Il modello di regressione lineare multivariata
|
|
|
- Serena Ranieri
- 8 anni fa
- Visualizzazioni
Transcript
1 Il modello di regressione lineare multivariata Eduardo Rossi 2 2 Università di Pavia (Italy) Aprile 2015 Rossi MRLM Econometria / 39
2 Outline 1 Notazione 2 il MRLM - Assunzioni 3 OLS 4 Proprietà stimatore OLS 5 Geometria degli OLS 6 Il modello partizionato 7 La distribuzione degli OLS nel MRLM con due regressori 8 Collinearità Rossi MRLM Econometria / 39
3 Notazione Il MRLM Il modello di regressione lineare multipla: Y i = β 0 + β 1 X 1i β k X ki + u i i = 1, 2,..., n β 0, β 1,... β k parametri fissi ma ignoti, u i ignoto, Y i regredendo, v.casuale, X ik regressore, covariata casuale. 1 β = [β 0, β 1, β 2,..., β k ] X 1i ((k + 1) 1) X i = ((k + 1) 1). 1 y i = [β 0, β 1,..., β k ] X 1i. + u i X ki Y i = β X i + u i X ki i = 1, 2,..., n Rossi MRLM Econometria / 39
4 Notazione Notazione Notazione matriciale Y = X = Y 1. Y n X 1. X n (n 1) = 1 X 11 X X k1 1 X 12 X X k X 1n X 2n... X kn u 1 u 2 u =. u n (n 1) (n (k + 1)) Rossi MRLM Econometria / 39
5 Notazione X 1 β. X nβ = Xβ Il vettore Y raccoglie tutte le osservazioni della variabile dipendente. La matrice X raccoglie le osservazioni sulle variabili esplicative. Ogni colonna di X contiene tutte le osservazioni per la singola variabile esplicativa. Il MRLM in notazione matriciale: Y = Xβ + u Rossi MRLM Econometria / 39
6 il MRLM - Assunzioni MRLM - Assunzioni 1. La media condizionale è lineare: E[Y i X i ] = X iβ 2. Campionamento casuale. Per ogni istante (unità) i un nuovo vettore (Y i, X i ) è estratto dalla popolazione in modo indipendente. Rossi MRLM Econometria / 39
7 il MRLM - Assunzioni MRLM - Assunzioni La conoscenza di x j per ogni j i non può aiutare nella previsione di Y i : (Y i, X i ) sono estratti in modo indipendente, questo significa: E[Y i X 1,..., X i,..., X n ] = X iβ i = 1,..., n e E[Y i X 1,..., X i,..., X n, Y 1,..., Y i 1, Y i+1,..., Y n ] = X iβ Rossi MRLM Econometria / 39
8 il MRLM - Assunzioni 3. Il rango di X è k Il termine di disturbo E[u X] = 0 E[uu X] = σui 2 N In modo non condizionale, per la legge delle aspettative iterate: E{E[u X]} = E[u] = 0 E{E[uu X]} = E[uu ] = σui 2 N Rossi MRLM Econometria / 39
9 OLS Il metodo dei minimi quadrati I caratteri variano simultaneamente tra gli individui. Il metodo dei minimi quadrati ordinari è un modo per scomporre le differenze nella variabile dipendente fra diverse caratteristiche osservate (variabili esplicative) per le diverse unità nel campione. Il metodo dei minimi quadrati ordinari (in inglese Ordinary Least Squares, OLS) è usato per stimare il valore di β i, i = 1,..., k. Questi sono scelti in modo tale che siano la soluzione al seguente problema: min β 0,β 1,...,β K n [Y i (β 0 + β 1 X 1i + β 2 X 2i β k X ki )] 2 i=1 Il termine minimi quadrati si riferisce alla minimizzazione della somma delle differenze al quadrato: gli scarti. [Y i (β 0 + β 1 X 1i β k X ki )] Rossi MRLM Econometria / 39
10 OLS La somma dei quadrati La funzione obiettivo f(β 0, β 1,..., β k ) = n [Y i (β 0 + β 1 X 1i + β 2 X 2i β k X ik )] 2 (1) i=1 è la sum of squared residuals (somma dei quadrati dei residui). Quando i residui sono valutati in β 1,..., β k i residui sono detti fitted residuals (residui fittati, o residui della regressione). Rossi MRLM Econometria / 39
11 OLS Lo stimatore dei minimi quadrati (OLS) Il metodo dei minimi quadrati risolve il problema Definiamo β arg min(y Xβ) (Y Xβ) β S(β) (Y Xβ) (Y Xβ) = i (Y i X iβ) 2 Rossi MRLM Econometria / 39
12 OLS Lo stimatore dei minimi quadrati (OLS) S(β) β = i (Y i X i β)2 β i = (Y i X i β)2 β i = 2 (Y i X i β) (β X i ) β ma segue che β β X i = I k X i = X i i 2 (Y i β X i ) (β X i ) = 2 β i (Y i X iβ)x i Rossi MRLM Econometria / 39
