORIA DEI SISTEMI SISTEMI LINEARI TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI SISTEMI LINEARI Ing. Cristian Secchi Tel.

Dettagli

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1 Alcuni esercizi risolti su: - calcolo dell equilibrio di un sistema lineare e valutazione delle proprietà di stabilità dell equilibrio attraverso linearizzazione - calcolo del movimento dello stato e dell

Dettagli

Fondamenti di Automatica. Unità 3 Equilibrio e stabilità di sistemi dinamici

Fondamenti di Automatica. Unità 3 Equilibrio e stabilità di sistemi dinamici Fondamenti di Automatica Unità 3 Equilibrio e stabilità di sistemi dinamici Equilibrio e stabilità di sistemi dinamici Equilibrio di sistemi dinamici Linearizzazione di sistemi dinamici Stabilità interna

Dettagli

Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo

Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo Parte 2, 1 Parte 2, 2 Elementi di Teoria dei Sistemi Definizione di sistema dinamico Parte 2, 3 Sistema dinamico a tempo continuo Cosa significa Dinamico? Parte 2, 4? e` univocamente determinata? Ingresso

Dettagli

01. Modelli di Sistemi

01. Modelli di Sistemi Controlli Automatici 01. Modelli di Sistemi Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Proprietà strutturali e leggi di controllo aggiungibilità e controllabilità etroazione statica dallo stato Osservabilità e rilevabilità Stima dello stato e regolatore dinamico

Dettagli

Controlli Automatici e Teoria dei Sistemi Esempi di sistemi dinamici

Controlli Automatici e Teoria dei Sistemi Esempi di sistemi dinamici Controlli Automatici e Teoria dei Sistemi Esempi di sistemi dinamici Prof. Roberto Guidorzi Dipartimento di Elettronica, Informatica e Sistemistica Università di Bologna Viale del Risorgimento 2, 40136

Dettagli

Docente: Pierpaolo Puddu

Docente: Pierpaolo Puddu Corso di Dinamica e Controllo dei Sistemi Energetici A.A. 2012-2013 Docente: Pierpaolo Puddu ORA Lunedì Martedì Mercoledì Giovedì Venerdì 08-09 X X 09-10 X 10-11 X 11-12 X 12-13 X 15-16 16-17 17-18 18-19

Dettagli

Introduzione e modellistica dei sistemi

Introduzione e modellistica dei sistemi Introduzione e modellistica dei sistemi Modellistica dei sistemi dinamici termici Elementi fondamentali Scrittura delle equazioni dinamiche Rappresentazione in variabili di stato Esempio di rappresentazione

Dettagli

Lo studio dell evoluzione libera nei sistemi dinamici

Lo studio dell evoluzione libera nei sistemi dinamici Lo studio dell evoluzione libera nei sistemi dinamici December, Un sistema lineare, dinamico, a dimensione finita e continuo (ovvero in cui il tempo t appartiene all insieme dei reali) può essere descritto

Dettagli

Consideriamo un sistema dinamico tempo-invariante descritto da:

Consideriamo un sistema dinamico tempo-invariante descritto da: IL PROBLEMA DELLA STABILITA Il problema della stabilità può essere affrontato in vari modi. Quella adottata qui, per la sua riconosciuta generalità ed efficacia, è l impostazione classica dovuta a M. A.

Dettagli

Controlli Automatici I

Controlli Automatici I Ingegneria Elettrica Politecnico di Torino Luca Carlone Controlli Automatici I LEZIONE V Sommario LEZIONE V Proprietà strutturali Controllabilità e raggiungibilità Raggiungibilità nei sistemi lineari Forma

Dettagli

CONTROLLI AUTOMATICI Ingegneria Gestionale MODELLI DI SISTEMI

CONTROLLI AUTOMATICI Ingegneria Gestionale  MODELLI DI SISTEMI CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm MODELLI DI SISTEMI Ing. Federica Grossi Tel. 059 2056333 e-mail: federica.grossi@unimore.it

