Stelle: magnitudini e Diagramma H-R. Olimpiadi di Astronomia Sede interegionale del Lazio

Documenti analoghi
Stelle: magnitudini e Diagramma H-R. Olimpiadi di Astronomia Sede interegionale del Lazio

Stelle: magnitudini e Diagramma H-R. Olimpiadi di Astronomia edizione 2016

Olimpiadi Italiane di Astronomia MAGNITUDINI

Magnitudini e Diagramma H-R Giuseppe Cutispoto

Le Stelle Diagramma H-R. a cura di Milena Benedettini INAF - IAPS

Istituto Nazionale di Astrofisica Osservatorio Astronomico di Palermo. Seconda lezione. Antonio Maggio. INAF Osservatorio Astronomico di Palermo

1. La luce delle stelle

Olimpiadi Italiane di Astronomia Corso di preparazione per la Gara Interregionale Categoria Senior

Stelle. - emette un flusso continuo di onde elettromagnetiche, che noi osserviamo in parte sotto forma di luce

OLIMPIADI ITALIANE DI ASTRONOMIA 2015 FINALE NAZIONALE 19 Aprile Prova pratica - Categoria Senior

LE STELLE. LE DISTANZE ASTRONOMICHE Unità astronomica = distanza media Terra-Sole ( km)

Astronomia Lezione 17/10/2011

La classificazione delle stelle

Problema 1. Sirio ( 2000 = 6h 45m;

CARATTERISTICHE DELLE STELLE

1. KB La Luna si allontana dalla Terra a una velocità V a 3.8 cm/anno. Tra quanto tempo non sarà più possibile osservare eclissi totali di Sole?

E noto che la luce, o radiazione elettromagnetica, si propaga sottoforma di onde. Un onda è caratterizzata da due parametri legati fra loro: la

OLIMPIADI ITALIANE DI ASTRONOMIA 2013 FINALE NAZIONALE Prova Teorica - Categoria Junior

Astronomia Strumenti di analisi

OLIMPIADI ITALIANE DI ASTRONOMIA 2013 FINALE NAZIONALE Prova Teorica - Categoria Senior

Le stelle vanno a scuola. Le Magnitudini. M.Ciani, L.Donato, C.Zamberlan

UNIVERSITA' DEGLI STUDI DI CATANIA Facoltà di Scienze Matematiche, Fisiche, Naturali Corso di Laurea Specialistica in Fisica

Unità di misura di lunghezza usate in astronomia

L energia assorbita dall atomo durante l urto iniziale è la stessa del fotone che sarebbe emesso nel passaggio inverso, e quindi vale: m

OLIMPIADI ITALIANE DI ASTRONOMIA 2019 Gara Interregionale 15 febbraio Categoria Senior

Astronomia Parte I Proprietà fondamentali delle stelle

AC5 Distanze nella Via Lattea

PROXIMA CENTAURI = 1,5 pc (visibile solo nel cielo australe) SIRIO = 2,6 pc stelle misurate entro 150 pc

Astronomia Lezione 7/11/2011

OLIMPIADI ITALIANE DI ASTRONOMIA 2019 Gara Interregionale 15 febbraio Categoria Senior

BRILLANZA: potenza emessa per unità di angolo solido e unità di superficie della sorgente.

Sulla Storia dell Astronomia: il Novecento. Gli strumenti, le scoperte, le teorie. GLOSSARIO

Docente: Alessandro Melchiorri

Lezione 5. La misura delle distanze in astrofisica

ESERCIZI SCIENZE: SISTEMA SOLARE

OLIMPIADI ITALIANE DI ASTRONOMIA 2015 FINALE NAZIONALE 19 Aprile Prova Teorica - Categoria Senior

OLIMPIADI ITALIANE DI ASTRONOMIA 2015 FINALE NAZIONALE 19 Aprile Prova Teorica - Categoria Senior

