ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004



Documenti analoghi
ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004

SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 2014

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x).

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t)

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento

Corso di ordinamento Sessione straordinaria - a.s ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2001 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I Sessione suppletiva

PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA

Soluzione del tema d esame di matematica, A.S. 2005/2006

CONTINUITÀ E DERIVABILITÀ Esercizi risolti

RETTE, PIANI, SFERE, CIRCONFERENZE

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R

LE FUNZIONI A DUE VARIABILI

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π

Liceo G.B. Vico Corsico

LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A

LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x x2. 2, x3 +2x +3.

b) Il luogo degli estremanti in forma cartesiana è:

MATEMATICA p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).

I tre concetti si possono descrivere in modo unitario dicendo che f e iniettiva, suriettiva, biiettiva se e solo se per ogni b B l equazione

SOLUZIONE DEL PROBLEMA 2 CORSO DI ORDINAMENTO x 2, con dominio R (infatti x per ogni ( x) = x 2

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva

Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva 2011, matematicamente.it

Esame di maturità scientifica, corso di ordinamento a. s

15 febbraio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

FUNZIONE REALE DI UNA VARIABILE

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI

Elementi di topologia della retta

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario 1.

Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione:

Matematica e Statistica

Anno 4 Grafico di funzione

G6. Studio di funzione

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.

la funzione è definita la funzione non è definita Si osservi, infatti, che la radice di un numero negativo non esiste nel campo dei numeri reali.

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2008

LE FUNZIONI E LE LORO PROPRIETÀ

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il

SOLUZIONI D = (-1,+ ).

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2011

Integrali doppi - Esercizi svolti

Funzione reale di variabile reale

STUDIO DI UNA FUNZIONE

Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : = y

Trigonometria: breve riepilogo.

Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α?

MATEMATICA 5 PERIODI

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2.

INdAM QUESITI A RISPOSTA MULTIPLA

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012

Coordinate Cartesiane nel Piano

Basi di matematica per il corso di micro

e l insieme delle soluzioni, dopo le analoghe riduzioni del caso n = 2, si scrive come

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento

Soluzioni del Certamen Mathematicum

Funzione Una relazione fra due insiemi A e B è una funzione se a ogni elemento di A si associa uno e un solo elemento

Corso di Matematica per CTF Appello 15/12/2010

a) Il campo di esistenza di f(x) è dato da 2x 0, ovvero x 0. Il grafico di f(x) è quello di una iperbole -1 1

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

CONI, CILINDRI, SUPERFICI DI ROTAZIONE

~ Copyright Ripetizionando - All rights reserved ~ STUDIO DI FUNZIONE

UNIONE MATEMATICA ITALIANA. C. I. I. M. Commissione Italiana per l'insegnamento della Matematica

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

Le funzioni elementari. Corsi di Laurea in Tecniche di Radiologia... A.A Analisi Matematica - Le funzioni elementari - p.

Esponenziali elogaritmi

Anno 5 4. Funzioni reali: il dominio

SEGNO DELLA FUNZIONE. Anche in questo caso, per lo studio del segno della funzione, occorre risolvere la disequazione: y > 0 Ne segue:

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Parte Seconda. Geometria

B. Vogliamo determinare l equazione della retta

PROVA N Elencare gli elementi che conviene esaminare per tracciare il grafico di una funzione y=f(x) PROVA N 2. è monotona in R?

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

CORSO DI LAUREA IN INGEGNERIA.

a b c d a. 4, b. 3, c. 4, d. nessuno dei precedenti valori a b c d.

FUNZIONI ELEMENTARI Esercizi risolti

Capitolo 5. Funzioni. Grafici.

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA

Formule trigonometriche

Funzioni. Parte prima. Daniele Serra

2 FUNZIONI REALI DI VARIABILE REALE

GEOMETRIA DELLE MASSE

Elenco Ordinato per Materia Chimica

Studio grafico-analitico delle funzioni reali a variabile reale

Studio di funzioni ( )

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I Sessione straordinaria

Maturità Scientifica PNI, sessione ordinaria

Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0.

SIMULAZIONE TEST ESAME - 1

VERIFICA DI MATEMATICA. CLASSI TERZE (3AS, 3BS, 3CS, 3DS, 3ES) 2 settembre 2013 COGNOME E NOME.. CLASSE.