Dettagli

1 a PROVA PARZIALE DI FONDAMENTI DI AUTOMATICA A.A. 2004/ novembre Soluzione

1 a PROVA PARZIALE DI FONDAMENTI DI AUTOMATICA A.A. 2004/ novembre Soluzione a PROVA PARZIAE DI FONDAMENTI DI AUTOMATIA A.A. 24/25 9 novembre 24 Esercizio on riferimento alla funzione di trasferimento G(s) = 7s2 + 36s + 48 (s + 3)(s + 4) 2 Domanda.. Indicare i valori del guadagno,

Dettagli

1 Equazioni Differenziali

1 Equazioni Differenziali Equazioni Differenziali Un equazione differenziale è un equazione che esprime un legame tra una variabile indipendente x (o t, quando ci riferiamo al tempo) una variabile dipendente y o incognita che sta

Dettagli

Introduzione e modellistica dei sistemi

Introduzione e modellistica dei sistemi Introduzione e modellistica dei sistemi Modellistica dei sistemi dinamici meccanici Sistemi meccanici in traslazione: elementi base Sistemi in traslazione: equazioni del moto Sistemi in traslazione: rappresentazione

Dettagli

Equilibrio e stabilità di sistemi dinamici. Linearizzazione di sistemi dinamici

Equilibrio e stabilità di sistemi dinamici. Linearizzazione di sistemi dinamici Eqilibrio e stabilità di sistemi dinamici Linearizzazione di sistemi dinamici Linearizzazione di sistemi dinamici Linearizzazione di na fnzione reale Linearizzazione di n sistema dinamico Esempi di linearizzazione

Dettagli

4 Analisi nel dominio del tempo delle rappresentazioni in

4 Analisi nel dominio del tempo delle rappresentazioni in Indice del libro Alessandro Giua, Carla Seatzu Analisi dei sistemi dinamici, Springer-Verlag Italia, II edizione, 2009 Pagina web: http://www.diee.unica.it/giua/asd/ Prefazione.....................................................

Dettagli

Analisi Numerica. Debora Botturi ALTAIR. Debora Botturi. Laboratorio di Sistemi e Segnali

Analisi Numerica. Debora Botturi ALTAIR.  Debora Botturi. Laboratorio di Sistemi e Segnali Analisi Numerica ALTAIR http://metropolis.sci.univr.it Argomenti Argomenti Argomenti Rappresentazione di sistemi con variabili di stato; Tecniche di integrazione numerica Obiettivo: risolvere sistemi di

Dettagli

Analisi sismica di un sistema lineare viscoso a più gradi di libertà con il metodo dello Spettro di Risposta

Analisi sismica di un sistema lineare viscoso a più gradi di libertà con il metodo dello Spettro di Risposta Analisi sismica di un sistema lineare viscoso a più gradi di libertà con il metodo dello Spettro di Risposta Prof. Adolfo Santini - Dinamica delle Strutture 1 Analisi sismica con lo spettro di risposta

Dettagli

Sistemi dinamici-parte 2 Parentesi di Poisson e trasformazioni canoniche

Sistemi dinamici-parte 2 Parentesi di Poisson e trasformazioni canoniche Sistemi dinamici-parte 2 Parentesi di e trasformazioni AM Cherubini 11 Maggio 2007 1 / 25 Analogamente a quanto fatto per i sistemi lagrangiani occorre definire, insieme alla struttura del sistema, anche

Dettagli

CONTROLLI AUTOMATICI LS Ingegneria Informatica SISTEMI E MODELLI

CONTROLLI AUTOMATICI LS Ingegneria Informatica SISTEMI E MODELLI CONTROLLI AUTOMATICI LS Ingegneria Informatica SISTEMI E MODELLI Prof. Claudio Melchiorri DEIS-Università di Bologna Tel. 051 2093034 e-mail: claudio.melchiorri@unibo.it http://www-lar.deis.unibo.it/~cmelchiorri

Dettagli

Equazioni differenziali lineari del secondo ordine a coefficienti costanti

Equazioni differenziali lineari del secondo ordine a coefficienti costanti Equazioni differenziali lineari del secondo ordine a coefficienti costanti 0.1 Introduzione Una equazione differenziale del secondo ordine è una relazione del tipo F (t, y(t), y (t), y (t)) = 0 (1) Definizione

Dettagli

TECNICHE DI CONTROLLO

TECNICHE DI CONTROLLO TECNICHE DI CONTROLLO Richiami di Teoria dei Sistemi Dott. Ing. SIMANI SILVIO con supporto del Dott. Ing. BONFE MARCELLO Sistemi e Modelli Concetto di Sistema Sistema: insieme, artificialmente isolato

