Metodi di analisi statistica multivariata
|
|
|
- Massimiliano Marino
- 8 anni fa
- Visualizzazioni
Transcript
1 Metodi di analisi statistica multivariata lzo V<J
2 D. F. Morrison Associate Professor of Statistics and Operations Research Wharton School of Finance and Commerce University of Pennsylvania, Philadelphia. Metodi di analisi statistica multivariata Traduzione italiana a cura di Paola Anelli Enrica Grugni Gabriella Lusignani dell'istituto di Statistica Sanitaria Facoltà di Medicina dell'università - Pavia casa editrice ambrosiana milano
3 .,.. J Indice Prefazione all'edizione italiana Prefazione I. Alcune nozioni elementari di statistica 1.1 Introduzione Variabili casuali 1.3 Variabili casuali normali 1.4 Campioni casuali e stime 1.5 Tests di ipotesi per i parametri di popolazioni normali 1.6 Tests dell'uguaglianza di più medie: l'analisi della varianza I. 7 Riferimenti bibliografici Algebra delle matrici 2.1 Introduzione Definizioni Operazioni elementari con matrici e vettori 2.4 Determinante di una matrice quadrata 2.5 La matrice inversa Rango di una matrice 2. 7 Sistemi di equazioni lineari 2.8 Vettori e matrici ortogonali 2.9 Forme quadratiche Radici e vettori caratteristici di una matrice 2.11 Matrici ripartite Differenziazione di funzioni e di vettori 2.13 Esercizi Riferimenti bibliografici Campioni trattati da una popolazione normale multivariata 3.1 Introduzione ~2 Variabili casuali multidimensionali. 3.3 La distribuzione normale multivariata 3.4 Le distribuzioni condizionali e marginali di variabili casuali multinormali Campioni da una popolazione multinormale Sistemi di tests e di intervalli di confidenza per i coefficienti di regressione Un test per una completa indipendenza. 3.8 Esercizi Riferimenti bibliografici V VII
4 XII INDICE 4. Tests di ipotesi su medie 4.1 Introduzione Tests su medie o statistica T Il caso di duo campioni Tests sui vettori media con matrico covarianza nota 4.5 La funzione discriminante lineare L'analisi dello misure ripetuto Analisi del profilo por due gruppi indipendenti 4.8 La potenza dei tests sui vettori media L'assunzione di matrici di covarianza uguali 4.10 E sercizi Riferimenti bibliografici L'analisi multi variata della varianza. 5.1 Introduzione Il modello generalo lineare multivariato 5.3 L'analisi multivariata della varianza Confronti multipli nell'analisi multivariata della varianza. 5.5 Analisi del profilo 5.6 Principi di altri tcsts Esercizi Riferimenti bibliografici Indipendenza di insiemi di variabili casuali e correlazioni canoniche Introduzione Test dell'indipendenza di duo insiemi di variabili casuali 6.3 Correlazione canonica 6.4 E sercizi La struttura delle osservazioni multivariate I. Componenti principali Introduzione Com ponenti principali d i osservazioni multivariate Significato geometrico delle componenti principali Il calcolo delle componenti principali La interpretazione delle componenti principali Matrici costruite su modelli e relative componenti principali Le caratteristiche del campionamento delle componenti principali E sercizi Riferimenti bibliografici La struttura delle osservazioni multivariate II. Analisi fattoriali 8.1 Introduzione 8.2 Il modello matematico por la struttura fattoriale 8.3 Stima di pesi fattoriali 8.4 Verifica del grado di adattamento dcl modello fattoriale ~
5 INDICE 8.5 Soluzione nwnerica delle equazioni di stima 8.6 Esempi di analisi fattoriale Rotazione dei fattori Un modello alternativo all'analisi fattoriale 8.9 Variazione campionaria delle stime dei pesi 8.10 La valutazione dei fattori l\fodelli por la struttura di dipendenza di risposto ordinate 8.12 Esercizi Riferimenti bibliografici XIII Appendice tabelle e carte Tabella 1 Funziono di distribuzione normale cumulativa.. Tabella 2 Valori percentuali della distribuzione chi-quadrato Tabella 3 Punti a percentuale superiore della distribuzione t Tabella 4 Punti a percentuale superiore della distribuzione F Carta A.1-A.8. Carta B.1-B.8. Indico analitico
6
Elementi di statistica per l econometria
Indice Prefazione i 1 Teoria della probabilità 1 1.1 Definizioni di base............................. 2 1.2 Probabilità................................. 7 1.2.1 Teoria classica...........................
