Evoluzione delle comunicazioni wireless verso le re2 5G



Documenti analoghi
Reti di Telecomunicazioni 1

2 - Canali e Multiplazione

01CXGBN Trasmissione numerica. parte 1: Introduzione ai sistemi di trasmissione numerica. Grandezze fondamentali.

Fondamenti teorici dello SS

GSM - GSM - parte IV

Utilizzo efficiente del canale di comunicazione

Utilizzo efficiente del canale di comunicazione

Teoria dei Segnali Modulazione digitale

Utilizzo efficiente del canale di comunicazione

Elementi di teoria dei segnali /b

UNIVERSITÀ DEGLI STUDI DI TRIESTE FACOLTÀ DI INGEGNERIA. Tesi di Laurea in TRASMISSIONE NUMERICA

COMUNICAZIONI ELETTRICHE + TRASMISSIONE NUMERICA COMPITO 13/7/2005

WiFi: Connessione senza fili. di Andreas Zoeschg

WLAN Local Area Network (LAN)

Trasmissione di dati al di fuori di un area locale avviene tramite la commutazione

INTRODUZIONE: PERDITE IN FIBRA OTTICA

Modulo TLC:TRASMISSIONI Accesso multiplo

OFDM. Prof. Carlo S. Regazzoni. Department of Biophysical and Electronic Engineering, University of Genoa, Italy A.A

Programma del corso. Introduzione Rappresentazione delle Informazioni Calcolo proposizionale Architettura del calcolatore Reti di calcolatori

Corso di Fondamenti di Telecomunicazioni

xdsl Generalità xdsl fa riferimento a tutti i tipi di Digital Subscriber Line

Esercizi Multiplazione TDM Accesso Multiplo TDMA

Architettura hardware

Rete di accesso / Rete di trasporto

v in v out x c1 (t) Molt. di N.L. H(f) n

La propagazione delle onde luminose può essere studiata per mezzo delle equazioni di Maxwell. Tuttavia, nella maggior parte dei casi è possibile

Direct Sequence o Frequency Hopping

Mappatura dei canali logici sui canali fisici

Funzioni trigonometriche e modulazione dei segnali

SISTEMI DI TELECOMUNICAZIONI

Informatica per la comunicazione" - lezione 7 -

Quanto sono i livelli OSI?

GLI APPARATI PER L INTERCONNESSIONE DI RETI LOCALI 1. Il Repeater 2. L Hub 2. Il Bridge 4. Lo Switch 4. Router 6

Reti LAN. IZ3MEZ Francesco Canova

è acronimo di Long Term Evolution, detto anche Super 3G o 4G per Internet Mobile ed utilizzerà l OFDM come modulazione.

Lezione 28 Maggio I Parte

Propagazione in fibra ottica

RETI DI TELECOMUNICAZIONE

Modulazione DMT* (Discrete Multitone Modulation) sulla banda ADSL (up to 1104 KHz)

Filtraggio dei segnali. Soluzioni Fracarro. fracarro.com

Wireless LAN. Scritto da BigDaD

Dispositivi di rete. Ripetitori. Hub

LTE Long Term Evolution Late To Evolve

Page 1. Elettronica delle telecomunicazioni II ETLC2 - C1 29/05/ DDC 1. Politecnico di Torino Facoltà dell Informazione

R. Cusani, F. Cuomo: Telecomunicazioni Strato Fisico: Campionamento e Multiplexing, Marzo 2010

Tecnologie Radio Cellulari. Reti Cellulari. Forma e Dimensione delle Celle. Organizzazione di una Rete Cellulare

Wi-Fi, la libertà di navigare in rete senza fili. Introduzione.