Dettagli

FONDAMENTI DI AUTOMATICA

FONDAMENTI DI AUTOMATICA Corso di laurea in Ingegneria delle Telecomunicazioni Guido Guardabassi FONDAMENTI DI AUTOMATICA NOTE COMPLEMENTARI LEZ. II : Sistemi POLITECNICO DI MILANO 4. Sistemi dinamici Il connotato qualificante

Dettagli

Risposta a regime (per ingresso costante e per ingresso sinusoidale)

Risposta a regime (per ingresso costante e per ingresso sinusoidale) Risposta a regime (per ingresso costante e per ingresso sinusoidale) Esercizio 1 (es. 1 del Tema d esame del 18-9-00) s + 3) 10 ( s + 1)( s + 4s ) della risposta all ingresso u ( a gradino unitario. Non

Dettagli

Esercizi di Fondamenti di Sistemi Dinamici

Esercizi di Fondamenti di Sistemi Dinamici Giuseppe Fusco Esercizi di Fondamenti di Sistemi Dinamici ARACNE Copyright MMVIII ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133 a/b 00173 Roma (06 93781065

Dettagli

TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI

TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI Ing. Cristian

Dettagli

A1.1 Rappresentazione interna ed esterna di un sistema dinamico

A1.1 Rappresentazione interna ed esterna di un sistema dinamico A1 Sistemi AC e RSS Questa breve Appendice 1 vuole fornire al lettore le nozioni di base sui sistemi dinamici che nella stesura del testo sono dati per noti. Non è dunque una rassegna equilibrata della

Dettagli

CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica

CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica CONTROLLO DI SISTEMI ROBOTICI ANALISI DEI SISTEMI LTI Ing. Tel. 0522 522235 e-mail: secchi.cristian@unimore.it http://www.dismi.unimo.it/members/csecchi

Dettagli

Lezione 20: Stima dello stato di un sistema dinamico

Lezione 20: Stima dello stato di un sistema dinamico ELABORAZIONE dei SEGNALI nei SISTEMI di CONTROLLO Lezione 20: Stima dello stato di un sistema dinamico Motivazioni Formulazione del problema Osservazione dello stato Osservabilità Osservatore asintotico

Dettagli

Esempi di modelli fisici

Esempi di modelli fisici 0.0..2 Esempi di modelli fisici ) Dinamica del rotore di un motore elettrico. Si consideri un elemento meccanico con inerzia J, coefficiente di attrito lineare che ruota alla velocità angolare ω al quale

Dettagli

Esempio: Modelli compartimentali per la farmacocinetica

Esempio: Modelli compartimentali per la farmacocinetica Esempio: Modelli compartimentali per la farmacocinetica I modelli compartimentali sono descrizioni matematiche tipicamente utilizzate per organismi biologici; in tali rappresentazioni un organismo viene

Dettagli

Analisi Matematica 2 Ingegneria Gestionale Docenti: B. Rubino e R. Sampalmieri L Aquila, 21 marzo 2005

Analisi Matematica 2 Ingegneria Gestionale Docenti: B. Rubino e R. Sampalmieri L Aquila, 21 marzo 2005 Analisi Matematica 2 Ingegneria Gestionale Docenti: B. Rubino e R. Sampalmieri L Aquila, 21 marzo 2005 Prova orale il: Docente: Determinare, se esistono, il massimo ed il minimo assoluto della funzione

Dettagli

Corso di elettrotecnica Materiale didattico: variabili di stato

Corso di elettrotecnica Materiale didattico: variabili di stato Corso di elettrotecnica Materiale didattico: variabili di stato A. Laudani 16 novembre 2006 1 Introduzione Si è già visto come una rete elettrica possa essere descritta mediante un sistema di equazioni

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica STRUMENTI MATEMATICI PER L ANALISI DEI SISTEMI DISCRETI Ing. Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO. Sistema lineare stazionario a tempo continuo in equazioni di stato. = Cx(t) + Du(t) x(0) = x 0

MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO. Sistema lineare stazionario a tempo continuo in equazioni di stato. = Cx(t) + Du(t) x(0) = x 0 MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO Sistema lineare stazionario a tempo continuo in equazioni di stato ẋ(t) y(t) = Ax(t) + Bu(t) = Cx(t) + Du(t) x() = x Risposta completa (risposta libera e

Dettagli

COMPLEMENTI SUI DIFFERENZIALI ESATTI E L INTEGRAZIONE DI FORME DIFFERENZIALI

COMPLEMENTI SUI DIFFERENZIALI ESATTI E L INTEGRAZIONE DI FORME DIFFERENZIALI COMPLEMENTI SUI DIFFERENZIALI ESATTI E L INTEGRAZIONE DI FORME DIFFERENZIALI Sergio Console Derivate parziali (notazione) Data una funzione z = f(x, y), si può pensare di tener fissa la variabile y (considerandola

Dettagli

Appunti della lezione sulla Equazione Differenziale delle Onde

Appunti della lezione sulla Equazione Differenziale delle Onde Appunti della lezione sulla Equazione Differenziale delle Onde ultima revisione: 21 giugno 2017 In tutti i casi analizzati precedentemente si osserva che le onde obbediscono alla stessa Equazione Differenziale

Dettagli

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema

Dettagli

3. Sistemi Lineari a Tempo Discreto

3. Sistemi Lineari a Tempo Discreto . Sistemi Lineari a Tempo Discreto .5 y(t), y(kt) 4 y(t), y(kt).5.5.5.5.5 4 5 4 5 Campionamento di un segnale continuo Fig. (a) Segnale discreto Fig. (b) Esprimono relazioni fra variabili campionate ad

Dettagli

Modello matematico di un sistema fisico

Modello matematico di un sistema fisico Capitolo 1. INTRODUZIONE 1.1 Modello matematico di un sistema fisico La costruzione del modello matematico è anche un procedimento che permette di comprendere a pieno il fenomeno fisico che si vuol descrivere.

Dettagli

Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2

Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2 Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it

Dettagli

Teoria dei Segnali Richiami di analisi matematica; alcune funzioni notevoli

Teoria dei Segnali Richiami di analisi matematica; alcune funzioni notevoli Teoria dei Segnali Richiami di analisi matematica; alcune funzioni notevoli Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria dei Segnali Richiami

Dettagli

Forme differenziali lineari

Forme differenziali lineari Forme differenziali lineari Sia Ω R un insieme aperto e siano A, B, C: Ω R funzioni continue in Ω. Si definisce forma differenziale ω in Ω l espressione ω = A(x, y, z)dx + B(x, y, z)dy + C(x, y, z)dz Data

Dettagli

5. Per ω = 1/τ il diagramma reale di Bode delle ampiezze della funzione G(jω) =

5. Per ω = 1/τ il diagramma reale di Bode delle ampiezze della funzione G(jω) = Fondamenti di Controlli Automatici - A.A. 211/12 3 luglio 212 - Domande Teoriche Cognome Nome: Matricola: Corso di Laurea: Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni

Dettagli

Analisi del moto dei proietti

Analisi del moto dei proietti Moto dei proietti E il moto di particelle che vengono lanciate con velocità iniziale v 0 e sono soggette alla sola accelerazione di gravità g supposta costante. La pallina rossa viene lasciata cadere da

Dettagli

Bilancio di energia: il Primo Principio della Termodinamica. Termodinamica dell Ingegneria Chimica

Bilancio di energia: il Primo Principio della Termodinamica. Termodinamica dell Ingegneria Chimica Bilancio di energia: il Primo Principio della Termodinamica Termodinamica dell Ingegneria Chimica 1 I Sistemi termodinamici Un sistema è definito da una superficie di controllo, reale o immaginaria, che

Dettagli

Compito del 14 giugno 2004

Compito del 14 giugno 2004 Compito del 14 giugno 004 Un disco omogeneo di raggio R e massa m rotola senza strisciare lungo l asse delle ascisse di un piano verticale. Il centro C del disco è collegato da una molla di costante elastica

Dettagli

Modellistica dei Sistemi Meccanici

Modellistica dei Sistemi Meccanici 1 Prof. Carlo Cosentino Fondamenti di Automatica, A.A. 016/17 Corso di Fondamenti di Automatica A.A. 016/17 odellistica dei Sistemi eccanici Prof. Carlo Cosentino Dipartimento di edicina Sperimentale e

Dettagli

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada 16 Luglio 2014

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada 16 Luglio 2014 Politecnico di Milano Fondamenti di Automatica (CL Ing. Gestionale) a.a.2013-14 Prof. Silvia Strada 16 Luglio 2014 Nome e Cognome:........................... Matricola........................... Firma............................................................................