PROBABILITÀ ELEMENTARE
Prefazione alla seconda edizione XI Capitolo 1 PROBABILITÀ ELEMENTARE 1 Esperimenti casuali 1 Spazi dei campioni 1 Eventi 2 Il concetto di probabilità 3 Gli assiomi della probabilità 3 Alcuni importanti
VIII Indice 2.6 Esperimenti Dicotomici Ripetuti: Binomiale ed Ipergeometrica Processi Stocastici: Bernoul
1 Introduzione alla Teoria della Probabilità... 1 1.1 Introduzione........................................ 1 1.2 Spazio dei Campioni ed Eventi Aleatori................ 2 1.3 Misura di Probabilità... 5
LEZIONI IN LABORATORIO Corso di MARKETING L. Baldi Università degli Studi di Milano. Strumenti statistici in Excell
LEZIONI IN LABORATORIO Corso di MARKETING L. Baldi Università degli Studi di Milano Strumenti statistici in Excell Pacchetto Analisi di dati Strumenti di analisi: Analisi varianza: ad un fattore Analisi
3.1 Classificazione dei fenomeni statistici Questionari e scale di modalità Classificazione delle scale di modalità 17
C L Autore Ringraziamenti dell Editore Elenco dei simboli e delle abbreviazioni in ordine di apparizione XI XI XIII 1 Introduzione 1 FAQ e qualcos altro, da leggere prima 1.1 Questo è un libro di Statistica
Prefazione Ringraziamenti dell'editore Il sito web dedicato al libro Test online: la piattaforma McGraw-Hill Education Guida alla lettura
INDICE GENERALE Prefazione Ringraziamenti dell'editore Il sito web dedicato al libro Test online: la piattaforma McGraw-Hill Education Guida alla lettura XI XIV XV XVII XVIII 1 LA RILEVAZIONE DEI FENOMENI
Sommario. Capitolo 1 I dati e la statistica 1. Capitolo 2 Statistica descrittiva: tabelle e rappresentazioni grafiche 25
Sommario Presentazione dell edizione italiana Prefazione xv xiii Capitolo 1 I dati e la statistica 1 Statistica in pratica: BusinessWeek 1 1.1 Le applicazioni in ambito aziendale ed economico 3 Contabilità
D. Piccolo - C. Vitale. Metodi statistici per l'analisi economica. il Mulino
D. Piccolo - C. Vitale Metodi statistici per l'analisi economica il Mulino . 1 I ~~EZfA "\ AREA 'SEl:N. BIBLIOGRAFICI E DOCUMENTALI DEPCIA K 974 ~;. Domenico Piccolo Cosimo Vitale ;l Metodi statistici
Università degli Studi Roma Tre Anno Accademico 2016/2017 ST410 Statistica 1
Università degli Studi Roma Tre Anno Accademico 2016/2017 ST410 Statistica 1 Lezione 1 - Mercoledì 28 Settembre 2016 Introduzione al corso. Richiami di probabilità: spazi di probabilità, variabili aleatorie,
Indice Aspetti generali sul campionamento da popolazioni finite Campionamento probabilistico Disegno campionario semplice
Indice 1 Aspetti generali sul campionamento da popolazioni finite.. 1 1.1 Rilevazionicensuarieerilevazionicampionarie... 1 1.2 Lineemetodologichediunarilevazionestatistica... 3 1.3 Popolazioni, etichette,
Statistica multivariata Donata Rodi 17/10/2016
Statistica multivariata Donata Rodi 17/10/2016 Quale analisi? Variabile Dipendente Categoriale Continua Variabile Indipendente Categoriale Chi Quadro ANOVA Continua Regressione Logistica Regressione Lineare
Indice generale. Introduzione. Capitolo 1 Essere uno scienziato dei dati... 1
Introduzione...xi Argomenti trattati in questo libro... xi Dotazione software necessaria... xii A chi è rivolto questo libro... xii Convenzioni utilizzate... xiii Scarica i file degli esempi... xiii Capitolo
Calcolo delle probabilità e statistica
Grazia Vicario Raffaello Levi Calcolo delle probabilità e statistica per 1ngegner1 - GO... PROGenO 00 LeoNARDO BOLOGNA r r, ) - Universi!a' IU~V Venezia DEPCIA w 1852 BIBLIOTECA G.ASTENGO G. Vicario~ R.
