REGISTRO DELLE LEZIONI - ESERCITAZIONI - SEMINARI
|
|
|
- Renzo Crippa
- 9 anni fa
- Visualizzazioni
Transcript
1 U N I V E R S I T À D E G L I S T U D I D I P A V I A REGISTRO DELLE LEZIONI - ESERCITAZIONI - SEMINARI del Prof. G i a c o m o D A r i a n o Insegnamento di modulo Fondamenti della Meccanica Quantistica Struttura e interpretazioni della Meccanica Quantistica. impartito presso la Facoltà di scienze matematiche fisiche e naturali Corso di laurea specialistica in Scienze fisiche Anno accademico 2007/08
2 N. prog. 1 data 17 ott Breve introduzione al corso ed illustrazione dettagliata del programma. N. prog. 2 data 5 mar dettagliata. Obiettivi dei due moduli del corso: presentazione N. prog. 3 data 5 mar MODULO: Struttura e interpretazioni della Meccanica Quantistica. Strumenti matematici. Richiami su matrici ed operatori nella notazione di Dirac. Aggiunto, trasposto, coniugato. Identita di polarizzazione. Matrici e sequenze di vettori (operatore di sintesi ed analisi). Operatori come cambiamento di base e spanning sets. N. prog. 4 data 6 mar Proiettori ortogonali e loro ordinamento parziale. Traccia del proiettore. Spazi lineari di un operatore: Ker, Rng, Supp. Rango, di un operatore e relazione di Frobenius. Procedura di Gram Schmidt. Algoritmo QR. Operatori positivi. Radice positiva. Fattorizzazione di Cholesky. Ordinamento parziale di operatori positivi. N. prog. 5 data 6 mar Isometrie. Isometrie parziali. Isometrie in dimensione finita ed infinita. Operatore di shift e fase di oscillatore armonico. N. prog. 6 data 12 mar Semigruppi di isometrie (esercizio). Operatori normali e relativa diagonalizzazione unitaria in dimensione finita. Diagonalizzazione congiunta di operatori Hermitiani commutanti. Decomposizione a valori singolari in dimensione finita. Decomposizione polare in dimensione finita.
3 N. prog. 7 data 12 mar Decomposizione a valori singolari nel formalismo di Dirac. Decomposizione a valori singolari in dimensione infinita. Operatori compatti, Hilbert-Schmidt, classe traccia, limitati. Dualismo. Cenni sul pre-duale. Stati normali. Norme di Schatten. N. prog. 8 data 13 mar Teorema generale estensione unitaria di isometrie parziali in dimensione finita e infinita. Cenni a dimensione infinita: misura spettrale, assiomi di Kolmogorov per la probabilita, sigma-algebra, PVM. N. prog. 9 data 13 mar Introduzione al prodotto tensore: rappresentazione di Kroneker, operatori tensore, traccia parziale, elementi di matrice parziali. Formalismo tensoriale di Dirac per isometrie. Spazio di Hilbert degli operatori di Hilbert Schmidt e corrispondenza con spazi di Hilbert bipartiti. Decomposizione di Schmidt di un vettore bipartito. N. prog. 10 data 26 mar Meccanica quantistica della misurazione con stati puri. Assiomi della Meccanica Quantistica: Assioma 0 (definizione di esperimento). Assioma I (stati). Assioma II (trasformazioni e regola di Born). Deduzione della regola di composizione delle trasformazioni in esperimenti in cascata nonche della riduzione di stato a partire dalle regole di Born e di Bayes. N. prog. 11 data 26 mar Trasformazioni reversibili deterministiche e sistemi chiusi. Equazione di Schroedinger e uniformita del tempo. N. prog. 12 data 27 mar Introduzione al concetto di POVM per spettro discreto e regola di Born. Equivalenza fra ortogonalita e ripetibilita in dimensione finita. Misurazioni ripetibili: minimo disturbo (Luders) e completezza (von Neumann).