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26

Vademecum studio funzione

Anno 5 4 Funzioni reali. elementari

Siano f e g due funzioni, allora x D f D g, cioè appartenente all intersezione dei loro domini, possiamo definire

Esercizi di Matematica. Funzioni e loro proprietà

LE FUNZIONI MATEMATICHE

FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas

Transcript:

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f (x) x x 1. Disegnate il grafico G di f.. Nel primo quadrante degli assi cartesiani, considerate la retta y c che interseca G in due punti distinti e le regioni finite di piano R e S che essa delimita con G. Precisamente: R delimitata dall asse y, da G e dalla retta y c e S delimitata da G e dalla retta y c.. Determinate c in modo che R e S siano equivalenti e determinate le corrispondenti ascisse dei punti di intersezione di G con la retta y c. 4. Determinate la funzione g il cui grafico è simmetrico di G rispetto alla retta y 4. PROBLEMA ABC è un triangolo rettangolo di ipotenusa BC. 1. Dimostrate che la mediana relativa a BC è congruente alla metà di BC.. Esprimete le misure dei cateti di ABC in funzione delle misure, supposte assegnate, dell ipotenusa e dell altezza ad essa relativa.. Con BC metri, determinate il cono K di volume massimo che si può ottenere dalla rotazione completa del triangolo attorno ad uno dei suoi cateti e la capacità in litri di K. 4. Determinate la misura approssimata, in radianti ed in gradi sessagesimali, dell angolo del settore circolare che risulta dallo sviluppo piano della superficie laterale del cono K. 1 Zanichelli Editore, 006

1 QUESTIONARIO Trovate due numeri reali a e b, a b, che hanno somma e prodotto uguali. Provate che la superficie totale di un cilindro equilatero sta alla superficie della sfera ad esso circoscritta come sta a 4. Date un esempio di funzione f (x) con un massimo relativo in (1, ) e un minimo relativo in ( 1, ). 4 Dimostrate che l equazione e x x 0 ammette una e una sola soluzione reale. 5 Di una funzione g(x), non costante, si sa che: lim x g(x) e g() 4. Trovate una espressione di g(x). 6 Verificate che le due funzioni f (x) logx e g(x) log(x) hanno la stessa derivata. Quale giustificazione ne date? 7 Un triangolo ha due lati e l angolo da essi compreso che misurano rispettivamente a, b e. Quale è il valore di che massimizza l area del triangolo? 8 10 La misura degli angoli viene fatta adottando una opportuna unità di misura. Le più comuni sono i gradi sessagesimali, i radianti, i gradi centesimali. Quali ne sono le definizioni? Calcolate: 1 arcsen xdx. 0 Considerate gli insiemi A {1,,, 4} e B {a, b, c}; quante sono le applicazioni (le funzioni) di A in B? Durata massima della prova: 6 ore È consentito soltanto l uso di calcolatrici non programmabili. Non è consentito lasciare l Istituto prima che siano trascorse ore dalla dettatura del tema. Zanichelli Editore, 006

SOLUZIONE DELLA PROVA D ESAME CORSO DI ORDINAMENTO 004 PROBLEMA 1 1) Il dominio della funzione f, come tutte le funzioni polinomiali, è l intero asse reale; f è continua e derivabile e, poiché è somma di soli termini con esponenti dispari, si ha che f ( x) f (x), ovvero f è simmetrica rispetto all origine degli assi. Poiché f non presenta punti di discontinuità gli unici limiti che ha senso considerare sono quelli per x che tende a e. Come per tutte le parabole cubiche il risultato di tali limiti non può che essere, di cui si deve determinare il segno; esso dipende dal segno del termine di grado massimo che in questo caso vale ; pertanto c è un inversione del segno dell infinito a cui tende la x con quello a cui tende la funzione; ovvero: lim f (x) e lim f (x) x x La f interseca l asse delle ascisse in x 0, come tutte le funzioni simmetriche rispetto all origine, e in x e risulta positiva per x 0 x. La derivata prima, f (x) x, è positiva per x e pertanto la f è crescente in tale intervallo con un minimo relativo in ; 4 e un massimo relativo in ; 4. La derivata seconda f (x) 18x è positiva per ogni x 0 e pertanto la f ha la concavità verso l alto in tale intervallo, con un punto di flesso nell origine; per un disegno accurato del grafico di f è utile calcolare l inclinazione della tangente nel punto di flesso sostituendo l ascissa del punto di flesso nella f (x); si ottiene così f (0). Con queste informazioni è possibile disegnare il grafico di f (figura 1). y 4 O x 4 Figura 1. Zanichelli Editore, 006