13 ottobre Prof. Manlio Bellesi

OLIMPIADI ITALIANE DI ASTRONOMIA 2017 Finale Nazionale - 5 Aprile Prova Pratica - Categoria Senior

Quesito N Considerate un modello di stella che consista di un corpo nero sferico di temperatura superficiale T e

Astronomia Parte I Proprietà fondamentali delle stelle

OLIMPIADI ITALIANE DI ASTRONOMIA GARA INTERREGIONALE - Categoria Senior. Problemi con soluzioni

Incontro 4: 7 febbraio A cura di: Giuseppe Cutispoto e Mariachiara Falco

Distanze e magnitudini

OLIMPIADI ITALIANE DI ASTRONOMIA 2015 FINALE NAZIONALE 19 Aprile Prova Teorica - Categoria Junior

Astronomia Lezione 20/10/2011

Docente: Alessandro Melchiorri Slides delle lezioni: oberon.roma1.infn.it/alessandro/astro2014

ASTROFISICA (3 moduli da 3 ore)

L irraggiamento termico

Come classificare uno spettro stellare. Francesca Onori

La luce delle stelle

Illuminotecnica - Grandezze Fotometriche

I Diagrammi HR. Russell. Hertzsprung

Astronomia Parte I Proprietà fondamentali delle stelle

Lezione 4. Bande elettromagnetiche, brillanza superficiale e intensità specifica, la misura delle distanze in astrofisica

Distanze e magnitudini

Astronomia Lezione 11/11/2011

Lo Spettro Elettromagnetico

1. Le stelle. corpi celesti di forma sferica. costituite da gas (idrogeno ed elio)

. Esprimere il risultato in km, anni luce, parsec, unità astronomiche e raggi solari.

Docente: Alessandro Melchiorri Slides delle lezioni: oberon.roma1.infn.it/alessandro/astro2014

La Misura del Mondo 5 Oltre il sistema solare

ESERCITAZIONI ASTROFISICA STELLARE

Atmosfera terrestre ...

OGGETTO DEL MESE. Aldebaran

La misura dei parametri fisici delle stelle

Docente: Alessandro Melchiorri

Corso di introduzione all'astrofisica A.A. 2013/2014. Programma svolto

Con la parola Universo possiamo intendere tutto ciò che ci circonda: le stelle, i pianeti e tutti gli altri oggetti che vediamo nel cielo (insieme ad

Oltre il Sistema Solare

Grandezze Fisiche caratteristiche

Olimpiadi Italiane di Astronomia I TELESCOPI

Bocchi Carlotta matr Borelli Serena matr Lezione del 5/05/2016 ora 8:30-10:30. Grandezze fotometriche ILLUMINOTECNICA

OLIMPIADI ITALIANE DI ASTRONOMIA 2018 Gara Interregionale 19 febbraio Categoria Senior

Astronomia Lezione 23/1/2012

Telescopi Astronomici

Le distanze in Astronomia

La misura delle distanze stellari

Unità 2 - L ambiente celeste

OLIMPIADI ITALIANE DI ASTRONOMIA 2018 Finale Nazionale 19 aprile Prova Teorica categoria Senior

RICERCA di FABRIZIO PORTA LEGGERE LE STELLE

Proprietà delle Stelle:

LE DISTANZE ASTRONOMICHE

Un approfondimento: Le distanze delle galassie

Determinazione della curva di luce e della massa di NGC 2748

Un immagine digitale. Dimensioni finite (X,Y) No profondità inerente Numero finito di pixel Rappresentazione numerica dell energia luminosa

Sensazione e percezione

Olimpiadi Italiane di Astronomia 2011 Finale Nazionale. Prova Teorica - Categoria Junior

RILEVAZIONE OPINIONI STUDENTI on-line OPISONLINE Nucleo di Valutazione della Facolta di Scienze Matematiche Fisiche e Naturali

telescopi fotometro magnitudine apparente

Unità 2 - L ambiente celeste

DEFINIZIONE DI RADIANZA La radiazione è caratterizzata tramite la Radianza Spettrale, I (λ, θ, φ, T), definita come la densità di potenza per unità di