13 OLS Lo stimatore dei minimi quadrati (OLS) Condizione del primo ordine: (Y i X i β)x i = 0 ovvero i X i Y i = X i X i β i i [ ] 1 β = X i X i X i Y i i β = ( X X ) 1 X Y Gli OLS sono delle somme ponderate delle {Y i }, cioè sono funzioni lineari della variabile dipendente. Questa linearità in {Y i } semplifica l analisi statistica degli OLS. i Rossi MRLM Econometria / 39
14 Proprietà stimatore OLS Non distorsione β = (X X) 1 X Y = β + (X X) 1 X u E[ β X] = β + (X X) 1 X E[u X] = β + (X X) 1 X 0 = β Lo stimatore OLS è condizionalmente non distorto, ma anche non condizionatamente (per la legge delle aspettative iterate): E{E[ β X]} = E[ β] = β Rossi MRLM Econometria / 39
15 Proprietà stimatore OLS inoltre, [ ] E X β X = Xβ [ E [ ɛ X] = E ] Y X β X = E [Y X] E = Xβ XE[ β X] = Xβ Xβ = 0 [ X β X ] Rossi MRLM Econometria / 39
16 Proprietà stimatore OLS Proprietà stimatore OLS Varianza dello stimatore OLS: Var[ β X] = E[( β β)( β β) X] = E[(X X) 1 X uu X(X X) 1 X] = (X X) 1 X E[uu X]X(X X) 1 = σ 2 u(x X) 1 La matrice di covarianza misura quanto informatico è il campione per i parametri. La varianza non condizionale Var[ β] = E{Var[ β X]} = σ 2 ue[(x X) 1 ] Se viene ripetuto l esperimento casuale con estrazioni casuali di X, la distribuzione di β è descritta da Var[ β]. Rossi MRLM Econometria / 39
17 Geometria degli OLS Matrici di proiezione Data Simmetrica: P X = X(X X) 1 X P X = P X Idempotente: P X P X = [X(X X) 1 X ][X(X X) 1 X ] = X(X X) 1 (X X)(X X) 1 X = X(X X) 1 X = P X con P X X = [X(X X) 1 X ]X = X Rossi MRLM Econometria / 39
18 Geometria degli OLS Valori stimati Valori stimati: Ŷ = X β = X(X X) 1 X Y = P X Y Rossi MRLM Econometria / 39
19 Geometria degli OLS Residui Residui û = Y X β = Y (X X) 1 X Y = [ I n X(X X) 1 X ] Y = [I n P X ] Y = M X Y con dove M X = I n P X M X X = (I n P X )X = X X = 0 û = M X Y = M X (Xβ + u) = M X u Rossi MRLM Econometria / 39
20 Geometria degli OLS Matrici di proiezione M X è simmetrica ed idempotente (come P X ). Inoltre, M X e P X sono ortogonali. P X M X = P X (I n P X ) = P X P X = 0 Rossi MRLM Econometria / 39
21 Geometria degli OLS I residui û = M X Y = M X (Xβ + u) = M X Xβ + M X u = M X u Sebbene i residui siano stime di variabili non correlate per assunzione risultano correlati E[ûû X] = E[M X uu M X X] = σ 2 um X la distribuzione è singolare, la matrice di varianza-covarianza è singolare con rango n k 1. Questa è la conseguenza dell ortogonalità con X. Rossi MRLM Econometria / 39
22 Geometria degli OLS Stima della varianza dell errore E[u 2 i X] = σ 2 u Per la legge delle aspettative iterate: Stimatore non distorto: E{E[u 2 i X]} = E[u 2 i ] = σ 2 u s 2 u = û û n k 1 Per dimostrare la correttezza usiamo le seguenti proprietà della traccia a = tr(a) a R tr(ab) = tr(ba) Rossi MRLM Econometria / 39
23 Geometria degli OLS Stima della varianza dell errore E[s 2 u X] = E[u M X u X] n k 1 = E[tr(u M X u) X] n k 1 = E[tr(M Xuu ) X] = tr[e(m Xuu X)] n k 1 n k 1 = tr[m XE(uu X)] n k 1 = tr(m XσuI 2 N ) = tr(σ2 um X ) N K n k 1 = tr(m X ) σ2 u n k 1 = n k 1 σ2 u n k 1 = σu 2 Rossi MRLM Econometria / 39
24 Geometria degli OLS Stima della varianza dell errore Non condizionatamente: [ û ] û E n k 1 = σ 2 u s 2 u è corretto solo nel caso di disturbi omoschedastici (E[uu ] = σ 2 ui n ). Rossi MRLM Econometria / 39
25 Il modello partizionato Il modello partizionato Assunzioni X, (n (k + 1)), è una matrice di rango-colonna pieno, n > k + 1. Il modello partizionato è utile per descrivere come gli OLS assegnano valori agli elementi di β quando tutte le variabili esplicative cambiano da osservazione a osservazione. Y = Xβ + u = [ X 1 X 2 ] [ β 1 β 2 X 1 (n k 1 ) X 2 (n k 2 ) β 1 (k 1 1) β 2 (k 2 1) ] = X 1 β 1 + X 2 β 2 + u Rossi MRLM Econometria / 39