zio L'INDAGINE CAMPIONARIA Metodi, disegni e tecniche di campionamento
zio L'INDAGINE CAMPIONARIA Metodi, disegni e tecniche di campionamento B f F~ :_ ~ () ì E(.'.6.. CJ?.. E S T Luigi Fabbris L'indagine camp1onar1a Metodi, disegni e tecniche di campionamento La Nuova Italia
CORSO INTEGRATO DI STATISTICA E INFORMATICA MEDICA
CORSO INTEGRATO DI STATISTICA E INFORMATICA MEDICA Settore Scientifico-Disciplinare: MED/01 Statistica Medica; INF/01 Informatica CFU Tot.: 5 Coordinatore: Prof. Dario Bruzzese Dip.: Sanità Pubblica.,
JMP 10 Student Edition: Guida rapida
JMP 10 Student Edition: Guida rapida Queste istruzioni presuppongono una tabella di dati aperta, le impostazioni delle preferenze predefinite, e le variabili di interesse con l appropriato tipo di modellazione.
LINEAMENTI DI MATEMATICA PER L'ECONOMIA
Valerio Grisoli LINEAMENTI DI MATEMATICA PER L'ECONOMIA.,... o La Nuova Italia Scientifica .\{ '~\ \ I Istituto UnNersitario Architettura Venezia EG 400 Servizio Bibliografico Audiovisivo e di Documentazione
STATISTICA A K (60 ore)
STATISTICA A K (60 ore) Marco Riani [email protected] http://www.riani.it Richiami sulla regressione Marco Riani, Univ. di Parma 1 MODELLO DI REGRESSIONE y i = a + bx i + e i dove: i = 1,, n a + bx i rappresenta
iv Indice c
Indice Prefazione ix 1 Numeri 1 1 Insiemi e logica 1 1.1 Concetti di base sugli insiemi 1 1.2 Un po di logica elementare 9 2 Sommatorie e coefficienti binomiali 13 2.1 Il simbolo di sommatoria 13 2.2 Fattoriale
Analisi della varianza
Università degli Studi di Padova Facoltà di Medicina e Chirurgia Facoltà di Medicina e Chirurgia - A.A. 2009-10 Scuole di specializzazione Lezioni comuni Disciplina: Statistica Docente: dott.ssa Egle PERISSINOTTO
Il modello di regressione lineare multipla. Il modello di regressione lineare multipla
Introduzione E la generalizzazione del modello di regressione lineare semplice: per spiegare il fenomeno d interesse Y vengono introdotte p, con p > 1, variabili esplicative. Tale generalizzazione diventa
Indice. Prefazione all edizione italiana. Gli Autori e i Curatori dell edizione italiana PARTE PRIMA ASPETTI GENERALI
Indice Prefazione all edizione italiana Gli Autori e i Curatori dell edizione italiana XI XII PARTE PRIMA ASPETTI GENERALI Capitolo 1. Introduzione 1 1.1 La psicologia scientifica 1 1.2 I contesti della
Laboratorio di Meccanica (can C) A.A. 2014/15
Laboratorio di Meccanica (can C) A.A. 2014/15 Diario Tipo: PII: prova in itinere E: esercizi V: vacanza Lo scorso anno N Data Tipo Argomento N Data Tipo Argomento 1W No Lab 1W No Lab 1 mercoledì 4 marzo
Istituzioni di Statistica
Istituzioni di Statistica CORSO DI LAUREA IN ECONOMIA DEL COMMERCIO INTERNAZIONALE CORSO DI LAUREA IN ECONOMIA E AMMINISTRAZIONE DELLE IMPRESE A.A. 2007/2008 DOCENTE: Marco Minozzo PROGRAMMA - STATISTICA
PROGRAMMAZIONE DEL GRUPPO DISCIPLINARE A.S. 2015/2016 INDIRIZZO SCOLASTICO: DISCIPLINA: MATEMATICA ORE SETT.LI: 4 CLASSE: V SIA
ISTITUTO D ISTRUZIONE SUPERIORE Enrico Mattei ISTITUTO TECNICO COMMERCIALE LICEO SCIENTIFICO LICEO dellescienze UMANE Via delle Rimembranze, 26 40068 San Lazzaro di Savena BO Tel. 051 464510 464545 fax