Lezione 4. Brillanza superficiale e intensità specifica, temperatura di brillanza e di antenna

OLIMPIADI ITALIANE DI ASTRONOMIA 2012 FINALE NAZIONALE Prova Teorica - Categoria Senior

Trasmissione di calore per radiazione

Spettroscopia ottica di sorgenti celesti ignote

Scuola di Storia della Fisica

Evoluzione stellare: dalla nascita di una stella alla sua fine. Serafina Carpino

Università Primo Levi

AFAM - Remanzacco. Serata osservativa del 15 settembre

Transcript:

Stelle: magnitudini e Diagramma H-R Olimpiadi di Astronomia Sede interegionale del Lazio astrolimpiadi.lazio@iaps.inaf.it

Terra Distanze stellari Sole a d π Per misurare le distanze stellari, possiamo utilizzare il metodo della parallasse, usando come base di triangolazione la distanza media Terra-Sole che viene definite come1unità astronomica (UA): Quindi a = d tan π da cui d=1ua/tan π Il parsec e l anno luce sono unità di misura di distanza usate in astronomia. Parsec significa parallasse di un secondo d arco. Si definisce Parsec (pc) la distanza (d) dalla Terra di una stella che ha una parallasse (π) di 1 secondo d arco, cioè la distanza da cui il semiasse maggiore dell orbita terrestre (a=1ua) sottende un angolo π=1 Ne ricaviamo che se π=1 : d=a/tan π =1/tan(1 /3600)=1pc = 206265 UA = 3 10 13 km Poiché solitamente l angolo di parallasse è molto piccolo si può approssimare tan π = π. La distanza di una stella in pc è l inverso della sua parallasse annua in secondi d arco. Per esempio se π=0.04 segue che d=1/0.04=25 pc Le osservazioni da Terra permettono misure fino a un massimo di circa 100 pc. Il satellite Hipparcos ha ottenuto accurate misure di distanza fino a circa 1000 pc. Il satellite GAIA, lanciato il 19/12/2013, permette misure estremamente accurate fino a circa 10000 pc. Si definisce anno luce (al) la distanza percorsa dalla luce nel vuoto in un anno: poiché c = 299792 km/s ricaviamo: 1 al = cxt=299792x365g x24hx 60mx 60s=9.4x10 12 km = 63235 UA. Segue infine che 1 pc = 3.26 al N.B.= 1 arcsec=1 =(1/60 ) =(1/3600) 1 = 60 =60 x 60=3600 1 è la 360a parte di un angolo giro (nelle calcolatrici è indicato con DEG)

Logaritmi e loro proprietà Definizione: il valore del logaritmo è l esponente che bisogna dare alla base per ottenere l argomento Valore del logaritmo base a=log 10 (b) 10 a =b argomento Proprietà: log(b x c) = log(b) + log(c) log(b/c) = log(b) log(c) log(b c ) = c x log(b)

Sensazione di luce Magnitudini Una delle caratteristiche importante di una stella è la quantità di energia da essa emessa nell unità di tempo cioè la luminosità (L). La luminosità di una stella dipende dal suo stato fisico e dalla sua composizione chimica. Per conoscere la luminosità bisogna misurare il flusso F, cioè la quantità di energia ricevuta per unità di tempo e di superficie. Per valutare il flusso luminoso di un oggetto e metterlo in relazione con la sua luminosità si ricorre alla fisiologia. Si può dimostrare infatti che: dal punto di vista matematico la reazione dell occhio umano reagisce alla sensazione della luce secondo una legge di tipo logaritmico cioè approssimativamente secondo la curva del tipo indicato in figura. All inizio la curva è piatta a causa dell assenza di luce, via via che il numero di lampadine accese aumenta ci sarà un incremento della percezione della luce che poi raggiungerà un valore limite quando il numero di lampadine accese sarà sufficientemente elevato per cui l occhio non sarà più in grado di percepirne la differenza. Quindi la curva sarà costituita da una soglia iniziale, un andamento lineare e infine una saturazione. Questa curva ha un andamento che matematicamente descriviamo con la funzione logaritmo, per cui noi possiamo descrivere la sensazione di luce come una costante K che moltiplica il logaritmo della flusso di luce più una costante che rappresenta la soglia m=k log(f)+cost 80.,100 lampadine saturazione Andamento lineare 1,2,,3 lampadine Nessuna lampadina (buio) Soglia Flusso