ARCHITETTURA DI RETE FOLEGNANI ANDREA

Standard per Reti a Commutazione di Pacchetto Prof. Vincenzo Auletta Università degli studi di Salerno Laurea in Informatica

Appunti sulla Macchina di Turing. Macchina di Turing

(a) Segnale analogico (b) Segnale digitale (c) Segnale digitale binario

C(f) : funzione di trasferimento del canale. Essa limita la banda del segnale trasmesso e quindi rappresenta un modello più realistico

Digital Signal Processing: Introduzione

La propagazione della luce in una fibra ottica

Gestione della Memoria

Università di Roma Tor Vergata Corso di Laurea triennale in Informatica Sistemi operativi e reti A.A Pietro Frasca. Parte II Lezione 5

Sistemi a larga banda (Broadband)

Corso di DISPOSITIVI E SISTEMI PER LE COMUNICAZIONI IN FIBRA OTTICA

Internet e il World Wide Web. Informatica Generale -- Rossano Gaeta 30

La Videosorveglianza Criteri per il dimensionamento dello storage

Laboratorio di Informatica

Offerta Televisiva. Generalità

Protocolli di accesso multiplo

Storia. Telefonia mobile analogica. AMPS frequenze AMPS. Il sistema AMPS è il primo sistema di telefonia mobile cellulare.

CONCENTRATORE UNIVERSALE DI PERIFERICHE GPRS-LAN CONVERSIONE IN PERIFERICHE RADIO BIDIREZIONALI

Docenti: Dott. Franco Mazzenga, Dott.ssa. Ernestina Cianca a.a

PROCEDURA INVENTARIO DI MAGAZZINO di FINE ESERCIZIO (dalla versione 3.2.0)

Realizzazione di un commutatore ultraveloce di flussi dati ottici basato su effetti non lineari in fibra. Claudia Cantini

Reti Wireless - Introduzione

Ottimizzazione Multi Obiettivo

Reti di Telecomunicazione Lezione 8

Spostamento = Velocità utente Frequenza della portante Velocità della luce

ANTENNE E FILTRI LTE L OFFERTA FRACARRO PER LTE

PROBLEMA SU COLLEGAMENTO WIRELESS CON ACCESS POINT

Comunicazione codifica dei dati. Prof. Francesco Accarino IIS Altiero Spinelli Sesto San Giovanni

CONTROLLO DI GESTIONE DELLO STUDIO

Elementi di Telelocalizzazione

GESTIONE AVANZATA DEI MATERIALI

Modulazioni. Vittorio Maniezzo Università di Bologna. Comunicazione a lunga distanza

REGIONE BASILICATA DIPARTIMENTO PRESIDENZA DELLA GIUNTA UFFICIO SOCIETÀ DELL INFORMAZIONE

SISTEMI DI NUMERAZIONE E CODICI

LE TECNOLOGIE WIRELESS PER LA DIFFUSIONE DELLA BANDA LARGA

Scheduling della CPU. Sistemi multiprocessori e real time Metodi di valutazione Esempi: Solaris 2 Windows 2000 Linux

Codifiche a lunghezza variabile

Sistema di diagnosi CAR TEST

Capitolo 6 Wireless e reti mobili

Osservatorio SosTariffe.it Telefonia Mobile

La dispersione cromatica, Caratterizzazione e cause

3. Introduzione all'internetworking

Matematica generale CTF

Manuale Helpdesk per utenti

Application note. CalBatt NomoStor per i sistemi di accumulo di energia

Corso di Informatica

Introduzione all analisi dei segnali digitali.

SISTEMI OPERATIVI. Prof. Enrico Terrone A. S: 2008/09

Classificazione delle applicazioni multimediali su rete

La telefonia cellulare. Piccola presentazione di approfondimento

Soluzioni verifica parte 4

Con il termine Sistema operativo si fa riferimento all insieme dei moduli software di un sistema di elaborazione dati dedicati alla sua gestione.

frequenze in uso alle reti Wi-Fi a 2.4Ghz.

Transcript:

Evoluzione delle comunicazioni wireless verso le re2 5G Loreto Pescosolido Re2 Avanzate anno accademico 2014-2015

Trasmissione di segnali digitali tramite modulazione ObieAvo: trasmecere una sequenza di numeri complessi o simboli (a cui verranno associa2 uno o più bits) u(m) = u c (m) + ju s (m) 2 bits per simbolo 4 bits per simbolo ( ) = impulso sagomatore: è un segnale di durata p t T p Segnale di banda base: è sequenza (treno) di impulsi trasmessi ogni T s ( ) = u( m) y t p t mt s m ( ) E un segnale complesso, non può essere direcamente trasmesso! 2