Analisi delle componenti principali
Analisi delle componenti principali Serve a rappresentare un fenomeno k-dimensionale tramite un numero inferiore o uguale a k di variabili incorrelate, ottenute trasformando le variabili osservate Consiste
I VETTORI GAUSSIANI E. DI NARDO
I VETTOI GAUSSIANI E. DI NADO. L importanza della distribuzione gaussiana I vettori di v.a. gaussiane sono senza dubbio uno degli strumenti più utili in statistica. Nell analisi multivariata, per esempio,
Dispensa di Statistica
Dispensa di Statistica 1 parziale 2012/2013 Diagrammi... 2 Indici di posizione... 4 Media... 4 Moda... 5 Mediana... 5 Indici di dispersione... 7 Varianza... 7 Scarto Quadratico Medio (SQM)... 7 La disuguaglianza
G. C. Barozzi - C. Corradi Matematica ( per le scienze economiche e statistiche. il Mulino
G. C. Barozzi - C. Corradi Matematica ( per le scienze economiche e statistiche il Mulino ---- - Giulio Cesare Barozzi - Corrado Corradi V... o ; _,~? - - - ~ u. - ] 1 0 e CA j L 11;~..?..$["_! - - --
ESAME. 9 Gennaio 2017 COMPITO B
ESAME 9 Gennaio 2017 COMPITO B Cognome Nome Numero di matricola 1) Approssimare tutti i calcoli alla quarta cifra decimale. 2) Ai fini della valutazione si terrà conto solo ed esclusivamente di quanto
Statistica di base per l analisi socio-economica
Laurea Magistrale in Management e comunicazione d impresa Statistica di base per l analisi socio-economica Giovanni Di Bartolomeo [email protected] Definizioni di base Una popolazione è l insieme
Programma di CONVERGENZA INTERNAZIONALE E CRESCITA ECONOMICA ANNO ACCADEMICO Prof. CAPOLUPO ROSA
Programma di CONVERGENZA INTERNAZIONALE E CRESCITA ECONOMICA ANNO ACCADEMICO 2013-2014 Prof. CAPOLUPO ROSA Pre-requisiti Sono richieste le conoscenze di base della macroeconomia e per quel che riguarda
Il modello di regressione lineare multipla con regressori stocastici
Università di Pavia Il modello di regressione lineare multipla con regressori stocastici Eduardo Rossi Il valore atteso condizionale Modellare l esperimento casuale bivariato nel quale le variabili casuali
ANALISI DELLE SERIE STORICHE
ANALISI DELLE SERIE STORICHE De Iaco S. [email protected] UNIVERSITÀ del SALENTO DIP.TO DI SCIENZE ECONOMICHE E MATEMATICO-STATISTICHE FACOLTÀ DI ECONOMIA 24 settembre 2012 Indice 1 Funzione di
REGISTRO DELLE LEZIONI
UNIVERSITA DEGLI STUDI DI GENOVA FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI REGISTRO DELLE LEZIONI del Corso UFFICIALE di GEOMETRIA B tenute dal prof. Domenico AREZZO nell anno accademico 2006/2007
Anno scolastico 2015/2016 PROGRAMMA SVOLTO. Docente: Catini Romina. Materie: Matematica. Classe : 4 L Indirizzo Scientifico Scienze Applicate
Anno scolastico 2015/2016 PROGRAMMA SVOLTO Docente: Catini Romina Materie: Matematica Classe : 4 L Indirizzo Scientifico Scienze Applicate UNITA DIDATTICA FORMATIVA 1: Statistica Rilevazione dei dati Rappresentazioni
RELAZIONE FINALE DEL DOCENTE. Materia: MATEMATICA E COMPLEMENTI DI MATEMATICA Classe 4BPT A. S. 2015/2016