4 N. prog. 13 data 27 mar Osservabile. Discussione critica generale. Cenni misura spettrale. Spettro continuo: PVM e POVM. Concetto di densita e validita del formalismo di Dirac. Cenni al problema della ripetibilita per misurazioni a spettro continuo. Necessita misurazione di Luders per misurazioni locali. Schema generale di misurazione indiretta. Deduzione del Postulato II da misurazione indiretta e condizionamento bayesiano. N. prog. 14 data 2 apr Enunciato del teorema di estensione di Naimark per le POVM. N. prog. 15 data 2 apr Dimostrazione del teorema di Naimark per spazio di probabilita discreto. Estensioni di Naimark ancillari, e riduzione ad osservabile. Esercizio: estensione di Bhatia di effetto. Esercizio: estensione di Bhatia-Halmos di contrazione. N. prog. 16 data 3 apr Estensioni di POVM di rango uno (set overcompleti di stati). Esempi di estensione: stati coerenti e operatori di spostamento come base ortonormale di Hilbert Schmidt N. prog. 17 data 3 apr POVM commutanti: la roulette quantistica (esercizio), l osservabile con rumore (esercizio). Discriminabilita di stati. Il teorema del no-cloning e l impossibilita di determinare lo stato di un singolo sistema. N. prog. 18 data 16 apr Meccanica quantistica della misurazione con stati misti. Richiami sull operatore densita. Descrizione astratta di stato e richiami sulla sfera di Bloch. cenni sulla generalizzazione a dimensione maggiore di due.
5 N. prog. 19 data 16 apr Corrispondenza fra stati ed ensembles (esercizio). Purificazioni (esercizio). Stato locale. Stato condizionato. Evoluzioni pure e miste: introduzione alla Quantum Operation. N. prog. 20 data 17 apr Completa positivita. Nozione di quantum operation e canale. Pitture di Heisenberg e Schroedinger. Corrispondenza fra mappe e operatori. N. prog. 21 data 17 apr Decomposizioni di Kraus (canonica e non) e relative connessioni isometriche. Nozione di strumento. N. prog. 22 data 23 apr Teorema di Ozawa: realizzazione dello strumento mediante schema di misurazione indiretta. Dilatazione di Stinespring e realizzazione unitaria di quantum operations. N. prog. 23 data 23 apr Esempi di strumento: il modello di von Neumann generalizzato (includente spettro discreto, i.e. Stern-Gerlach). La misurazione congiunta di osservabili coniugate con minimo prodotto delle indeterminazioni. N. prog. 24 data 24 apr Esempi di strumento: Misurazione ottimale congiunta di osservabili coniugate con indeterminazione minima.
6 N. prog. 25 data 24 apr Esempi di strumento: Misurazione ottimale congiunta di osservabili coniugate con indeterminazione minima. N. prog. 26 data 7 mag Nozioni di teoria quantistica della stima. N. prog. 27 data 7 mag Stima ottima di fase. N. prog. 28 data 8 mag [Principi di tomografia quantistica di stati e trasformazioni.] Sistemi aperti: master equation. Teorema di Lindblad. N. prog. 29 data 8 mag Alcuni esempi di master equations. N. prog. 30 data 14 mag di Popescu. Non localita. Lo stato di singoletto. La macchina
7 N. prog. 31 data 14 mag La disuguaglianza di Klauser Horne Shimony Holt. Discussione sull argomento EPR: realismo locale e incompletezza della meccanica quantistica. N. prog. 32 data 15 mag Stato GHZ e contestualita. L impossibilita della comunicazione superluminale. N. prog. 33 data 15 mag Cenni al teletrasporto. N. prog. 34 data 21 mag MODULO: Teorie della misurazione quantistica. Panoramica sulla teoria della misurazione e interpretazioni. ( tenuta dal prof. A. Rimini). N. prog. 35 data 21 mag Panoramica sulla teoria della misurazione e interpretazioni. ( tenuta dal prof. A. Rimini). N. prog. 36 data 22 mag Panoramica sulla teoria della misurazione e interpretazioni, ( tenuta dal prof. A. Rimini).
8 N. prog. 37 data 22 mag Panoramica sulla teoria della misurazione e interpretazioni. ( tenuta dal prof. A. Rimini). N. prog. 38 data 28 mag L approccio delle storie consistenti di Gell-Mann e Hartle. ( tenuta dal prof. A. Rimini). N. prog. 39 data 28 mag L approccio delle storie consistenti di Gell-Mann e Hartle. ( tenuta dal prof. A. Rimini). N. prog. 40 data 29 mag L approccio delle storie consistenti di Gell-Mann e Hartle. ( tenuta dal prof. A. Rimini). N. prog. 41 data 29 mag L approccio delle storie consistenti di Gell-Mann e Hartle. ( tenuta dal prof. A. Rimini).