26 Il modello partizionato Il modello partizionato Frisch e Waugh (1933), Lowell (1963). Y = P X Y + (I n P X )Y = P X Y + M X Y P X Y = X 1 β1 + X 2 β2 Y = X 1 β1 + X 2 β2 + M X Y M X2 = I n X 2 (X 2X 2 ) 1 X 2 Premoltiplichiamo con X 1 M X 2 : X 1M X2 Y = X 1M X2 X 1 β1 + X 1M X2 X 2 β2 + X 1M X2 M X Y ma M X2 X 2 = 0 M X M X2 X 1 = 0 perchè M X2 X 1 Col(X). Rossi MRLM Econometria / 39
27 Il modello partizionato Il modello partizionato Risolvendo per β 1 si ottiene β 1 = ( X 1M X2 X 1 ) 1 X 1 M X2 Y Quindi lo stimatore β 1 può essere trovato con una procedura a due stadi: 1 regressione di X 1 su X 2, da cui si ottengono i residui M X2 X 1 ; 2 regressione di Y sui residui della regressione del primo stadio, M X2 X 1. β 1 cattura la componente di y collineare con X 1 che non può essere spiegata da X 2. Rossi MRLM Econometria / 39
28 Il modello partizionato Il modello partizionato Con errori omoschedastici: ˆβ 1 = ( X ) 1 1M X2 X 1 X 1 M X2 Y = ( X ) 1 1M X2 X 1 X 1 M X2 [X 1 β 1 + X 2 β 2 + u] = β 1 + ( X ) 1 1M X2 X 1 X 1 M X2 u Var[ˆβ 1 X] = E[(β 1 ˆβ 1 )(β 1 ˆβ 1 ) X] = E[ ( X ) 1 1M X2 X 1 X 1 M X2 uu ( ) M X2 X 1 X 1 1 M X2 X 1 X] = ( X ) 1 1M X2 X 1 X 1 M X2 E[uu ( ) X]M X2 X 1 X 1 1 M X2 X 1 = σu 2 ( ) X 1 ( ) 1 M X2 X 1 X 1 M X2 X 1 X 1 1 M X2 X 1 = σu 2 ( ) X 1 1 M X2 X 1 Rossi MRLM Econometria / 39
29 Il modello partizionato La distribuzione degli stimatori OLS nel MRLM Sotto le quattro assunzioni dei minimi quadrati: La distribuzione campionaria di ˆβ 1 ha media β 1 Var( ˆβ 1 ) è inversamente proporzionale a n. Al di là di media e varianza, la distribuzione esatta (n-finita) di ˆβ i molto complessa; ma per n grande... p è consistente: ˆβ1 β1 (legge dei grandi numeri) è approssimata da una distribuzione N(0,1) (TLC) Queste proprietà valgono per ˆβ 2,..., ˆβ k Concettualmente, non vi è nulla di nuovo! Rossi MRLM Econometria / 39
30 La distribuzione degli OLS nel MRLM con due regressori La distribuzione degli stimatori OLS nella regressione con due regressori Y i = β 1 X 1i + β 2 X 2i + u i Errori omoschedastici: Var[u i X 1i, X 2i ] = σu 2 notazione matriciale: Y = β 1 X 1 + β 2 X 2 + u ˆβ 1 = ( X ) 1 1M X2 X 1 X 1 M X2 Y X 2 = I n X 2 (X 2X 2 ) 1 X 2 In grandi campioni, la distribuzione di ˆβ 1 ˆβ 1 N(β 1, σ 2ˆβ1 ) Rossi MRLM Econometria / 39
31 La distribuzione degli OLS nel MRLM con due regressori La distribuzione degli stimatori OLS nella regressione con due regressori Var( ˆβ 1 X) = σu 2 ( ) X 1 1 M X2 X 1 [ X 1 X 1 X 1X 2 (X 2X 2 ) 1 X ] 1 2X 1 = σu 2 = σu 2 1 X 1 X 1 = σu 2 1 X 1 X 1 [ 1 [ 1 (X 1 X 2) 2 ] (X 2 X 2)(X 1 X 1) (X 1 X 2) 2 (X 2 X 2)(X 1 X 1) σ 2 u Var( ˆβ 1 ) = σ 2ˆβ1 = 1 n σx 2 (1 ρ 2 X 1,X 2 ) 1 1 ] 1 Se X 1 e X 2 sono fortemente correlati allora 1 ρ 2 X 1,X 2 0 e la varianza di ˆβ 1 è più grande di quella che si avrebbe se ρ 2 X 1,X 2 0. Rossi MRLM Econometria / 39
32 Collinearità Collinearità perfetta La collinearità perfetta si ha quando uno dei regressori è una funzione lineare esatta degli altri. Esempi di collinearità perfetta Includere STR due volte, Eseguite la regressione di TestScore su una costante e due variabili dummy, D e B { 1 se STR 20 D i = 0 altrimenti { 1 se STR > 20 B i = 0 altrimenti perciò B i = 1 D i e vi è collinearità perfetta. Ci sarebbe collinearità perfetta se l intercetta (costante) fosse esclusa da questa regressione? Questo esempio è un caso di trappola della dummy. Rossi MRLM Econometria / 39
33 Collinearità Dummy per fenomeni stagionali Consumo: C i = β 0 + β 1 D 1i + β 2 D 2i + βd 3i + β 4 X i + u i { 0 i = secondo, terzo e quarto trimestre D 1i = 1 i = primo trimestre { 0 i = primo, terzo e quarto trimestre D 2i = 1 i = secondo trimestre { 0 i = primo, secondo e quarto trimestre D 3i = 1 i = terzo trimestre La quarta equazione non ha dummy. E l equazione di riferimento cioè la base di partenza rispetto alla quale c è la correzione di intercetta. Rossi MRLM Econometria / 39
34 Collinearità Dummy per fenomeni stagionali n = 8, 8 trimestri X = 1 X X X X X X X X Le ultime tre colonne rappresentano le 3 dummy. Rossi MRLM Econometria / 39