RELAZIONE FINALE DEL DOCENTE Materia: MATEMATICA E COMPLEMENTI DI MATEMATICA Classe 4BPT A. S. 2015/2016 In relazione alla programmazione curricolare sono stati conseguiti, in termini di livello medio,
Regressione Lineare Semplice e Correlazione
Regressione Lineare Semplice e Correlazione 1 Introduzione La Regressione è una tecnica di analisi della relazione tra due variabili quantitative Questa tecnica è utilizzata per calcolare il valore (y)
Matematica. Dr. Luca Secondi a.a. 2014/15. Presentazione del corso
Matematica Dr. Luca Secondi a.a. 2014/15 Presentazione del corso IL CORSO Corso di laurea in Tecnologie Alimentari ed Enologiche (TAE): MATEMATICA (6 CFU) Corso di laurea in Scienze Forestali e Ambientali
Argomenti della lezione:
Lezione 13 L analisi della Varianza (ANOVA): il modello lineare Argomenti della lezione: Modello lineare Disegni a una via L Analisi della Varianza (ANOVA): Esamina differenze tra le medie di due o più
Statistica multivariata
Parte 3 : Statistica multivariata Quando il numero delle variabili rilevate sullo stesso soggetto aumentano, il problema diventa gestirle tutte e capirne le relazioni. Analisi multivariata Cercare di capire
Analisi delle corrispondenze
Analisi delle corrispondenze Obiettivo: analisi delle relazioni tra le modalità di due (o più) caratteri qualitativi Individuazione della struttura dell associazione interna a una tabella di contingenza
Indice. 1 Vibrazioni libere e forzate di oscillatori elementari 1
Indice Prefazione xiii 1 Vibrazioni libere e forzate di oscillatori elementari 1 1.1 Vibrazioni libere non smorzate l 1.2 Vibrazioni libere smorzate 7 1.3 Vibrazioni forzate per forzante sinusoidale 12
Statistica per le ricerche di mercato
Università degli studi della Tuscia Dipartimento di Economia e Impresa Statistica per le ricerche di mercato a.a. 2012/13 Dr. Luca Secondi 01. Introduzione al corso 1 Statistica per le ricerche di mercato
PREFAZIONE pag. 15 Capitolo 1 I NUMERI E LE FUNZIONI REALI 1. Premessa Gli assiomi dei numeri reali Alcune conseguenze degli assiomi dei
PREFAZIONE pag. 15 Capitolo 1 I NUMERI E LE FUNZIONI REALI 1. Premessa 23 2. Gli assiomi dei numeri reali 24 3. Alcune conseguenze degli assiomi dei numeri reali 25 4. Cenni di teoria degli insiemi 30
MODELLO DI REGRESSIONE LINEARE. le ipotesi del modello di regressione classico, stima con i metodi dei minimi quadrati e di massima verosimiglianza,
MODELLO DI REGRESSIONE LINEARE le ipotesi del modello di regressione classico, stima con i metodi dei minimi quadrati e di massima verosimiglianza, teorema di Gauss-Markov, verifica di ipotesi e test di
Indice Funzioni e limiti 1 Lo spazio numerico R Il campo dei numeri reali (3). Valore assoluto e distanza euclidea (5). Insiemi di numeri reali (7). E
Indice Funzioni e limiti 1 Lo spazio numerico R Il campo dei numeri reali (3). Valore assoluto e distanza euclidea (5). Insiemi di numeri reali (7). Estremo superiore e inferiore di un insieme di numeri
ii 1.20 Rango di una matrice Studio dei sistemi lineari Teoremi di Cramer e Rouché-Capelli......