Magnitudine apparente La magnitudine apparente m di una stella (o in generale di un corpo celeste) è un indice della sua luminosità nel cielo. Detto F il flusso misurato, ovvero la quantità di energia si definisce: m = - 2.5 log F + C La costante "C è scelta in modo che la magnitudine apparente visuale della stella Vega (= α Lyr) sia pari a zero: m Vega = - 2.5 log F + C = 0 Di norma il flusso è misurato in un intervallo dello spettro elettromagnetico e per la magnitudine si riporta un indicazione della lunghezza d onda a cui è stata fatta la misura. Ad esempio m v indica una misura nella banda V (centrata alla lunghezza d onda λ=5550 Å). Il flusso misurato a Terra è legato alla luminosità (L) della stella dalla relazione: F = dove d è la distanza della stella. Il flusso misurato sulla superficie terrestre dipende dalla luminosità della stella e dalla sua distanza. La magnitudine apparente non fornisce indicazioni sulla reale luminosità della stella; infatti stelle di pari luminosità, ma poste a distanze diverse, hanno magnitudini apparenti diverse. La magnitudine apparente è una grandezza facile da misurare; possiamo assumere di conoscerla per tutti gli oggetti visibili nel cielo. L 4pd 2

Poiché le stelle si comportano con buona approssimazione come dei corpi neri (un corpo nero è un corpo ideale che assorbe tutta la radiazione incidente sui di esso per poi irradiarla) la loro luminosità è data dalla formula: L = 4 π R 2 σ T 4 dove R è il raggio della stella, T è la temperatura della fotosfera in gradi assoluti (detta temperatura effettiva) e σ=5.67x10-8 W m -2 K -4 è una costante detta costante di Stefan-Boltzmann. Va notato che la scala delle magnitudini è inversa, cioè a numero minore corrisponde una luminosità maggiore. Il valore del flusso misurato a Terra dipende dallo spessore di atmosfera che la luce proveniente dalla stella deve attraversare, cioè dall altezza della stella sull orizzonte; i valori tabulati, o nei casi in cui non si fa esplicito riferimento all altezza sull orizzonte, si riferiscono alla magnitudine alla Zenith.

Operazioni con le magnitudini Le magnitudini NON possono MAI essere direttamente sommate o sottratte, né è possibile utilizzare delle proporzioni. Differenza di magnitudini - Date due stelle di magnitudine m 1 e m 2 vale la relazione nota come Formula di Pogson: m 1 - m 2 = - 2.5 log F 1 + 2.5 log F 2 = -2.5 log F 1 F 2 Esplicitando i flussi in funzione della distanza, raggio e temperatura avremo: m 1 - m 2 = -2.5 log F 1 = 2.5 log L 1 d2 2 - F 2 L 2 d 2 1 = -2.5 log( R 1 T 1 2 d 1 2 4 d 2 2 2 R 2 T 4 2 ) Somma di magnitudini - Date due stelle di magnitudine m 1 e m 2 la loro magnitudine totale vale: m 1+2 = m 2 2.5 log (10 0.4 (m2 m1) + 1) In generale dato un qualsiasi numero di stelle vale la relazione: m 1 + m 2 + m 3 +.= - 2.5 log (10-0.4m1 + 10-0.4m2 + 10-0.4m3 +..)