35 Collinearità Dummy per fenomeni stagionali Attenzione: Se inseriamo la quarta dummy la prima colonna X = 1 X X X X X X X X X 1 = X 3 + X 4 + X 5 + X 6 abbiamo una matrice di rango ridotto (collinearità perfetta). Rossi MRLM Econometria / 39
36 Collinearità Dummy per fenomeni stagionali Con dati trimestrali si usano 3 dummy, con dati mensili si usano 11 dummy. La presenza di outlier la si può accertare, in prima istanza, attraverso l analisi dei residui. Quando vi sono residui molto grandi è probabile che siamo in presenza di un outlier. Rossi MRLM Econometria / 39
37 Collinearità Collinearità perfetta Con G variabili binarie, Se ogni osservazione rientra in una e una sola categoria. se c è un intercetta nella regressione. se tutte le variabili binarie G sono incluse come regressori. allora ci sarà collinearità perfetta. Per eliminare la collinearità perfetta dobbiamo escludere una delle variabili binarie. In questo caso i coefficienti associati con le variabili binarie incluse devono essere interpretati come deviazione dal livello medio. Rossi MRLM Econometria / 39
38 Collinearità Collinearità perfetta La collinearità perfetta solitamente riflette un errore nelle definizioni dei regressori, o una stranezza nei dati Se avete collinearità perfetta, il software statistico ve lo farà sapere bloccandosi, o mostrando un messaggio di errore, o scaricando arbitrariamente una delle variabili La soluzione alla collinearità perfetta consiste nel modificare l elenco di regressori. Rossi MRLM Econometria / 39
39 Collinearità Collinearità imperfetta La collinearità imperfetta è ben diversa dalla collinearità perfetta, nonostante la somiglianza dei nomi La collinearità imperfetta si verifica quando due o più regressori sono altamente correlati. Perchè si usa il termine collinearità? Se due regressori sono altamente correlati, allora il loro diagramma a nuvola apparirà molto simile a una retta sono co-lineari ma a meno che la correlazione sia esattamente = 1, tale collinearità è imperfetta. Rossi MRLM Econometria / 39
Il modello di regressione lineare multivariata
Il modello di regressione lineare multivariata Eduardo Rossi 2 2 Università di Pavia (Italy) Aprile 2013 Rossi MRLM Econometria - 2013 1 / 39 Outline 1 Notazione 2 il MRLM 3 Il modello partizionato 4 Collinearità
Il modello di regressione lineare multipla con regressori stocastici
Università di Pavia Il modello di regressione lineare multipla con regressori stocastici Eduardo Rossi Il valore atteso condizionale Modellare l esperimento casuale bivariato nel quale le variabili casuali
Regressione lineare multipla
Regressione lineare multipla Eduardo Rossi 2 2 Università di Pavia (Italy) Aprile 2014 Rossi Regressione lineare Econometria - 2014 1 / 31 Outline 1 La distorsione da variabili omesse 2 Causalità 3 Misure
Università di Pavia. Test diagnostici. Eduardo Rossi
Università di Pavia Test diagnostici Eduardo Rossi Test diagnostici Fase di controllo diagnostico: controllo della coerenza tra quanto direttamente osservato e le ipotesi statistiche adottate Ipotesi MRLM
Il modello di regressione lineare multipla. Il modello di regressione lineare multipla
Introduzione E la generalizzazione del modello di regressione lineare semplice: per spiegare il fenomeno d interesse Y vengono introdotte p, con p > 1, variabili esplicative. Tale generalizzazione diventa
Statistica Applicata all edilizia: il modello di regressione
Statistica Applicata all edilizia: il modello di regressione E-mail: [email protected] 27 aprile 2009 Indice Il modello di Regressione Lineare 1 Il modello di Regressione Lineare Analisi di regressione
Il modello di regressione lineare classico
Università di Pavia Il modello di regressione lineare classico Eduardo Rossi Ipotesi Il modello di regressione lineare classico y t = x tβ + ε t t = 1,...,N Y = Xβ + ε Se il modello ha un intercetta allora