Dettagli

Elementi di Algebra Lineare. Spazio Vettoriale (lineare)

Elementi di Algebra Lineare. Spazio Vettoriale (lineare) Elementi di Algebra Lineare Spazio Vettoriale (lineare) Uno spazio vettoriale su un corpo F è una quadrupla (X, F, +, ) costituita da: un insieme di elementi X, detti vettori, un corpo F, i cui elementi

Dettagli

Introduzione a MATLAB

Introduzione a MATLAB Introduzione a MATLAB Principali comandi MATLAB utili per il corso di Fondamenti di Automatica 01AYS Politecnico di Torino Sistemi dinamici LTI 1. Simulazione a tempo continuo Definizione del sistema Per

Dettagli

Raggiungibilità, Controllabilità, Osservabilità e Determinabilità

Raggiungibilità, Controllabilità, Osservabilità e Determinabilità Raggiungibilità, Controllabilità, Osservabilità e Determinabilità Si determini se i sistemi lineari tempo invarianti ẋ(t) = Ax(t) + Bu(t), Σ c : y(t) = Cx(t) + Du(t). x(k + ) = Ax(k) + Bu(k), Σ d : y(k)

Dettagli

MECCANICA COMPUTAZIONALE DELLE STRUTTURE

MECCANICA COMPUTAZIONALE DELLE STRUTTURE MECCANICA COMPUTAZIONALE DELLE STRUTTURE Elio Sacco Dipartimento di Meccanica Strutture Ambiente Territorio Università di Cassino Tel: 776.993659 Email: sacco@unicas.it Fenomeno in natura Leggi della fisica

Dettagli

7. Equazioni differenziali

7. Equazioni differenziali 18 Sezione 7. Equazioni differenziali 7. Equazioni differenziali [versione: 25/5/2012] Richiamo delle nozioni fondamentali In un equazione differenziale l incognita da determinare è una funzione (e non

Dettagli

RICHIAMI MATEMATICI. x( t)

RICHIAMI MATEMATICI. x( t) 0.0. 0.1 1 RICHIAMI MATEMATICI Funzioni reali del tempo: (t) : t (t) (t) ( t) Funzioni reali dell ingresso: y() t t y( ) y() : y() Numeri complessi. Un numero complesso è una coppia ordinata di numeri

Dettagli

Data un azione, le due opzioni call e put (europee, scadenza t0 ) con prezzo di esercizio X in ogni tempo t < t0 si ha

Data un azione, le due opzioni call e put (europee, scadenza t0 ) con prezzo di esercizio X in ogni tempo t < t0 si ha 0) limitazioni prezzo call Data un azione, le due opzioni call e put (europee, scadenza t0 ) con prezzo di esercizio X in ogni tempo t < t0 si ha γ(t)x + c(t) = A(t) + p(t) con A(t) prezzo dell azione,

Dettagli

Capitolo 6. Sistemi lineari di equazioni differenziali. 1

Capitolo 6. Sistemi lineari di equazioni differenziali. 1 Capitolo 6 Sistemi lineari di equazioni differenziali L integrale generale In questo capitolo utilizzeremo la forma canonica di Jordan per studiare alcuni tipi di equazioni differenziali Un sistema lineare

Dettagli

Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I):

Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I): Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni Parte I: 06-07-06 Problema. Un punto si muove nel piano xy con equazioni xt = t 4t, yt = t 3t +. si calcolino le leggi orarie per le

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Dinamica dei sistemi materiali Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile;

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile; 1 Esercizi svolti Esercizio 1. Con riferimento al sistema di figura, calcolare: ut) + K s s + 6 s 3 yt) a) la funzione di trasferimento a ciclo chiuso tra ut) e yt); b) i valori di K per i quali il sistema