) y R S O x Figura. ) Siano x 1 e x le ascisse dei punti di intersezione della f (x) con la retta y c; tali valori sono due delle soluzioni dell equazione x x c quando c è compresa tra 0 e la y del punto di massimo relativo; poiché questa equazione letterale di terzo grado non è risolubile per via algebrica occorre determinare x 1, x e c ponendo a sistema le informazioni note, ovvero che f(x 1 ) c, f(x ) c, e che l area R, l integrale della differenza tra la retta e la f (x) calcolato tra 0 e x 1, è uguale all area S, l integrale della differenza tra la f (x) e la retta calcolato tra x 1 e x, e cioè: x 1 0 (c x x )dx x x 1 (x x c)dx Dopo semplici passaggi si arriva all equazione: x x 4 x c 0 da cui, uguagliando il secondo fattore a zero, si arriva all equazione da porre nel sistema: x 4 x c 0 (1) x x c () x 1 x c 1 () Ricavando c dalla (1) e sostituendo nella () si ottiene un equazione nella sola incognita x, che dopo un raccoglimento diventa un equazione di secondo grado con due soluzioni. A noi interessa solo quella positiva poiché le intersezioni cercate si trovano nel 1 quadrante. Trovato x lo si sostituisce nella (1) o nella () e si trova c 4 ; posto quest ultimo valore nella () si ha un equazione di terzo grado nell incognita x 1, che possiamo abbassare di grado dividendo per il binomio x poiché sappiano già che x è soluzione di tale equazione. Si ottiene così l equazione: x x 1 1 0 che ha due soluzioni: 1 di cui ci interessa solo quella positiva: x 1 1. 4 Zanichelli Editore, 006

4) Per determinare la funzione g (x), simmetrica della f (x) rispetto alla retta y 4, poiché sappiamo che la funzione simmetrica rispetto all asse delle ascisse si ottiene cambiando il segno alla funzione, occorre riferire la f (x) ad un sistema con asse delle ascisse y 4, ovvero: f (x) 4 considerare la funzione opposta: f (x) 4 ritornare a riferire il tutto al sistema di riferimento originale, sommando 4, ovvero: g (x) f (x) 4 4 x x 8 PROBLEMA 1) Poiché ABC è un triangolo rettangolo è inscrivibile in una semicirconferenza con l ipotenusa come diametro; pertanto la mediana relativa all ipotenusa sarà un raggio della semicirconferenza e come tale metà del diametro, ovvero dell ipotenusa. ) Indicati, per brevità con i l ipotenusa BC, con h l altezza relativa all ipotenusa si può scrivere la seguente uguaglianza: il prodotto dei cateti è uguale al prodotto dell ipotenusa per l altezza ad essa relativa; inoltre vale il teorema di Pitagora; ponendo a sistema le due uguaglianze si ottiene il seguente sistema simmetrico: AC h i (1) AB AC i () La () può essere riscritta come (AB AC) AB AC i in cui si può sostituire ad AB AC il valore fornito dalla (1), portare tale termine al secondo membro, estrarre la radice quadrata di entrambi i membri e considerare la sola radice positiva, in quanto la somma di segmenti è positiva; il sistema pertanto diventa: AC hi (1) AB AC i h i () Come per tutti i sistemi simmetrici le soluzioni sono rappresentate dalle radici dell equazione: t st p 0, con s somma delle incognite e p prodotto; in questo caso diventa: t t i h i hi 0; indicato con AC il cateto maggiore le soluzioni saranno: i h i i h i i h i i h i AC e AB ) Se si indica con x uno dei due cateti, ad esempio AB l altro sarà AC x ; poiché il volume del cono dipende dal quadrato del raggio della base sarà conveniente usare AC come raggio e AB come altezza del cono; il volume di K pertanto sarà: V K AC AB ( x ) x (x x ) m Per cercare il cono di volume massimo occorre uguagliare a zero la derivata prima del volume rispetto alla variabile x; si ottengono così due valori: x 1 e x 1, dove, essendo x la misura di un segmento, solo la soluzione positiva ha significato geometrico. Se AB 1 allora AC e V K m ; ma un litro corrisponde ad un dm e pertanto: V K 10 litri 5 Zanichelli Editore, 006