Regressione lineare semplice: inferenza
Regressione lineare semplice: inferenza Eduardo Rossi 2 2 Università di Pavia (Italy) Marzo 2014 Rossi Regressione lineare semplice Econometria - 2014 1 / 60 Outline 1 Introduzione 2 Verifica di ipotesi
Regressione lineare con un solo regressore
Regressione lineare con un solo regressore La regressione lineare è uno strumento che ci permette di stimare e di fare inferenza sui coefficienti incogniti di una retta. Lo scopo principale è di stimare
Esercitazione 5 Sta/s/ca Aziendale
Esercitazione 5 Sta/s/ca Aziendale David Aristei 12 maggio 2015 Si è interessa/ ad analizzare le determinan/ a livello aziendale della produ>vità del lavoro (PL, in migliaia di euro per dipendente) di
Regressione Mario Guarracino Laboratorio di Sistemi Informativi Aziendali a.a. 2006/2007
Regressione Esempio Un azienda manifatturiera vuole analizzare il legame che intercorre tra il costo mensile Y di produzione e il corrispondente volume produttivo X per uno dei propri stabilimenti. Volume
MODELLO DI REGRESSIONE LINEARE. le ipotesi del modello di regressione classico, stima con i metodi dei minimi quadrati e di massima verosimiglianza,
MODELLO DI REGRESSIONE LINEARE le ipotesi del modello di regressione classico, stima con i metodi dei minimi quadrati e di massima verosimiglianza, teorema di Gauss-Markov, verifica di ipotesi e test di
R - Esercitazione 6. Andrea Fasulo Venerdì 22 Dicembre Università Roma Tre
R - Esercitazione 6 Andrea Fasulo [email protected] Università Roma Tre Venerdì 22 Dicembre 2017 Il modello di regressione lineare semplice (I) Esempi tratti da: Stock, Watson Introduzione all econometria
Statistica. Capitolo 12. Regressione Lineare Semplice. Cap. 12-1
Statistica Capitolo 1 Regressione Lineare Semplice Cap. 1-1 Obiettivi del Capitolo Dopo aver completato il capitolo, sarete in grado di: Spiegare il significato del coefficiente di correlazione lineare
Esercitazione del
Esercizi sulla regressione lineare. Esercitazione del 21.05.2013 Esercizio dal tema d esame del 13.06.2011. Si consideri il seguente campione di n = 9 osservazioni relative ai caratteri ed Y: 7 17 8 36
IL MODELLO DI REGRESSIONE LINEARE SEMPLICE E MULTIPLA* La violazione delle ipotesi. Statistica Economica A.A. 2011/2012. Prof.ssa Tiziana Laureti
IL MODELLO DI REGRESSIONE LINEARE SEMPLICE E MULTIPLA* La violazione delle ipotesi Statistica Economica A.A. 2011/2012 Prof.ssa Tiziana Laureti *Libro di testo: Stock J.H. e Watson, M.W. Introduzione all
STATISTICA A K (60 ore)
STATISTICA A K (60 ore) Marco Riani [email protected] http://www.riani.it Richiami sulla regressione Marco Riani, Univ. di Parma 1 MODELLO DI REGRESSIONE y i = a + bx i + e i dove: i = 1,, n a + bx i rappresenta
Regressione lineare semplice
Regressione lineare semplice Prof. Giuseppe Verlato Sezione di Epidemiologia e Statistica Medica, Università di Verona Statistica con due variabili var. nominale, var. nominale: gruppo sanguigno - cancro
Statistica 1 A.A. 2015/2016
Corso di Laurea in Economia e Finanza Statistica 1 A.A. 2015/2016 (8 CFU, corrispondenti a 48 ore di lezione frontale e 24 ore di esercitazione) Prof. Luigi Augugliaro 1 / 35 Il modello di regressione
ANALISI DELLE SERIE STORICHE
ANALISI DELLE SERIE STORICHE De Iaco S. [email protected] UNIVERSITÀ del SALENTO DIP.TO DI SCIENZE ECONOMICHE E MATEMATICO-STATISTICHE FACOLTÀ DI ECONOMIA 24 settembre 2012 Indice 1 Funzione di
Analisi della correlazione canonica
Analisi della correlazione canonica Su un collettivo di unità statistiche si osservano due gruppi di k ed m variabili L analisi della correlazione canonica ha per obiettivo lo studio delle relazioni di
La multicollinearità sorge quando c è un elevata correlazione tra due o più variabili esplicative.