Trasmissione di segnali digitali tramite modulazione 0 1 5 10 30 60 f (GHz) Segnale in banda base forma d onda 2pica di partenza per trasmissioni digitali* Nel tempo: p(t) In frequenza: Ø Minore è la velocità con cui varia il segnale nel tempo (e quindi maggior è la durata ad es. della campana centrale) minore è la banda occupata Ø Poiché il segnale sarà delimitato nel tempo, in frequenza compariranno dei lobi laterali, tanto maggiori quanto più è streco quello principale. 0 3

Trasmissione di segnali digitali tramite modulazione ( ) Si dimostra che la sequenza y ( t) = u( m) p t mt ha una occupazione specrale m s dello stesso 2po di quella dell impulso p(t) ma come si fa a trasmecere un segnale complesso? Modulazione di un segnale (di banda base) complesso: lo trasforma in un segnale reale centrato su una certa frequenza portante y rf ( ) = u p( t) = u c + ju s ( t) = Re y( t) y t ( ) ( ) p t cos 2π f 0t = u c p( t)cos 2π f 0 t ( ) ( ) Im y t ( ) u s p t ( )sin 2π f 0 t frequenza portante sin ( 2π f 0t) ( ) 1 5 10 30 0 f 0 60 f (GHz) 4

Trasmissione di segnali digitali tramite modulazione - Segnale di banda base: (per facilità usiamo un impulso che nelle modulazioni classiche a singola portante non si usa: il coseno rialzato) - Segnale modulato in frequenza: i simboli sembrano indis2nguibili ma non lo sono, si recuperano tramite demodulazione - Spe9ro del segnale: Rappresenta quali frequenze il segnale occupa. Notare che qualunque forma abbia l impulso, a causa del faco che (nel tempo) è di durata limitata, lo specro in frequenza avrà dei lobi laterali 5

Trasmissione di segnali digitali tramite modulazione La larghezza della banda occupata è inversamente proporzionale alla durata degli impulsi è se si vogliono trasmecere più simboli, si deve allargare la banda Larghezza di banda maggiore, a prescindere dalla portante f 0 è maggiore DATA RATE 6

Trasmissione di segnali digitali tramite modulazione Il posizionamento nell asse delle frequenze dipende invece dalla frequenza portante che modula il segnale. Esempio di segnali di uten2 diversi con lo schema FDMA Utente modulato a frequenza f1 SpeCro Utente modulato a frequenza f2 Notare la presenza delle bande di guardia che causa una notevole inefficienza specrale. 7

Trasmissione di segnali digitali tramite modulazione EffeA del canale di comunicazione wireless 1. ACenuazione 2. Dispersività in tempo seleavità in frequenza 3. SeleAvità in tempo (variazione temporale) dispersività in frequenza 1 A9enuazione E funzione della distanza e della frequenza della portante esempi: doppino telefonico: Trasmissione radio H ( f ) 2 (db) = k d 2 f 0 H ( f ) 2 = P ( f ) t P r ( f ) = G G t r 4πd ( ) 2 f 0 c 2 Regione del rumore Il valore di potenza del segnale ricevuto varia con la distanza e la frequenza deve essere confrontato con la potenza del rumore termico che non dipende dalla frequenza 8

Trasmissione di segnali digitali tramite modulazione EffeA del canale di comunicazione wireless 2 - Dispersività in tempo (o selecvità in frequenza) dovuta a mulepath fading Gli impulsi vengono riflessi su varie superfici ed arrivano al ricevitore in diverse repliche. Le ul2me repliche di un impulso possono anche sovrapporsi alla prime repliche dell impulso successivo (interferenza inter- simbolica - ISI - nel tempo) - - > intervalli di guardia, oppure algoritmi di decodifica congiunta (es. CPM usato nel GSM) In frequenza questo corrisponde ad una distorsione della forma dello specro del treno di impulsi Segnale trasmesso Segnale ricevuto Tempo: canale Frequenza: canale 9