4) La misura di un angolo in radianti è pari al rapporto tra la lunghezza dell arco e il raggio; lo sviluppo piano della superficie laterale del cono K origina un settore circolare compreso tra un arco, la cui misura è pari alla misura della circonferenza della base di K ( ), e due raggi che misurano quanto l apotema del cono K, ovvero. Pertanto l angolo sarà: 6 5,1 radianti o, in gradi sessagesimali, g 6 180 56 1 1 QUESTIONARIO Indicato con m sia la somma dei due numeri cercati sia il loro prodotto, tali numeri saranno le radici dell equazione: x mx m 0 ovvero: a m m 4 m e b m m 4 m con la condizione, dovendo essere a e b numeri reali diversi tra loro, che il discriminante sia positivo, ovvero: m 0 m 4. La superficie totale di un cilindro equilatero, avente cioè l altezza uguale al diametro r della base, è: 6 r mentre il volume della sfera circoscritta al cilindro, ovvero una sfera di raggio r, ha una superficie pari a 8 r ; il rapporto tra le due superficie è, quindi, 4. La funzione più semplice è da ricercare all interno delle funzioni polinomiali; una funzione con un minimo relativo per x 1 e un massimo relativo per x 1 è crescente per valori interni a tale intervallo e, pertanto, la derivata prima contiene il fattore (1 x ); la presenza di un fattore costante non altera il risultato e pertanto la derivata prima può essere: f (x) a (1 x ) che integrata fornisce: f (x) ax a x c Imponendo il passaggio della funzione per i punti forniti dal quesito si ottiene il sistema: a c che a c a ha soluzione: 4 da c 5 cui: f (x) x 4 4 x 5 4 Le soluzioni dell equazione: e x x 0 sono rappresentate dalle intersezioni della funzione f (x) e x x con l asse delle ascisse; tale funzione ha derivata prima: f (x) e x, positiva per qualunque x reale, e pertanto f (x) risulta essere monotona crescente e, come tale, assume una e una sola volta tutti i valori del suo codominio; essendo il codominio ], [ la f (x) assumerà una e una sola volta il valore y 0, intersecando quindi una e una sola volta l asse delle ascisse. 5 Le funzioni che soddisfano le condizioni indicate dal quesito sono infinite ma tutte devono presentare un punto di discontinuità di terza specie in x ; un esempio di g (x) è il seguente: g (x) x 1 per x 4 per x 6 Zanichelli Editore, 006

6 In base alle proprietà dei logaritmi si può trasformare g (x) come segue: g (x) log(x) log(x) log log x log f (x) Pertanto g (x) e f (x) differiscono solamente per la costante log e avranno quindi la stessa derivata: g (x) f (x) x. 7 L area di un triangolo qualunque è uguale alla metà del prodotto di due lati per il seno dell angolo tra essi compreso, ovvero A 1 ab sen ; tale area sarà massima quando sen 1 e cioè quando. 8 Il grado sessagesimale è la 60ª parte dell angolo giro; il radiante è l angolo al centro del cerchio goniometrico che insiste su un arco di lunghezza unitaria; il grado centesimale è la 400ª parte dell angolo giro. Questo integrale può essere calcolato con la formula di integrazione per parti prendendo come fattore finito arcsen x e come fattore differenziale 1 dx; si ottiene così: [x arcsen x 1 x ] 1 0 1 10 Dovendo associare a ciascuno dei quattro elementi di A uno dei tre elementi di B si ottengono 4 diverse applicazioni, ovvero tutte le possibili disposizioni con ripetizione di elementi presi a gruppi di 4. 7 Zanichelli Editore, 006

Per esercitarti ancora sugli argomenti affrontati nel Svolgi Problema 1 Esercizio pag. V 41 Esercizio 1 pag. V 41 Esercizio pag. V 41 Esercizio 5 pag. V 41 Esercizio 41 pag. V 41 Esercizio 5 pag. W 11 Esercizio 61 pag. W 1 Esercizio 15 pag. U Esercizio 154 pag. U Problema Problema 66 pag. V 78 Problema 70 pag. V 78 Problema 76 pag. V 78 Problema 77 pag. V 78 Problema 05 pag. V 10 Problema 0 pag. V 10 Problema 17 pag. V 11 Problema 1 pag. V 11 Problema 0 pag. V 11 Problema 1 pag. V 11 Problema 16 pag. V 17 Quesito Esercizio 1 pag. V 14 Esercizio pag. V 14 Quesito 6 Quesito 4 pag. V 8 Quesito Esercizio 10 pag. W 11 Esercizio 110 pag. W 11 Esercizio 11 pag. W 11 Esercizio 11 pag. W 11 Esercizio 1 pag. W 11 Esercizio 16 pag. W 11 Quesito 10 Esercizio 6 pag. 5 Esercizio 10 pag. 8 8 Zanichelli Editore, 006