Dettagli

Sistemi vibranti ad 1 gdl

Sistemi vibranti ad 1 gdl Università degli Studi di Bergamo Dipartimento di Ingegneria Sistemi vibranti ad 1 gdl - vibrazioni forzate - rev. 1. Le vibrazioni forzate di un sistema ad 1 gdl sono descritte dall equazione: mẍ + cẋ

Dettagli

SISTEMI LINEARI A COEFFICIENTE COSTANTE

SISTEMI LINEARI A COEFFICIENTE COSTANTE SISTEMI LINEARI A COEFFICIENTE COSTANTE Per studiare la velocità, la precisione e la stabilità di un sistema bisogna individuare il modello matematico del sistema Abbiamo visto che un sistema di controllo

Dettagli

Risposta temporale: esempi

Risposta temporale: esempi ...4 Risposta temporale: esempi Esempio. Calcolare la risposta al gradino unitario del seguente sistema: x(t) = u(t) s + 5 (s + )(s + ) y(t) Il calcolo della trasformata del segnale di uscita è immediato:

Dettagli

Note sul sistema di Lotka-Volterra. Prima versione. Commenti e correzioni sono benvenuti.

Note sul sistema di Lotka-Volterra. Prima versione. Commenti e correzioni sono benvenuti. Ottobre 2016 Note sul sistema di Lotka-Volterra Prima versione. Commenti e correzioni sono benvenuti. 1 Introduzione Il sistema di Lotka Volterra (LV), o sistema preda predatore è probabilmente il primo

Dettagli

Calcolo del movimento di sistemi dinamici LTI. Soluzione per sistemi dinamici LTI TD

Calcolo del movimento di sistemi dinamici LTI. Soluzione per sistemi dinamici LTI TD Calcolo del movimento di sistemi dinamici LTI Soluzione per sistemi dinamici LTI TD Soluzione per sistemi LTI TD Soluzione nel dominio del tempo Soluzione nel dominio della frequenza Esempio di soluzione

Dettagli

Equazioni differenziali. Elisabetta Colombo

Equazioni differenziali. Elisabetta Colombo Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 2011-2012, http://users.mat.unimi.it/users/colombo/programmabio.html Inversa Eq. diff. 1 Un equazione differenziale e un equazione

Dettagli

Automatica. Prof. Giancarlo Ferrari Trecate. Dipartimento di Informatica e Sistemistica Università degli Studi di Pavia

Automatica. Prof. Giancarlo Ferrari Trecate. Dipartimento di Informatica e Sistemistica Università degli Studi di Pavia Automatica Prof. Giancarlo Ferrari Trecate Dipartimento di Informatica e Sistemistica Università degli Studi di Pavia giancarlo.ferrari@unipv.it Informazioni utili Orario lezioni: Mercoledì: 16 18 (aula

Dettagli

Attrito statico e attrito dinamico

Attrito statico e attrito dinamico Forza di attrito La presenza delle forze di attrito fa parte dell esperienza quotidiana. Se si tenta di far scorrere un corpo su una superficie, si sviluppa una resistenza allo scorrimento detta forza

Dettagli

LE EQUAZIONI DIFFERENZIALI. che, insieme alle loro derivate, soddisfano un equazione differenziale.

LE EQUAZIONI DIFFERENZIALI. che, insieme alle loro derivate, soddisfano un equazione differenziale. LE EQUAZIONI DIFFERENZIALI I problemi incontrati fin ora nel corso di studi di matematica erano tutti di tipo numerico, cioè la loro risoluzione ha sempre portato alla determinazione di uno o più numeri

Dettagli

Applicazioni delle leggi della meccanica: moto armnico

Applicazioni delle leggi della meccanica: moto armnico Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di

Dettagli

x =0 x 1 x 2 Esercizio (tratto dal Problema 1.4 del Mazzoldi)

x =0 x 1 x 2 Esercizio (tratto dal Problema 1.4 del Mazzoldi) 1 Esercizio (tratto dal Problema 1.4 del Mazzoldi) Un punto materiale si muove con moto uniformemente accelerato lungo l asse x. Passa per la posizione x 1 con velocità v 1 1.9 m/s, e per la posizione

Dettagli

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 Grandezze angolari Lineare Angolare Relazione x θ x = rθ v ω v = ωr a α a = αr m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 2 Iω 2 Energia cinetica In forma vettoriale: v = ω r questa collega la velocità angolare

Dettagli

Leggi di capitalizzazione e di attualizzazione

Leggi di capitalizzazione e di attualizzazione Sommario Alcuni appunti di supporto al corso di Matematica Finanziaria (L-Z) Facoltà di Economia & Management- Università di Ferrara Sommario Parte I: Funzioni di capitalizzazione Parte II: Capitalizzazione

Dettagli

Prova di AUTOVALUTAZIONE (novembre 2009). nota: l esame ha validità solo se incluso nel piano degli studi per l anno accademico corrente.