Trasmissione di segnali digitali tramite modulazione Esempio di acenuazione con mul2path fading: Risposta impulsiva ad ogni barra corrisponde l inizio di una nuova replica del segnale trasmesso Risposta in frequenza Lo specro del segnale trasmesso viene mol2plicato per questa funzione h (τ ) 2 [ db] H (f ) 2 [ db] 0 20 40 60 80 0 0.1 0.2 0.3 0.4 0.5 0.6 delay (µs) 50 60 70 80 f 0 f 0 5 + 5 f 0 10 + 10 f 0 15 + 20 f 0 20 + 25 f 0 0+ 30 f 0 5 + 35 f 0 10 + 40 f15 0 + 45 f20 0 + 50 0 frequency (MHz) Il canale si limita ad a9enuare il segnale, senza distorcerlo causando ISI, solo se, nella banda del segnale, la risposta in frequenza è pia9a 10

Trasmissione di segnali digitali tramite modulazione Mul2path fading In frequenza: la risposta in frequenza non è piaca, ma flucuante In tempo corrisponde all arrivo di repliche del segnale trasmesso ben oltre la durata dell impulso à Inter Symbol Interference (ISI) Si combace con opportuni filtri (di solito digitali) che equalizzano il canale cioè a valle del filtro si ha di nuovo risposta piaca nella banda di interesse. Questa è la strada seguita con il GSM à TuCavia, non si può aumentare il data rate allargando indefinitamente la banda perché equalizzare il canale diviene via via più complicato (corrisponde ad avere ISI tra un numero sempre maggiore di simboli tra cui districarsi) 11

Trasmissione di segnali digitali tramite modulazione EffeA del canale di comunicazione wireless 3 - Dispersività in tempo (o selecvità in frequenza) dovuta a mulepath fading Oltre a flucuazioni per frequenze diverse, il faco che gli oggea su cui si riflecono i segnali si muovono, causa variazioni temporali della risposta in frequenza. Nel caso di oggea che si muovono molto velocemente, si ha fast fading In frequenza: doppler spreading dei segnali: Lo specro dei segnali viene allargato dal canale a cause delle mobilità degli oggea nell ambiente à Problema per FDM e FDMA Nel caso di oggea che si muovono più lentamente, si hanno slow fading : semplicemente la risposta in frequenza varia nel tempo à i protocolli di scheduling devono tenerne conto 12

Freqency selec2ve, slowly varying channel Esempi Freqency flat, 2me selec2ve channel Both 2me and frequency selec2ve 13

Trasmissione di segnali digitali tramite modulazione In tempo, il mul2path fading tende a far sovrapporre segnali trasmessi in intervalli differen2 à Limite inferiore alla durata degli impulsi In frequenza: doppler spreading dei segnali, associato a fast fading Lo specro dei segnali viene allargato dal canale a cause delle mobilità degli oggea nell ambiente. Segnali in bande adiacen2 ma separate in trasmissione, vengono sovrappos2 in ricezione. à Limite inferiore alla separazione di diversi segnali in frequenza Come si può ovviare a ques2 fenomeni volendo comunque ocenere data rate + al2? 14

Evoluzione nelle re2 cellulari Approccio GSM formato di modulazione PCM- GMSK Idealmente si vorrebbe che il ricevitore ricevesse una sola replica, acenuata non distorta di ogni impulso - > in frequenza questo corrisponde ad un canale piaco nella banda dell impulso. Più è larga la banda, cioè più l impulso è breve, più è difficile ocenere un canale piaco tramite equalizzazione al ricevitore. Banda segnale = 200 KHz durata impulso circa 50 microsecondi Impulsi molto lunghi (- > banda streca) ma sovrappos2: T p >> T s, ISI indoca in trasmissione Tempo: canale Frequenza: canale Uten2 (colori) diversi vengono alloca2 su frequenza e 2me slot diversi (TDMA e FDMA) Problema: il canale è piaco ma il segnale può essere fortemente acenuato, quindi il segnale, nel tempo, viene faco saltare da una frequenza all altra (frequency hopping) 15

Evoluzione nelle re2 cellulari Approccio 3G - formato di modulazione UMTS Impulsi p(t) lunghi ma (tramite mol2plicazione per delle par2colari sequenze di impulsi molto brevi chiamate codici ) anche a banda larga. Tempo: canale Frequenza: canale L apparente sovrapposizione di segnali sovrappos2 (sia in tempo che in frequenza) in ricezione viene risolta con la mol2plicazione per i diversi codici associa2 agli uten2, che consente di separare i segnali rela2vi. L interferenza residua viene superata con l u2lizzo di tecniche di cancellazione dell interferenza, allineando le fasi delle repliche dei segnali u2li. Il vantaggio maggiore nel passaggio da 2G a 3G si è avuto in termini di data rate e nella ges2one degli handover tra celle, con l introduzione del conceco di sot handover. Inoltre, si è passa2 al conceco di rete all- IP (sia per i segnali voce che da2). 16