In figura si nota che a magnitudini più basse corrispondono gli oggetti più luminosi mentre a magnitudini più elevate corrispondono gli oggetti più deboli. Quindi abbiamo il Sole, la Luna, Venere, la stella Sirio e Plutone. Ad occhio nudo si riescono a vedere oggetti fino alla sesta magnetudine. Se prendiamo un binocolo e guardiamo il cielo ci rendiamo subito conto che siamo in grado di vedere un numero maggiore di oggetti ovvero siamo in grado di superare la soglia della sesta magnitudine, arriviamo fino a oggetti di decima magnitudine, ovvero vediamo un numero maggiore di oggetti deboli. E così via man mano che gli strumenti diventano sempre più sensibili. Quindi a numeri più grandi delle magnitudini corrispondono oggetti più DEBOLI.

Magnitudine assoluta La magnitudine assoluta M di una stella (in generale di un corpo celeste) è definita come la magnitudine apparente che avrebbe se si trovasse a una distanza di 10 pc. La magnitudine assoluta, a differenza della magnitudine apparente, è una misura della luminosità intrinseca di un oggetto; una stella più luminosa di un altra avrà magnitudine assoluta numericamente più bassa. Esiste una semplice relazione che lega magnitudine apparente m a quella assoluta M di una stella: M = m + 5 5 log d dove d è la distanza della stella in pc; questa relazione è di estrema importanza per il calcolo delle distanze astronomiche. E facile ricavare che : M 1 - M 2 = -2.5log( R 2 4 1 T 1 R 2 2 T ) 4 2 Si definisce indice di colore di una stella la differenza tra le magnitudini della stella misurate in due diverse regioni (bande) dello spettro elettromagnetico. L indice di colore più usato è il B-V del sistema fotometrico di Johnson, che indica la differenza di magnitudine di una stella misurata nelle bande B e V. L indice B-V può essere usato per ottenere una buona stima della temperatura della fotosfera della stella.

In questa tabella trovate magnitudini apparenti e magnitudini assolute di diversi oggetti celesti.

Relazione Periodo-Luminosità Le Cefeidi sono una particolare categoria di stelle pulsanti la cui magnitudine assoluta media è legata al periodo di variabilità Sono state di enorme importanza nella storia dell Astronomia per aver permesso il calcolo delle distanze extragalattiche Per una cefeide di periodo P vale la relazione: M v = -2.85 log P 1.37 (dove il periodo è espresso in giorni) Noto il periodo dalla magnitudine apparente media (m v ) possiamo quindi ricavare la distanza della cefeide: d = 10 (m v - Mv + 5)/5

Magnitudine di sorgenti estese Le relazioni sin qui fornite si riferiscono a oggetti puntiformi, come, data la loro grande distanza, possono essere considerate tutte le stelle. La luminosità totale di una sorgente estesa, come per esempio un pianeta, una galassia, un ammasso stellare o una cometa, sono espresse dalla loro magnitudine integrata, che si ricava a partire dalla magnitudine superficiale (m sup ), una grandezza che indica la magnitudine di una porzione standard (tipicamente 1 arcsec 2 ) della sorgente estesa. Se un oggetto esteso ha m sup uniforme, detta A la sua area (espressa nelle medesime unità dell area a cui si riferisce la m sup ) avremo: m integrata = m sup 2.5 log A Se un oggetto esteso e uno puntiforme hanno la stessa magnitudine apparente vuol dire che riceviamo da essi la stessa quantità totale di luce; tuttavia l oggetto esteso sarà molto più difficile da osservare di quello puntiforme, poiché la sua luce è dispersa su un area. La magnitudine superficiale ci fornisce quindi un indicazione di quanto la sorgente estesa è facilmente osservabile in contrasto con la luminosità intrinseca del cielo La luminosità del cielo allo Zenith nella banda V vale 21.9 mag/arcsec².