Prova di AUTOVALUTAZIONE (novembre 2009). nota: l esame ha validità solo se incluso nel piano degli studi per l anno accademico corrente. UNIVERSITA DEGLI STUDI ROMA TRE CdS in Ingegneria Informatica corso di FONDAMENTI DI TELECOMUNICAZIONI Prova di AUTOVALUTAZIONE (novembre 2009). COMPITO A nota: l esame ha validità solo se incluso nel

Dettagli

Modellistica di sistemi elettromeccanici

Modellistica di sistemi elettromeccanici Modellistica di sistemi elettromeccanici Legge di Lorentz: una carica elettrica q che si muove con velocità v(t) relativamente ad un campo magnetico di induzione B(t) è soggetta ad una forza v(t) q α B(t)

Dettagli

Funzioni vettoriali di variabile scalare

Funzioni vettoriali di variabile scalare Capitolo 11 Funzioni vettoriali di variabile scalare 11.1 Curve in R n Abbiamo visto (capitolo 2) come la posizione di un punto in uno spazio R n sia individuata mediante le n coordinate di quel punto.

Dettagli

Introduzione alla Meccanica: Cinematica

Introduzione alla Meccanica: Cinematica Introduzione alla Meccanica: Cinematica La Cinematica si occupa della descrizione geometrica del moto, senza riferimento alle sue cause. E invece compito della Dinamica mettere in relazione il moto con

Dettagli

Reti nel dominio del tempo. Lezione 7 1

Reti nel dominio del tempo. Lezione 7 1 Reti nel dominio del tempo Lezione 7 1 Poli (o frequenze naturali) di una rete Lezione 7 2 Definizione 1/2 Il comportamento qualitativo di una rete dinamica dipende dalle sue frequenze naturali o poli

Dettagli

OSCILLATORE ARMONICO SEMPLICE

OSCILLATORE ARMONICO SEMPLICE OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato

Dettagli

Derivata materiale (Lagrangiana) e locale (Euleriana)

Derivata materiale (Lagrangiana) e locale (Euleriana) ispense di Meccanica dei Fluidi 0 0 det 0 = [ (0 ) + ( ( ) ) + (0 0 ) ] = 0. Pertanto, v e µ sono indipendenti tra loro e costituiscono una nuova base. Con essi è possibile descrivere altre grandezze,

Dettagli

Soluzione degli esercizi del Capitolo 13

Soluzione degli esercizi del Capitolo 13 Soluzione degli esercizi del Capitolo 3 Soluzione dell Esercizio 3. Il polinomio caratteristico desiderato è ϕ (s) = (s + 4) (s + ) = s 2 + 4s + 4 Uguagliando i coefficienti quelli del polinomio caratteristico

Dettagli

Corso di Fondamenti di Telecomunicazioni Esercizi Teoria dei segnali Prof. Giovanni Schembra

Corso di Fondamenti di Telecomunicazioni Esercizi Teoria dei segnali Prof. Giovanni Schembra Corso di Fondamenti di Telecomunicazioni Esercizi Teoria dei segnali Prof. Giovanni Schembra Sommario CARATTERISTICHE DEI SEGNALI DETERMINATI.... ESERCIZIO.... ESERCIZIO... 5.3 ESERCIZIO 3 CONVOLUZIONE...