Evoluzione nelle re2 cellulari Approccio 4G (LTE) - formato di modulazione OFDM Orthogonal Frequency Division MulEplexing (OFDM) - E possibile trasmecere bit dello stesso flusso in parallelo nel dominio della frequenza ma, diversamente da FDM, senza ricorrere alle bande di guardia, ma addiricura sovrapponendo parzialmente gli specri. riuscendo a mantenere l ortogonalità! E richiesta perfeca sincronizzazione in fase al livello di soco- portan2. Il sistema inoltre deve essere dimensionato sulle caraceris2che di dispersività in frequenza del canale (doppler spread). S2ma del canale in ricezione. Stesso discorso vale per flussi appartenen2 a uten2 diversi 10 15 20 f Questo 2po di trasmissione, consente di ocenere un alto data rate (banda larga) tramite flussi paralleli. Ciascuna socoportante vede un canale (quasi) piaco nella sua banda. 17

Evoluzione nelle re2 cellulari L elaborazione del segnale viene faca quasi totalmente nel dominio digitale. Bit rate diversi, sia dello stesso utente che di uten2 diversi possono essere invia2 su differen2 socoportan2. Nuovi challenge per il design dello scheduling: deve adacarsi a condizioni mutabili in termini di velocità di variazione nel tempo del canale, seleavità in frequenza. Unico pool di risorse tempo/frequenza. Il problema dello scheduling diventa centrale, e il legame con i protocolli di strato superiore (in par2colare applica2vo) sempre più importante. LTE, WiMAX. Come/quando assegno i canali agli uten2? Sistemi mul2- user, mul2- service, mul2 rate, diventano effeavamente possibili, si possono avere canali logici riconfigurabili facilmente. 18

2G Banda di sistema: 25MHz uplink, 25MHs downlink Segnale 200KHz FDMA + TDMA (ogni utente u2lizza i 200KHz per 1/8 del tempo) 3G Banda di sistema: 75 MHz uplink, 75MHz downlink Segnale 5MHz 4G LTE Banda di sistema: 100MHz uplink, 100MHz downlink Segnale 180KHz divisi in 12 socoportan2 + carrier aggrega2on allocazione per utente flessibile 4G LTE Evoluzione nelle re2 cellulari Vantaggi: flessibilità del sistema e larghezza di banda. Semplicità computazionale dei ricevitori (a parità di banda) Svantaggi: requisi2 importan2 in termini di sincronizzazione. Sistema flessibile ma con molto overhead di segnalazione 19

Re2 5G Sviluppo degli standard previsto nei prossimi 6 anni (primi deployment previs2 per il 2019) ArchiteCura 4G ha raggiunto risulta2 eccellen2 (fino ad 1Gbit/s) sul data rate del singolo link. In 5G, per andare oltre ques2 limi2, si punta più alla diversificazione e flessibilità degli u2lizzi al livello di sistema, che alla tecnologia trasmissiva del singolo link. In 5G: aumento di 10 volte del numero di disposi2vi connessi (IoT) e di 10-100 volte del traffico generato da ogni disposi2vo Aumento ulteriore efficienza specrale rispeco alle tecniche 4G Bande mul2ple ges2te in parallelo Mm- waves: u2lizzo di bande intorno ai 15, 30, 60, 90 GHz Densificazione estrema delle celle U2lizzo massiccio di MIMO beamforming U2lizzo di accesso concorrente secondo approcci Cogni2ve radio 20

Re2 5G Aumento efficienza spe9rale rispe9o alle tecniche 4G (1/3) Superamento della necessità di implementare l intera ges2one delle soco- portan2 in digitale Sono allo studio nuovi forma2 di modulazione che prevedono l u2lizzo di filtri mul2pli al livello di socobande o addiricura di singola socoportante In OFDM si filtra fisicamente l intera banda, e poi tuco avviene in digitale Nuovi forma2 come Filterbank Mul2- Carrier (FBMC) e UFMC (Universal Filtered Mul2- Carrier) sono resi acraen2 dai progressi faa nel design dei transceivers 21