9 RIASSUNTO Numero lezioni effettivamente impartite Numero esercitazioni effettivamente impartite Numero seminari effettivamente svolti Numero lezioni perdute per incarichi governativi Numero lezioni perdute per malattia Numero lezioni perdute per altri motivi totale 41
Indice 1 Spazi a dimensione finita... 1 1.1 Primi esempi di strutture vettoriali... 1 1.2 Spazi vettoriali (a dimensione finita)...... 3 1.3 Matrici come trasformazioni lineari...... 5 1.4 Cambiamenti
FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 1 (2015/16)
FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 1 (2015/16) Scopo del corso Lo studente dovrebbe apprendere alla fine di questo corso i contenuti fondamentali della meccanica quantistica e imparare ad applicarli
Lezioni di Meccanica Quantistica
Luigi E. Picasso Lezioni di Meccanica Quantistica seconda edizione Edizioni ETS www.edizioniets.com Copyright 2015 EDIZIONI ETS Piazza Carrara, 16-19, I-56126 Pisa [email protected] www.edizioniets.com
A.A. 2014/2015 Corso di Algebra Lineare
A.A. 2014/2015 Corso di Algebra Lineare Stampato integrale delle lezioni Massimo Gobbino Indice Lezione 01: Vettori geometrici nel piano cartesiano. Operazioni tra vettori: somma, prodotto per un numero,
REGISTRO DELLE LEZIONI
UNIVERSITA DEGLI STUDI DI GENOVA FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI REGISTRO DELLE LEZIONI del Corso UFFICIALE di GEOMETRIA B tenute dal prof. Domenico AREZZO nell anno accademico 2006/2007
Sommario. 1. Che cos è la matematica? Numeri naturali e sistemi di numerazione 23
Sommario 1. Che cos è la matematica? 1 1.1. Un sapere onnipresente e temuto 1 1.2. La domanda più difficile 6 1.3. Che cosa ci insegna la storia 10 1.4. Ai primordi delle rappresentazioni simboliche 11
INDICE 1. LA CRISI DELLA FISICA CLASSICA
INDICE 1. LA CRISI DELLA FISICA CLASSICA 1.1 Modelli atomici... 1 1.2 Il problema delle dimensioni atomiche e del collasso per irraggiamento 4 1.3 Difficoltà connesse con i calori specifici... 7 1.4 L
Classical simulation of quantum circuits
Classical simulation of quantum circuits Laureando: Tommaso Gagliardoni Relatore: Prof. Marco Baioletti Università degli Studi di Perugia Corso di Laurea Specialistica in ematica - Curriculum Informatico-Computazionale
UNIVERSITA DEGLI STUDI DI PAVIA REGISTRO. DELLE LEZIONI-ESERCITAZIONI- SEMINARI Anno accademico 2011/12
REGISTRO DELLE LEZIONI-ESERCITAZIONI- SEMINARI Anno accademico 2011/12 Cognome e Nome BISI FULVIO Qualifica RICERCATORE CONFERMATO MAT/07 Insegnamento di FISICA MATEMATICA (500474) Impartito presso: Corso
FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 2 (2016/17)
FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 2 (2016/17) Scopo del corso Il corso si propone di completare le conoscenze dello studente nell ambito della meccanica quantistica non relativistica, applicata
FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 2 (2015/16)
FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 2 (2015/16) Scopo del corso Il corso si propone di completare le conoscenze dello studente nell ambito della meccanica quantistica non relativistica, applicata
Programma del corso di Analisi Matematica 1 Corso di Laurea in Matematica Prof. A. Garroni - Canale Dl-Pa
Programma del corso di Analisi Matematica 1 Corso di Laurea in Matematica Prof. A. Garroni - Canale Dl-Pa 1. Elementi di spazi metrici e di topologia 1.1 Completezza di R. Richiami: Estremo superiore,