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondamenti di segnali Fondamenti e trasmissione TLC Introduzione Se il segnale d ingresso di un sistema Lineare Tempo-Invariante (LTI e un esponenziale

Dettagli

Equazioni differenziali ordinarie (ODE) lineari del secondo ordine a coefficienti costanti

Equazioni differenziali ordinarie (ODE) lineari del secondo ordine a coefficienti costanti Equazioni differenziali ordinarie (ODE) lineari del secondo ordine a coefficienti costanti Fulvio Bisi Corso di Analisi Matematica A (ca) Università di Pavia Facoltà di Ingegneria 1 ODE lineari del secondo

Dettagli

Prova scritta di Controlli Automatici

Prova scritta di Controlli Automatici Prova scritta di Controlli Automatici Corso di Laurea in Ingegneria Meccatronica, AA 2011 2012 10 Settembre 2012 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare

Dettagli

Note a cura di M. Martellini e M. Zeni

Note a cura di M. Martellini e M. Zeni Università dell Insubria Corso di laurea Scienze Ambientali FISICA GENERALE Lezione 1 Introduzione Note a cura di M. Martellini e M. Zeni Queste note sono state in parte preparate con immagini tratte da

Dettagli

Teoria dei Segnali. 1 Proprietà della trasformata di Fourier. correlazione tra segnali; autocorrelazione

Teoria dei Segnali. 1 Proprietà della trasformata di Fourier. correlazione tra segnali; autocorrelazione Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it

Dettagli

Cenni sull integrazione numerica delle equazioni differenziali. Corso di Dinamica e Simulazione dei Sistemi Meccanici

Cenni sull integrazione numerica delle equazioni differenziali. Corso di Dinamica e Simulazione dei Sistemi Meccanici Cenni sull integrazione numerica delle equazioni differenziali Corso di Dinamica e Simulazione dei Sistemi Meccanici 9 ottobre 009 Introduzione La soluzione analitica dell integrale di moto di sistemi

Dettagli

Pulse Amplitude Modulation (PAM) 2 Scelta delle risposte impulsive dei filtri in trasmissione e ricezione

Pulse Amplitude Modulation (PAM) 2 Scelta delle risposte impulsive dei filtri in trasmissione e ricezione Pulse Amplitude Modulation (PAM 1 Definizione La trasmissione di una sequenza di numeri {a k } mediante un onda PAM consiste nel generare, a partire dalla sequenza {a k } il segnale a tempo continuo u(t

Dettagli

Teoria dei Sistemi e Controlli Automatici M

Teoria dei Sistemi e Controlli Automatici M Teoria dei Sistemi e Controlli Automatici M 3 marzo 23 Figura : Prototipo di quadrirotore. Modello del Velivolo Si fissi un sistema di riferimento inerziale F i = {O i, i i, j i, k i } ed un sistema di

Dettagli

Realtà virtuale e Robotica

Realtà virtuale e Robotica Realtà virtuale e Robotica Antonio Tornambè Dipartimento di Informatica, Sistemi e Produzione Università di Roma Tor Vergata Via del Politecnico, 1, 00133 Roma Tel 06 72597431 email tornambe@disp.uniroma2.it

Dettagli

Equazioni differenziali. f(x, u, u,...,u (n) )=0,

Equazioni differenziali. f(x, u, u,...,u (n) )=0, Lezione Equazioni differenziali Un equazione differenziale è una relazione del tipo f(x, u, u,...,u (n) )=, che tiene conto del valori di una funzione (incognita) u e delle sue derivate fino ad un certo

Dettagli

Funzione di trasferimento

Funzione di trasferimento Funzione ditrasferimento - 1 Corso di Laurea in Ingegneria Meccanica Funzione di trasferimento DEIS-Università di Bologna Tel. 51 2932 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi Definizione

Dettagli

1) Per quale valore minimo della velocità angolare iniziale il cilindro riesce a compiere un giro completo.

1) Per quale valore minimo della velocità angolare iniziale il cilindro riesce a compiere un giro completo. Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I): 04-02-2016 Problema 1. Un punto materiale si muove nel piano su una guida descritta dall equazione y = sin kx [ = 12m, k

Dettagli

SISTEMI E MODELLI. Ingresso Stato Uscita

SISTEMI E MODELLI. Ingresso Stato Uscita CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm Sistemi e Modelli - Dal

Dettagli

Sistemi e segnali a tempo discreto

Sistemi e segnali a tempo discreto Sistemi e segnali a tempo discreto Segnali Per segnale si intende una grandezza fisica qualsiasi a cui è associata informazione. L informazione che trasporta il segnale, lo caratterizza. I segnali possono

Dettagli