Gli spettri stellari L energia prodotta all interno di una stella viene trasportata fino in superficie. Una volta uscita dalla superficie deve attraversare gli strati più esterni della stella, ovvero la sua atmosfera, interagendo con gli atomi che la compongono. Con il termine spettro di una stella si indica la distribuzione in lunghezza d onda (o in frequenza) dell energia emessa dalla stella. Esistono in natura tre diversi tipi di spettri: lo Spettro Continuo caratterizzato dalla presenza di tutte le lunghezze d onda; lo Spettro di Assorbimento, generato quando la luce (nel caso della figura la luce della regione del Visibile) passa attraverso un mezzo in grado di bloccare solo alcune delle lunghezze d onda (ad esempio lampadina immersa in un gas) che costituiscono il continuo, per cui l aspetto è quello dello spettro continuo con delle righe nere (frequenze bloccate); lo Spettro di Emissione, generato quando l oggetto è in grado di emettere solo determinate lunghezze d onda (ad esempio luce a neon), e quindi l aspetto è quello mostrato sotto con la presenza solo di alcune righe di emissione.

Intensità Spettri stellari Lo spettro di una stella può essere considerato come la sovrapposizione di uno spettro continuo di Corpo Nero che dipende solo dalla temperatura della fotosfera stellare (infatti è possibile assimilare l interno di una stella ad un reale corpo nero) e di uno Spettro di Assorbimento dovuto all atmosfera. La componente del continuo ci da informazioni sulla temperatura della fotosfera e le righe in assorbimento (più raramente in emissione ) permettono di ricavare composizione chimica e gravità. Spettro Continuo di corpo nero Righe spettrali La temperatura effettiva della fotosfera di una stella viene ricavata dal confronto del suo spettro continuo con le curve di emissione di corpi neri a varie temperature. Lunghezza d onda

Sulla base delle caratteristiche dello spettro (essenzialmente la temperatura del corpo nero equivalente e quali righe spettrali sono presenti) le stelle vengono classificate in Tipi Spettrali. Il parametro fisico fondamentale per la classificazione spettrale delle stelle è la temperatura (T). Al variare di T varia la forma del continuo e varia il tipo di righe e bande di assorbimento che sono presenti nello spettro. Un esame accurato dimostra che a parità di T lo spettro è sensibile al raggio (R), cioè alla luminosità assoluta e quindi alla gravità superficiale g=gm/r 2. La tabella riporta per ogni Tipo Spettrale la corrispondente Temperatura Effettiva (o l intervallo di temperature) e le specie atomiche responsabili delle righe di assorbimento principali osservate negli spettri delle stelle per Tipi Spettrali differenti. Come si vede le righe dell HI sono presenti nelle stelle dei Tipi Spettrali B, A, F e G ma hanno la massima intensità nelle stelle di Tipo A. Le stelle O hanno spettri dominati dalle righe dell HeII (elio ionizzato). Elementi più pesanti di idrogeno ed elio, chiamati genericamente metalli sono presenti nelle stelle dei Tipi Spettrali A, G, K ed M

Il diagramma HR È un diagramma che ha sulle ascisse la classe spettrale (ovvero la temperatura superficiale) e sulle ordinate la magnitudine assoluta (ovvero la luminosità). È uno dei diagrammi più importanti e più usati dell Astrofisica; è ricavato a partire dalle stelle di cui si conosce la temperatura (dal tipo spettrale ) e la distanza Le stelle occupano solo determinate regioni del diagramma e possono essere distinte in classi di luminosità (temperatura uguale, raggio diverso) V (Sequenza Principale) = Nane IV = Subgiganti III = Giganti II, I = Supergiganti Possiamo ricavare la distanza di una stella stimandone il tipo spettrale e la classe di luminosità: 5 log d = m - M + 5 d = 10 (m - M + 5)/5