Università degli Studi di Palermo
Università degli Studi di Palermo Facoltà di Scienze MM.FF.NN. CORSO DI LAUREA IN: Laurea Magistrale in MATEMATICA (Classe LM-40) REGISTRO DELLE LEZIONI DI: ANALISI FUNZIONALE (c.i. 01236) IMPARTITE DAL
Andrea Carati Luigi Galgani. Fondamenti della meccanica quantistica: uno studio storico critico
Andrea Carati Luigi Galgani Fondamenti della meccanica quantistica: uno studio storico critico Anno Accademico 2015 2016 2 Andrea Carati e Luigi Galgani Indice Parte Prima: Planck Einstein e Poincaré,
Metodi Matematici per l Ingegneria Politecnico di Milano A.A. 2011/2012. Prof. M. Bramanti Esempi di domande teoriche da esame
Metodi Matematici per l Ingegneria Politecnico di Milano A.A. 2011/2012. Prof. M. Bramanti Esempi di domande teoriche da esame Le seguenti domande teoriche sono domande-tipo da esame. L elenco di domande
VIII Indice 2.6 Esperimenti Dicotomici Ripetuti: Binomiale ed Ipergeometrica Processi Stocastici: Bernoul
1 Introduzione alla Teoria della Probabilità... 1 1.1 Introduzione........................................ 1 1.2 Spazio dei Campioni ed Eventi Aleatori................ 2 1.3 Misura di Probabilità... 5
appuntiofficinastudenti.com 1. Strutture algebriche e polinomi
1. Strutture algebriche e polinomi Cenni su linguaggio di Teoria degli Insiemi: appartenenza, variabili, quantificatori, negazione, implicazione, equivalenza, unione, intersezione, prodotto cartesiano,
INSEGNAMENTI DEI GRUPPI PER IL CURRICULUM TEORICO La loro attivazione è definita per ogni anno accademico in sede di programmazione didattica
INSEGNAMENTI DEI GRUPPI PER IL CURRICULUM TEORICO La loro attivazione è definita per ogni anno accademico in sede di programmazione didattica Gruppo IstAppl: Istituzioni applicative Istituzioni di analisi
Lezione n. 1. Introduzione all analisi numerica (richiami di algebra lineare e analisi funzionale)
Lezione n. 1 Introduzione all analisi numerica (richiami di algebra lineare e analisi funzionale) R. Albanese, "Metodi numerici Pag. 1 Pag. 2 Programma 1. Introduzione all analisi numerica (richiami di
Corso di Elementi di Analisi Funzionale e Trasformate A.A. 2016/2017 Domande-tipo di teoria sulla prima metà del corso
Corso di Elementi di Analisi Funzionale e Trasformate A.A. 2016/2017 Domande-tipo di teoria sulla prima metà del corso Marco Bramanti Politecnico di Milano April 20, 2017 Cap. 1. Elementi di analisi funzionale
2.2.5 Approssimazione di un segnale in una base biortogonale (segnali rettangolari) Esercizi proposti... 46
Indice 1 Operazioni elementari, convoluzione, correlazione 1 1.1 Operazioni elementari........................ 1 1.1.1 Ribaltamento, traslazione, scalatura............ 1 1.2 Convoluzione.............................
4 Analisi nel dominio del tempo delle rappresentazioni in
Indice del libro Alessandro Giua, Carla Seatzu Analisi dei sistemi dinamici, Springer-Verlag Italia, II edizione, 2009 Pagina web: http://www.diee.unica.it/giua/asd/ Prefazione.....................................................
Matematica Discreta e Algebra Lineare (per Informatica)
Matematica Discreta e Algebra Lineare (per Informatica) Docente: Alessandro Berarducci Anno accademico 2016-2017, versione 14 Marzo 2017 Tipiche domande d esame La seguente lista di domande non intende
Matematica. Dr. Luca Secondi a.a. 2014/15. Presentazione del corso