Lezione 14 (a cura di Ludovica Peccia) MULTICOLLINEARITA La multicollinearità sorge quando c è un elevata correlazione tra due o più variabili esplicative. In un modello di regressione Y= X 1, X 2, X 3
La regressione fuzzy. Capitolo I limiti della regressione classica. a cura di Fabrizio Maturo
Capitolo 14 La regressione fuzzy a cura di Fabrizio Maturo 14.1 I limiti della regressione classica L analisi di regressione offre una possibile soluzione per studiare l effetto di una o più variabili
lezione n. 6 (a cura di Gaia Montanucci) Verosimiglianza: L = = =. Parte dipendente da β 0 e β 1
lezione n. 6 (a cura di Gaia Montanucci) METODO MASSIMA VEROSIMIGLIANZA PER STIMARE β 0 E β 1 Distribuzione sui termini di errore ε i ε i ~ N (0, σ 2 ) ne consegue : ogni y i ha ancora distribuzione normale,
Dispensa di Statistica
Dispensa di Statistica 1 parziale 2012/2013 Diagrammi... 2 Indici di posizione... 4 Media... 4 Moda... 5 Mediana... 5 Indici di dispersione... 7 Varianza... 7 Scarto Quadratico Medio (SQM)... 7 La disuguaglianza
Statistica. Alfonso Iodice D Enza
Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 24 Outline 1 2 3 4 5 () Statistica 2 / 24 Dipendenza lineare Lo studio della relazione tra caratteri
Regressione multipla
Regressione multipla L obiettivo è costruire un modello probabilistico per spiegare la variabile y tramite più di una variabile indipendente x 1, x 2,..., x k. Esempio: Per un efficiente progettazione
Statistica multivariata Donata Rodi 17/10/2016
Statistica multivariata Donata Rodi 17/10/2016 Quale analisi? Variabile Dipendente Categoriale Continua Variabile Indipendente Categoriale Chi Quadro ANOVA Continua Regressione Logistica Regressione Lineare
Metodi statistici per l economia (Prof. Capitanio) Slide n. 10. Materiale di supporto per le lezioni. Non sostituisce il libro di testo
Metodi statistici per l economia (Prof. Capitanio) Slide n. 10 Materiale di supporto per le lezioni. Non sostituisce il libro di testo 1 REGRESSIONE LINEARE Date due variabili quantitative, X e Y, si è
Statistica di base per l analisi socio-economica
Laurea Magistrale in Management e comunicazione d impresa Statistica di base per l analisi socio-economica Giovanni Di Bartolomeo [email protected] Definizioni di base Una popolazione è l insieme
Appunti di Econometria
Appunti di Econometria ARGOMENTO [1]: IL MODELLO DI REGRESSIONE LINEARE Tommaso Nannicini Università Bocconi Settembre 2010 1 Antipasto: proprietà algebriche del metodo dei minimi quadrati In questa parte
Verifica di ipotesi e intervalli di confidenza nella regressione multipla
Verifica di ipotesi e intervalli di confidenza nella regressione multipla Eduardo Rossi 2 2 Università di Pavia (Italy) Maggio 2014 Rossi MRLM Econometria - 2014 1 / 23 Sommario Variabili di controllo
Statistica per le ricerche di mercato. 11. La regressione lineare multipla
Statistica per le ricerche di mercato A.A. 2012/13 Dr. L.Secondi 11. La regressione lineare multipla 1 Modello di regressione lineare multipla Il modello di regressione multipla estende il modello di regressione
Elementi di statistica per l econometria
Indice Prefazione i 1 Teoria della probabilità 1 1.1 Definizioni di base............................. 2 1.2 Probabilità................................. 7 1.2.1 Teoria classica...........................
Regressione Lineare Semplice e Correlazione
Regressione Lineare Semplice e Correlazione 1 Introduzione La Regressione è una tecnica di analisi della relazione tra due variabili quantitative Questa tecnica è utilizzata per calcolare il valore (y)
Variabili indipendenti qualitative. In molte applicazioni si rende necessario l introduzione di un fattore a due o più livelli.
Variabili indipendenti qualitative Di solito le variabili nella regressione sono variabili continue In molte applicazioni si rende necessario l introduzione di un fattore a due o più livelli Ad esempio:
Confronto fra gruppi: il metodo ANOVA. Nicola Tedesco (Statistica Sociale) Confronto fra gruppi: il metodo ANOVA 1 / 23
Confronto fra gruppi: il metodo ANOVA Nicola Tedesco (Statistica Sociale) Confronto fra gruppi: il metodo ANOVA 1 / 23 1 Nella popolazione, per ciascun gruppo la distribuzione della variabile risposta
Statistica. Alfonso Iodice D Enza
Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 33 Outline 1 2 3 4 5 6 () Statistica 2 / 33 Misura del legame Nel caso di variabili quantitative
LEZIONI IN LABORATORIO Corso di MARKETING L. Baldi Università degli Studi di Milano. Strumenti statistici in Excell
LEZIONI IN LABORATORIO Corso di MARKETING L. Baldi Università degli Studi di Milano Strumenti statistici in Excell Pacchetto Analisi di dati Strumenti di analisi: Analisi varianza: ad un fattore Analisi
Modelli lineari generalizzati
Modelli lineari generalizzati Estensione del modello lineare generale Servono allo studio della dipendenza in media di una variabile risposta da una o più variabili antecedenti Vengono attenuate alcune
1 Endogeneità, variabili strumentali