Indice Prefazione vii 1 Matrici e sistemi lineari 1 1.1 Le matrici di numeri reali................. 1 1.2 Nomenclatura in uso per le matrici............ 3 1.3 Matrici ridotte per righe e matrici ridotte
Università del Piemonte Orientale Specializzazioni di area sanitaria Statistica Medica
Università del Piemonte Orientale Specializzazioni di area sanitaria Statistica Medica Regressione Lineare e Correlazione Argomenti della lezione Determinismo e variabilità Correlazione Regressione Lineare
Statistica per le ricerche di mercato
Università degli studi della Tuscia Dipartimento di Economia e Impresa Statistica per le ricerche di mercato a.a. 2014/15 Prof.ssa Tiziana Laureti 01. Introduzione al corso 1 Statistica per le ricerche
L A B C di R. Stefano Leonardi c Dipartimento di Scienze Ambientali Università di Parma Parma, 9 febbraio 2010
L A B C di R 0 20 40 60 80 100 2 3 4 5 6 7 8 Stefano Leonardi c Dipartimento di Scienze Ambientali Università di Parma Parma, 9 febbraio 2010 La scelta del test statistico giusto La scelta della analisi
Indice. Capitolo 1 Richiami di calcolo numerico 1. Capitolo 2 Rappresentazioni di dati 13
Autori Prefazione Nota dell Editore e istruzioni per l uso Guida alla lettura XI XIII XV XVII Richiami di calcolo numerico 1 1.1 Unità di misura e fattori di conversione; potenze del 10; notazioni scientifiche
Analisi della correlazione canonica
Analisi della correlazione canonica Su un collettivo di unità statistiche si osservano due gruppi di k ed m variabili L analisi della correlazione canonica ha per obiettivo lo studio delle relazioni di
ESERCIZIO 1. Vengono riportati di seguito i risultati di un analisi discriminante.
ESERCIZIO 1. Vengono riportati di seguito i risultati di un analisi discriminante. Test di uguaglianza delle medie di gruppo SELF_EFF COLL_EFF COIN_LAV IMPEGNO SODDISF CAP_IST COLLEGHI Lambda di Wilks
Matematica (e Complementi) Docente/i
Anno scolastico 2014 / 2015 Classe 3 Sezione B Indirizzo Informatica Materia Matematica (e Complementi) Docente/i Nome e cognome Francesca Formicola Nome e cognome Firma Firma Modulo n:1 Modulo n:2 PERCORSO
Teoria e tecniche dei test. Concetti di base
Teoria e tecniche dei test Lezione 2 2013/14 ALCUNE NOZIONI STATITICHE DI BASE Concetti di base Campione e popolazione (1) La popolazione è l insieme di individui o oggetti che si vogliono studiare. Questi
PROCEDURE/TECNICHE DI ANALISI / MISURE DI ASSOCIAZIONE A) ANALISI DELLA VARIANZA
PROCEDURE/TECNICHE DI ANALISI / MISURE DI ASSOCIAZIONE A) ANALISI DELLA VARIANZA PROCEDURA/TECNICA DI ANALISI DEI DATI SPECIFICAMENTE DESTINATA A STUDIARE LA RELAZIONE TRA UNA VARIABILE NOMINALE (ASSUNTA
MODULO 1 - Esponenziali e logaritmi
PROGRAMMAZIONE INDIVIDUALE A. S. 2014.15 DOCENTE: Gagliardi Stefano CLASSE: 3 a AT MATERIA: Matematica ASSE CULTURALE: Asse Matematico MODULO 1 - Esponenziali e logaritmi Le potenze e le proprietà delle
Differenze tra metodi di estrazione
Lezione 11 Argomenti della lezione: L analisi fattoriale: il processo di estrazione dei fattori Metodi di estrazione dei fattori Metodi per stabilire il numero di fattori Metodi di Estrazione dei Fattori
Confronto fra gruppi: il metodo ANOVA. Nicola Tedesco (Statistica Sociale) Confronto fra gruppi: il metodo ANOVA 1 / 23