Matematica Dr. Luca Secondi a.a. 2014/15 Presentazione del corso IL CORSO Corso di laurea in Tecnologie Alimentari ed Enologiche (TAE): MATEMATICA (6 CFU) Corso di laurea in Scienze Forestali e Ambientali
Introduzione al corso di Fisica dei Semiconduttori
Introduzione al corso di Fisica dei Semiconduttori Mara Bruzzi 8 settembre 016 1 a lezione : dualismo onda-corpuscolo a.l ipotesi di Planck e il corpo nero b.effetto Fotoelettrico c. Primi modelli atomici
APPUNTI DI MODELLI NUMERICI PER I CAMPI
APPUNTI DI MODELLI NUMERICI PER I CAMPI Giovanni Miano UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II POLO DELLE SCIENZE E DELLE TECNOLOGIE FACOLTÀ DI INGEGNERIA Indice 1. Richiami sui problemi di campo
Funzioni, equazioni e disequazioni esponenziali. Funzioni, equazioni e disequazioni logaritmiche
Liceo Scientifico F. Lussana - Bergamo PROGRAMMA di MATEMATICA Classe 4^ I a.s. 2015/16 - Docente: Marcella Cotroneo Libri di testo : L. Sasso "Nuova Matematica a colori 3" e "Nuova Matematica a colori
REGISTRO DELLE LEZIONI 2005/2006. Tipologia
Struttura formale della meccanica quantistica Rapprestazione matriciale Addì 03-10-2005 Addì 03-10-2005 15:00-16:00 Teorema della compatibilità Theorema dell'indeterminazione per operatori non commutanti
UNIVERSITÀ DEGLI STUDI DI FIRENZE. Registro dell'insegnamento
UNIVERSITÀ DEGLI STUDI DI FIRENZE Registro dell'insegnamento Anno accademico 2012/2013 Prof. ETTORE MINGUZZI Settore inquadramento MAT/07 - FISICA MATEMATICA Facoltà INGEGNERIA Insegnamento MECCANICA RAZIONALE
Teoria Spettrale e Meccanica Quantistica
Valter Moretti Teoria Spettrale e Meccanica Quantistica con un introduzione alla Formulazione Algebrica delle Teorie Quantistiche Ottobre 2012 Springer Dedicato a tutti i giovani e brillanti colleghi,
UNIVERSITÀ DEGLI STUDI DI FIRENZE. Registro dell'insegnamento
UNIVERSITÀ DEGLI STUDI DI FIRENZE Registro dell'insegnamento Anno accademico 2011/2012 Prof. PIERO PROCACCI Settore inquadramento CHIM/02 - CHIMICA FISICA Facoltà SC. MATEMAT. FISICHE E NATURALI Insegnamento
Calcolo delle Probabilità A.A. 09/10 Corso di Studi in Statistica per l Analisi dei dati Università degli Studi di Palermo
Calcolo delle Probabilità A.A. 09/10 Corso di Studi in Statistica per l Analisi dei dati Università degli Studi di Palermo docente G. Sanfilippo http://www.unipa.it/~sanfilippo [email protected] 20 maggio
Programma delle lezioni svolte nel corso CLEM di Matematica Generale, Lettere M-Z, Prof. F. Manzini.
Programma delle lezioni svolte nel corso CLEM di Matematica Generale, Lettere M-Z, Prof. F. Manzini. 1. Generalità sul corso e sulle modalità di esame. Insiemi ed operazioni sugli insiemi. Applicazioni
Spazi euclidei, endomorfismi simmetrici, forme quadratiche. R. Notari
Spazi euclidei, endomorfismi simmetrici, forme quadratiche R. Notari 14 Aprile 2006 1 1. Proprietà del prodotto scalare. Sia V = R n lo spazio vettoriale delle n-uple su R. Il prodotto scalare euclideo
ANALISI MATEMATICA A CORSO DI LAUREA TRIENNALE IN MATEMATICA 15 CF A.A
ANALISI MATEMATICA A CORSO DI LAUREA TRIENNALE IN MATEMATICA 15 CF A.A. 2016-17 Programma Provvisorio del corso di Analisi Matematica A Il programma che segue è solo indicativo. Il programma definitivo
Indice. Parte I Fondamenti teorici
Parte I Fondamenti teorici 1 I fondamenti della Relatività Ristretta... 3 1.1 Postulati della Relatività... 4 1.2 Trasformazioni di Lorentz e di Poincaré... 5 1.2.1 Linearità delle trasformazioni.....
Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente
1. Insiemi di generatori, lineare indipendenza, basi, dimensione. Consideriamo nello spazio vettoriale R 3 i seguenti vettori: v 1 = (0, 1, ), v = (1, 1, 1), v 3 = (, 1, 0), v 4 = (3, 3, ). Siano poi F
Richiami di algebra delle matrici a valori reali
Richiami di algebra delle matrici a valori reali Vettore v n = v 1 v 2. v n Vettore trasposto v n = (v 1, v 2,..., v n ) v n = (v 1, v 2,..., v n ) A. Pollice - Statistica Multivariata Vettore nullo o
Diario delle lezioni di Calcolo e Biostatistica (O-Z) - a.a. 2013/14 A. Teta
Diario delle lezioni di Calcolo e Biostatistica (O-Z) - a.a. 2013/14 A. Teta 1. (1/10 Lu.) Generalità sugli insiemi, operazioni di unione, intersezione e prodotto cartesiano. Insiemi numerici: naturali,
iv Indice c
Indice Prefazione ix 1 Numeri 1 1 Insiemi e logica 1 1.1 Concetti di base sugli insiemi 1 1.2 Un po di logica elementare 9 2 Sommatorie e coefficienti binomiali 13 2.1 Il simbolo di sommatoria 13 2.2 Fattoriale
DIARIO DEL CORSO DI GEOMETRIA E ALGEBRA LINEARE
DIARIO DEL CORSO DI GEOMETRIA E ALGEBRA LINEARE DOCENTI: S. MATTAREI (TITOLARE), G. VIGNA SURIA, D. FRAPPORTI Prima settimana. Lezione di martedí 23 febbraio 2010 Introduzione al corso: applicazioni dell
PROBABILITÀ ELEMENTARE
Prefazione alla seconda edizione XI Capitolo 1 PROBABILITÀ ELEMENTARE 1 Esperimenti casuali 1 Spazi dei campioni 1 Eventi 2 Il concetto di probabilità 3 Gli assiomi della probabilità 3 Alcuni importanti
Prefazione Ringraziamenti dell'editore Il sito web dedicato al libro Test online: la piattaforma McGraw-Hill Education Guida alla lettura
INDICE GENERALE Prefazione Ringraziamenti dell'editore Il sito web dedicato al libro Test online: la piattaforma McGraw-Hill Education Guida alla lettura XI XIV XV XVII XVIII 1 LA RILEVAZIONE DEI FENOMENI
Allegati dpr 89/2010 e d.m. 211/2010
DIPARTIMENTO MATEMATICA INDIRIZZO Servizi per l enogastronomia e l ospitalità alberghiera Programmazione disciplinare condivisa PRIMO BIENNIO Allegati dpr 89/2010 e d.m. 211/2010 DISCIPLINA MATEMATICA
Analisi Matematica 1
Analisi Matematica 1 Schema provvisorio delle lezioni A. A. 2015/16 1 Distribuzione degli argomenti delle lezioni Argomento ore tot Numeri reali 11 11 Numeri complessi 1 12 Spazio euclideo 2 14 Topologia
UNIVERSITA DEGLI STUDI DI SALERNO. Dipartimento di Ingegneria Industriale - Corso di studi in Ingegneria Chimica
UNIVERSITA DEGLI STUDI DI SALERNO Dipartimento di Ingegneria Industriale - Corso di studi in Ingegneria Chimica Anno Accademico 2016/17 Disciplina: Matematica I Docente: Roberto Capone Modulo di Analisi
Spazi vettoriali euclidei.
Spazi vettoriali euclidei Prodotto scalare, lunghezza e ortogonalità in R n Consideriamo lo spazio vettoriale R n = { =,,, n R}, n con la somma fra vettori e il prodotto di un vettore per uno scalare definiti
DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA A.A. 2011/2012 CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA
DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA A.A. 2011/2012 CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA DANIELE ANDREUCCI DIP. SCIENZE DI BASE E APPLICATE PER L INGEGNERIA UNIVERSITÀ LA SAPIENZA
Calcolo Combinatorio Il fattoriale, coefficienti binomiali e loro proprietà; formula del binomio di Newton
Programma di Analisi 1 Note: - I programmi presentati sono estratti ed integrati da Programmi previsti in diverse Università, possono pertanto contenere parti simili, o in più, dei programmi ufficiali.
Programma del corso di Fondamenti di Geometria Superiore I.
Programma 2016-2017 del corso di Fondamenti di Geometria Superiore I. Renzo Caddeo I. La derivazione covariante e le geodetiche di una superficie. Il metodo di Eulero - Lagrange per la ricerca delle geodetiche.