1 Endogeneità, variabili strumentali 1.1 Proprieta dello stimatore OLS Modello statistico y t = β 1 +β 2 x t2 +...+β k x tk +ε t y t = x tβ+ε t, Brevesommario: y t ex t sonovariabiliosservablimentre ε
Corso di Statistica Industriale
Corso di Statistica Industriale Corsi di Laurea Specialistica in Ingegneria Gestionale e Ingegneria Meccanica Docente: Ilia Negri Orario del corso: Martedì: dalle 14.00 alle 16.00 Venerdì: dalle 10.30
Settimana 3. G. M. Marchetti. Marzo 2017
Settimana 3 G. M. Marchetti Marzo 2017 1 / 26 Prima parte Relazioni tra variabili e regressione lineare 2 / 26 Una legge fisica approssimata Il fisico scozzese Forbes 3 / 26 L esperimento di Forbes Sulla
Funzioni di regressione non lineari
Funzioni di regressione non lineari Eduardo Rossi 2 2 Università di Pavia (Italy) Maggio 2013 Rossi Regressione nonlineare Econometria - 2013 1 / 25 Sommario Funzioni di regressione non lineari - note
PROBABILITÀ ELEMENTARE
Prefazione alla seconda edizione XI Capitolo 1 PROBABILITÀ ELEMENTARE 1 Esperimenti casuali 1 Spazi dei campioni 1 Eventi 2 Il concetto di probabilità 3 Gli assiomi della probabilità 3 Alcuni importanti
MODELLO DI REGRESSIONE PER DATI DI PANEL
MODELLO DI REGRESSIONE PER DAI DI PANEL 5. Introduzione Storicamente l analisi econometrica ha proceduto in due distinte direzioni: lo studio di modelli macroeconomici, sulla base di serie temporali di
Test delle Ipotesi Parte I
Test delle Ipotesi Parte I Test delle Ipotesi sulla media Introduzione Definizioni basilari Teoria per il caso di varianza nota Rischi nel test delle ipotesi Teoria per il caso di varianza non nota Test
Appunti di Econometria
Appunti di Econometria ARGOMENTO [3]: VARIABILI STRUMENTALI Tommaso Nannicini Università Bocconi Novembre 2010 E ho visto causa ad effetto che si scambiavano il ruolo Lorenzo Jovanotti Cherubini, Un buco
Lezione 18. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 18. A. Iodice
Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 45 Outline 1 2 3 4 5 () Statistica 2 / 45 Modello di In molte applicazioni il ruolo delle variabili
x, y rappresenta la coppia di valori relativa La rappresentazione nel piano cartesiano dei punti ( x, y ),( x, y ),...,( x, y )
Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 0/03 lezioni di statistica del 5 e 8 aprile 03 - di Massimo Cristallo - A. Le relazioni tra i fenomeni
Schema della lezione. 1. Non correttezza ( bias ) dovuta a variabili omesse
Schema della lezione 1. Non correttezza ( bias ) dovuta a variabili omesse 2. Causalità e analsi di regressione 3. Regressione multipla e OLS 4. Misure di bontà della regressione 5. Distribuzione campionaria
Minimi quadrati vincolati e test F
Minimi quadrati vincolati e test F Impostazione del problema Spesso, i modelli econometrici che stimiamo hanno dei parametri che sono passibili di interpretazione diretta nella teoria economica. Consideriamo
3.1 Classificazione dei fenomeni statistici Questionari e scale di modalità Classificazione delle scale di modalità 17
C L Autore Ringraziamenti dell Editore Elenco dei simboli e delle abbreviazioni in ordine di apparizione XI XI XIII 1 Introduzione 1 FAQ e qualcos altro, da leggere prima 1.1 Questo è un libro di Statistica
La regressione (S. Terzi) 1. Retta di regressione (regressione lineare semplice)
La regressione (S. Terzi) 1. Retta di regressione (regressione lineare semplice) Date n coppie di osservazioni (x i,y i ), i=1,,n si desidera fare un interpolazione dei punti attraverso una retta: y* =
Test F per la significatività del modello
Test F per la significatività del modello Per verificare la significatività dell intero modello si utilizza il test F Si vuole verificare l ipotesi H 0 : β 1 = 0,, β k = 0 contro l alternativa che almeno
STATISTICA (2) ESERCITAZIONE Dott.ssa Antonella Costanzo
STATISTICA (2) ESERCITAZIONE 7 11.03.2014 Dott.ssa Antonella Costanzo Esercizio 1. Test di indipendenza tra mutabili In un indagine vengono rilevate le informazioni su settore produttivo (Y) e genere (X)
Sommario. Capitolo 1 I dati e la statistica 1. Capitolo 2 Statistica descrittiva: tabelle e rappresentazioni grafiche 25
Sommario Presentazione dell edizione italiana Prefazione xv xiii Capitolo 1 I dati e la statistica 1 Statistica in pratica: BusinessWeek 1 1.1 Le applicazioni in ambito aziendale ed economico 3 Contabilità
PROCEDURE/TECNICHE DI ANALISI / MISURE DI ASSOCIAZIONE A) ANALISI DELLA VARIANZA
PROCEDURE/TECNICHE DI ANALISI / MISURE DI ASSOCIAZIONE A) ANALISI DELLA VARIANZA PROCEDURA/TECNICA DI ANALISI DEI DATI SPECIFICAMENTE DESTINATA A STUDIARE LA RELAZIONE TRA UNA VARIABILE NOMINALE (ASSUNTA
Stima dei sistemi di equazioni simultanee
Università di Pavia Stima dei sistemi di equazioni simultanee Eduardo Rossi University of Pavia Stima dei SES Limited Information OLS 2STLS K CLASS H CLASS Full Information FIMLE 3STLS FIIV Eduardo Rossi
Regressioni Non Lineari
Regressioni Non Lineari Fino ad ora abbiamo solo considerato realazioni lineari Ma le relazioni lineari non costituiscono sempre le migliori approssimazioni La regressione multipla può anche essere formulata