Confronto fra gruppi: il metodo ANOVA Nicola Tedesco (Statistica Sociale) Confronto fra gruppi: il metodo ANOVA 1 / 23 1 Nella popolazione, per ciascun gruppo la distribuzione della variabile risposta
Esercitazione del
Esercizi sulla regressione lineare. Esercitazione del 21.05.2013 Esercizio dal tema d esame del 13.06.2011. Si consideri il seguente campione di n = 9 osservazioni relative ai caratteri ed Y: 7 17 8 36
docente: J. Mortera/P. Vicard Nome
A opportuni passaggi). Verrà accettato in consegna solo il presente plico. 2. [9] Una certa zona è servita da 4 compagnie telefoniche. Per ciascuna compagnia è stato rilevato il costo al minuto (in centesimi
Metodologia Sperimentale Agronomica / Metodi Statistici per la Ricerca Ambientale
DIPARTIMENTO DI SCIENZE AGRARIE E AMBIENTALI PRODUZIONE, TERRITORIO, AGROENERGIA Marco Acutis [email protected] www.acutis.it CdS Scienze della Produzione e Protezione delle Piante (g59) CdS Biotecnologie
Statistica multivariata 27/09/2016. D.Rodi, 2016
Statistica multivariata 27/09/2016 Metodi Statistici Statistica Descrittiva Studio di uno o più fenomeni osservati sull INTERA popolazione di interesse (rilevazione esaustiva) Descrizione delle caratteristiche
Matematica e Statistica
Matematica e Statistica C.d.L. in Scienze Biologiche Prof.ssa Laura Angeloni [email protected] Dipartimento di Matematica e Informatica Università degli Studi di Perugia web page personale: http://www.dmi.unipg.it/angeloni
Statistica Inferenziale
Statistica Inferenziale a) L Intervallo di Confidenza b) La distribuzione t di Student c) La differenza delle medie d) L intervallo di confidenza della differenza Prof Paolo Chiodini Dalla Popolazione
CHEMIOMETRIA. CONFRONTO CON VALORE ATTESO (test d ipotesi) CONFRONTO DI VALORI MISURATI (test d ipotesi) CONFRONTO DI RIPRODUCIBILITA (test d ipotesi)
CHEMIOMETRIA Applicazione di metodi matematici e statistici per estrarre (massima) informazione chimica (affidabile) da dati chimici INCERTEZZA DI MISURA (intervallo di confidenza/fiducia) CONFRONTO CON
Adams, Calcolo Differenziale I, Casa Editrice Ambrosiana
Argomenti da studiare sui testi di riferimento: Adams, Calcolo Differenziale I, Casa Editrice Ambrosiana P - Preliminari 1 Limiti e continuità 1.1 Velocità, rapidità di crescita, area: alcuni esempi Velocità
Esercizi su distribuzioni doppie, dipendenza, correlazione e regressione (Statistica I, IV Canale)
Esercizi su distribuzioni doppie, dipendenza, correlazione e regressione (Statistica I, IV Canale) Esercizio 1: Un indagine su 10.000 famiglie ha dato luogo, fra le altre, alle osservazioni riportate nella
Regressione Mario Guarracino Laboratorio di Sistemi Informativi Aziendali a.a. 2006/2007
Regressione Esempio Un azienda manifatturiera vuole analizzare il legame che intercorre tra il costo mensile Y di produzione e il corrispondente volume produttivo X per uno dei propri stabilimenti. Volume
Esercizi di statistica
Esercizi di statistica Test a scelta multipla (la risposta corretta è la prima) [1] Il seguente campione è stato estratto da una popolazione distribuita normalmente: -.4, 5.5,, -.5, 1.1, 7.4, -1.8, -..
Prova Pratica di Statistica I+II - Prof. M. Romanazzi
1 Università di Venezia - Corso di Statistica I + II (Cb-Ga) Prova Pratica di Statistica I+II - Prof. M. Romanazzi 3 Giugno 2008 Cognome e Nome............................................ N. Matricola............