Re2 5G Aumento efficienza spe9rale rispe9o alle tecniche 4G (2/3) In LTE, i disposi2vi modulano e demodulano l intera banda di sistema (fino a 20 MHz) e devono u2lizzare una parte delle socoportan2 per assicurare l ortogonalità in ricezioni (à overhead). Per 5G sono allo studio nuove tecniche che rinunciano all ortogonalità + complessità: reintroduzione in un sistema Mul2- Carrier di concea di ISI indoca nello stesso stream di simboli Possibile grazie all avanzamento dei chip FBMC ogni socoportante viene modulata e filtrata (fisicamente) separatamente dalle altre (mentre in OFDM l itera banda viene filtrata) UFMC le socoportan2 vengono modulate a gruppi Riduzione dell overhead dovuto al prefisso ciclico 22

Re2 5G Aumento efficienza spe9rale rispe9o alle tecniche 4G (3/3) Il filtraggio analogico presenta una acenuazione fuori banda molto maggiore di quello ocenibile con il filtraggio digitale à socoportan2 più vicine. FBMC, UFMC, GFDM - Se da un lato la complessità è maggiore, dall altro vi è una diminuzione di requisi2 in termini di sincronizzazione Forma2 di modulazione ancora più flessibili, adaa a diversi 2pi di traffico, da applicazioni ad alto data rate (video streaming, tac2le internet), ad applicazioni di 2po IoT- MMC, con pacchea molto piccoli invia2 in burst anche da migliaia di disposi2vi, cosa impensabile con schemi strucura2 2po OFDM 23

Re2 5G Bande muleple gesete in parallelo I sistemi 5G sono pensa2 come una rete versa2le e composita, in grado di ges2re modalità di accesso mul2ple sia come tecnologia (mul2- RAT) che come licenza (ISM, operatore). Nuove bande sia licenziate ad operatori che di 2po ISM faranno parte del sistema Sviluppo degli strumen2 tecnologici per u2lizzare le nuove bande Mm- waves: uelizzo di bande intorno ai 15, 30, 60, 90 GHz 1 5 10 30 0 f 0 60 f (GHz) GSM 3G- 4G 24

Re2 5G Densificazione delle celle U2lizzo pervasivo delle small- cells, celle con raggio di 10-20 metri Paradigma già introdoco con le femto- celle limitatamente alla banda LTE In 5G, questo conceco troverà maggiore diffusione grazie all u2lizzo di mm- waves. Aumento dell efficienza spaziale nell uso dello specro: riducendo la traca radio si possono riusare le stesse frequenze a distanze molto inferiori à effeco mol2plicatore sulla già maggiore disponibilità di banda Cella di 100 metri 25

Densificazione delle celle Ulteriore aumento del riuso grazie alle tecnologie MIMO- beamforming La possibilità di trasmecere in una specifica direzione è determinata dalla lunghezza d onda. Maggiore è il rapporto tra dimensione dell antenna (o array di antenne) e la lunghezza d onda, maggiore è la precisione con cui si riesce ad indirizzare una trasmissione Lunghezze d onda: Copertura omnidirezionale Copertura con beamforming 900 MHz à λ = 33cm 10 GHz à λ = 3cm 60 GHz à λ = 5mm Re2 5G 26

Densificazione delle celle Il beamforming viene u2lizzato non solo tra BS e UE, ma anche tra diverse BS La topologia stessa della parte backhaul della rete cambia da topologia ad albero e tuca su cavo ad una topologia mesh mista che u2lizza connessioni direce tra gli Access Points Ogni utente può essere coperto nello stesso momento da diversi APs, che trasmecono in downlink in maniera coordinata à Coordinated Mul2- Point Re2 5G 27

Re2 5G Effe9o combinato di: Aumento di efficienza specrale (sul singolo link): KPI = bits/sec/hz Riuso spaziale: KPI = parallel spa2al links per unit area U2lizzo di tecniche basate su Unlicensed e Licensed Shared Access (LSA) basate su cogni2ve radio e dynamic spectrum access à Fino a 60x rispe9o a LTE dell efficienza specrale per metro quadro: bits/sec/hz/m 2 28