Statistica Inferenziale
Statistica Inferenziale Prof. Raffaella Folgieri Email: [email protected] aa 2009/2010 Riepilogo lezione 8 Abbiamo visto: Metodi per la determinazione di uno stimatore Metodo di massima verosimiglianza
Il modello lineare misto
Il modello lineare misto (capitolo 9) A M D Marcello Gallucci Univerisità Milano-Bicocca Lezione: 15 GLM Modello Lineare Generale vantaggi Consente di stimare le relazioni fra due o più variabili Si applica
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 5
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE Dott.ssa Antonella Costanzo [email protected] Esercizio 1. Approssimazione normale della Poisson (TLC) In un determinato tratto di strada il numero di incidenti
Introduzione al corso di Econometria
Università di Pavia Introduzione al corso di Econometria Eduardo Rossi Che cos è l econometria? Gli economisti sono interessati alle relazioni fra diverse variabili, per esempio la relazione tra salari
Teoria e tecniche dei test. Concetti di base
Teoria e tecniche dei test Lezione 2 2013/14 ALCUNE NOZIONI STATITICHE DI BASE Concetti di base Campione e popolazione (1) La popolazione è l insieme di individui o oggetti che si vogliono studiare. Questi
STATISTICA 1, metodi matematici e statistici Introduzione al linguaggio R Esercitazione 7:
esercitazione 7 p. 1/13 STATISTICA 1, metodi matematici e statistici Introduzione al linguaggio R Esercitazione 7: 20-05-2004 Luca Monno Università degli studi di Pavia [email protected] http://www.lucamonno.it
Statistica a lungo termine: calcolo dell onda di progetto
Esercitazione Statistica a lungo termine: calcolo dell onda di progetto Sulla base delle misure ondametriche effettuate dalla boa di Ponza si calcoli, utilizzando la distribuzione di probabilità di Gumbel,
Proprietà asintotiche stimatori OLS e statistiche collegate
Proprietà asitotiche stimatori OLS e statistiche collegate Eduardo Rossi 2 2 Uiversità di Pavia (Italy) Maggio 2014 Rossi Proprietà asitotiche Ecoometria - 2014 1 / 30 Sommario Risultati prelimiari Distribuzioe
Esercizi di statistica
Esercizi di statistica Test a scelta multipla (la risposta corretta è la prima) [1] Il seguente campione è stato estratto da una popolazione distribuita normalmente: -.4, 5.5,, -.5, 1.1, 7.4, -1.8, -..
La regressione logistica
La regressione logistica Supponiamo che la variabile di interesse y sia una variabile dicotoma, che assuma solo i valori 0 ovvero 1, corrispondenti a successo o insuccesso. Sia p = P (S) = P (Y = 1) la
Concetti di teoria dei campioni ad uso degli studenti di Statistica Economica e Finanziaria, A.A. 2016/2017. Giovanni Lafratta
Concetti di teoria dei campioni ad uso degli studenti di Statistica Economica e Finanziaria, A.A. 2016/2017 Giovanni Lafratta ii Indice 1 Spazi, Disegni e Strategie Campionarie 1 2 Campionamento casuale
Laboratorio di Didattica di elaborazione dati 5 STIMA PUNTUALE DEI PARAMETRI. x i. SE = n.
5 STIMA PUNTUALE DEI PARAMETRI [Adattato dal libro Excel per la statistica di Enzo Belluco] Sia θ un parametro incognito della distribuzione di un carattere in una determinata popolazione. Il problema
Università del Piemonte Orientale Specializzazioni di area sanitaria Statistica Medica
Università del Piemonte Orientale Specializzazioni di area sanitaria Statistica Medica Regressione Lineare e Correlazione Argomenti della lezione Determinismo e variabilità Correlazione Regressione Lineare
Statistica. Alfonso Iodice D Enza
Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 1 Outline 1 () Statistica 2 / 1 Outline 1 2 () Statistica 2 / 1 Outline 1 2 3 () Statistica 2 / 1
Analisi descrittiva: calcolando medie campionarie, varianze campionarie e deviazioni standard campionarie otteniamo i dati:
Obiettivi: Esplicitare la correlazione esistente tra l altezza di un individuo adulto e la lunghezza del suo piede e del suo avambraccio. Idea del progetto: Il progetto nasce dall idea di acquistare scarpe
Analisi della correlazione canonica
Capitolo 8 Analisi della correlazione canonica Si supponga che su un collettivo di unità statistiche si siano osservati due gruppi di k ed m variabili corrispondenti ad altrettanti aspetti di un fenomeno
LE DISTRIBUZIONI CAMPIONARIE
LE DISTRIBUZIONI CAMPIONARIE Argomenti Principi e metodi dell inferenza statistica Metodi di campionamento Campioni casuali Le distribuzioni campionarie notevoli: La distribuzione della media campionaria
Data Mining. Prova parziale del 20 aprile 2017: SOLUZIONE
Università degli Studi di Padova Corso di Laurea Magistrale in Informatica a.a. 2016/2017 Data Mining Docente: Annamaria Guolo Prova parziale del 20 aprile 2017: SOLUZIONE ISTRUZIONI: La durata della prova
Il modello di regressione (VEDI CAP 12 VOLUME IEZZI, 2009)
Il modello di regressione (VEDI CAP 12 VOLUME IEZZI, 2009) Quesito: Posso stimare il numero di ore passate a studiare statistica sul voto conseguito all esame? Potrei calcolare il coefficiente di correlazione.