PROBLEMA AGLI AUTOVALORI DI UN OPERATORE LINEARE
2/2 OPERATORI NEGLI SPAZI DI HILBERT FINITODIMENSIONALI 11/12 1 PROBLEMA AGLI AUTOVALORI DI UN OPERATORE LINEARE Esistenza di almeno una coppia autovalore autovettore Sia L un operatore lineare nello spazio
Università degli Studi Roma Tre Anno Accademico 2016/2017 ST410 Statistica 1
Università degli Studi Roma Tre Anno Accademico 2016/2017 ST410 Statistica 1 Lezione 1 - Mercoledì 28 Settembre 2016 Introduzione al corso. Richiami di probabilità: spazi di probabilità, variabili aleatorie,
Formalismo della Meccanica Quantistica
Formalismo della Meccanica Quantistica Le funzioni d onda devono appartenere allo spazio delle funzioni a quadrato sommabile, denotato con L 2 ψ L 2 = ψ( r) 2 d 3 r ψ < () Lo spazio delle funzioni a quadrato
3.6.3 Esercizio Esercizio... 85
Indice 1 Movimenti rigidi 1 1.1 Trasformazioni nello spazio R 3.................. 1 1.2 Trasformazioni rigide........................ 2 1.2.1 Espressione generale di una trasformazione rigida.... 3 1.2.2
Frank Ayres Jr. Matrici. problemi risolti. McGraw-Hill
Frank Ayres Jr. Matrici problemi risolti McGraw-Hill f\q 9\b?, Frank Ayres Jr. Matrici McGraw-Hill Libri Italia srl :CENTRO " G. /.V3TEì JGO n lnventar io \ TS'54 Milano New York St. Louis San Francisco
FACOLTÀ DI INGEGNERIA Esame di GEOMETRIA E ALGEBRA. (Ingegneria Industriale A.A. 2013/2014. Docente: F. BISI.
FACOLTÀ DI INGEGNERIA Esame di GEOMETRIA E ALGEBRA. (Ingegneria Industriale A.A. 2013/2014. Docente: F. BISI. 1 Regole generali per l esame L esame è costituito da una prova scritta e da una prova orale.
2. Risolvere con il metodo di eliminazione di Gauss con pivoting parziale il seguente sistema lineare:
Esercizi sui metodi diretti per la risoluzione di sistemi lineari 1. Data la matrice 1 0 2 1 3 1 5 2 1 determinare la sua fattorizzazione P LR. Risolvere il sistema Ax = b con b = (3, 5, 6) T mediante
8.1 Problema della diffusione in meccanica quantistica
8.1 Problema della diffusione in meccanica quantistica Prima di procedere oltre nello studio dell interazione puntuale, in questo paragrafo vogliamo dare un breve cenno alle nozioni di base della teoria
Capitolo IV SPAZI VETTORIALI EUCLIDEI
Capitolo IV SPAZI VETTORIALI EUCLIDEI È ben noto che in VO 3 si possono considerare strutture più ricche di quella di spazio vettoriale; si pensi in particolare all operazioni di prodotto scalare di vettori.
PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico
PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA FISICA MODERNA anno accademico 2013-2014 (1) Si consideri un sistema che può trovarsi in uno di tre stati esclusivi 1, 2, 3, e si supponga che esso si
La Trasformata di Fourier
La Trasformata di Fourier Preliminari: Spazi di Hilbert Da Wikipedia In matematica uno spazio di Hilbert è uno spazio vettoriale che generalizza la nozione di spazio euclideo. Gli spazi di Hilbert sono
Corso di Laurea in Ingegneria Informatica (L8) Anno Accademico 2015/2016 ALGEBRA LINEARE E GEOMETRIA
Dipartimento di Ingegneria Elettrica, Elettronica e Informatica Corso di Laurea in Ingegneria Informatica (L8) Anno Accademico 2015/2016 ALGEBRA LINEARE E GEOMETRIA Docente titolare dell insegnamento:
Adams, Calcolo Differenziale I, Casa Editrice Ambrosiana
Argomenti da studiare sui testi di riferimento: Adams, Calcolo Differenziale I, Casa Editrice Ambrosiana P - Preliminari 1 Limiti e continuità 1.1 Velocità, rapidità di crescita, area: alcuni esempi Velocità
ossia può anche essere localizzato univocamente sul piano complesso con la sua forma polare.
ALGEBRA COMPLESSA Nel corso dei secoli gli insiemi dei numeri sono andati man mano allargandosi per rispondere all esigenza di dare soluzione a equazioni e problemi sempre nuovi I numeri complessi sono
Mugno Eugenio Matematica 2F
Docente Materia Classe Mugno Eugenio Matematica 2F Programmazione Preventiva Anno Scolastico 2012/2013 Data 25/11/2012 Obiettivi Cognitivi OBIETTIVI MINIMI U.D.1: FRAZIONI ALGEBRICHE conoscere la definizione
