FUNZIONI DI DUE VARIABILI: graöci 3D e curve di livello



Documenti analoghi
Matematica e Statistica

Funzioni di più variabili

LE FUNZIONI A DUE VARIABILI

Le funzioni di due variabili

09 - Funzioni reali di due variabili reali

Massimi e minimi vincolati di funzioni in due variabili

Analisi 2. Argomenti. Raffaele D. Facendola

Funzioni con dominio in R 2

Prerequisiti didattici

CURVE DI LIVELLO. Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello.

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R

a) Osserviamo innanzi tutto che dev essere x > 0. Pertanto il dominio è ]0, + [. b) Poniamo t = log x. Innanzi tutto si ha:

Funzioni di più variabili. Ottimizzazione libera e vincolata

2 Argomenti introduttivi e generali

6. Calcolare le derivate parziali prime e seconde, verificando la validità del teorema di Schwarz:

Funzioni in più variabili

MATEMATICA GENERALE - (A-D) Prova d esame del 7 febbraio FILA A

Funzioni. Funzioni /2

Definizione DEFINIZIONE

LA RETTA. Retta per l'origine, rette orizzontali e verticali

Rette e curve, piani e superfici

Matematica 1 - Corso di Laurea in Ingegneria Meccanica

l insieme Y è detto codominio (è l insieme di tutti i valori che la funzione può assumere)

Massimi e minimi vincolati

Matteo Moda Geometria e algebra lineare Fasci. Fasci. N.B.: Questo argomento si trova sull eserciziario. Fasci di rette nel piano

Sono definite in sottoinsiemi di R n (n N), a valori in R Ci si limiterà al caso di R 2 o di R 3

.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1

Anno 5 4. Funzioni reali: il dominio

LEZIONE 31. B i : R n R. R m,n, x = (x 1,..., x n ). Allora sappiamo che è definita. j=1. a i,j x j.

Esempi di funzione. Scheda Tre

LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x x2. 2, x3 +2x +3.

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI

x 2 + y2 4 = 1 x = cos(t), y = 2 sin(t), t [0, 2π] Al crescere di t l ellisse viene percorsa in senso antiorario.

La curva grafico della funzione, partendo dal punto A(a,f(a)), si snoda con continuità, senza interruzioni, fino ad approdare nel punto B(b,f(b)).

CBM a.s. 2012/2013 FUNZIONI REALI DI DUE VARIABILI REALI

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26

Applicazioni del calcolo differenziale allo studio delle funzioni

Ottimizazione vincolata

Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni

Calcolo differenziale Test di autovalutazione

~ Copyright Ripetizionando - All rights reserved ~ STUDIO DI FUNZIONE

Richiami sulle derivate parziali e definizione di gradiente di una funzione, sulle derivate direzionali. Regola della catena per funzioni composte.

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2.

STUDIO DI UNA FUNZIONE

Anno 4 Grafico di funzione

CONI, CILINDRI, SUPERFICI DI ROTAZIONE

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012

I appello - 24 Marzo 2006

2 FUNZIONI REALI DI VARIABILE REALE

Corrispondenze e funzioni

MATEMATICA p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.

FUNZIONE. Si scrive: A B f: A B x y=f(x) (si legge: f funzione da A in B) x f y= f(x)

Studio di funzioni ( )

Le derivate versione 4

6) f(x, y) = xy 1 log(5 2x 2y) x + y. 2x x 2 y 2 z 2 x 2 + y 2 + z 2 x Esercizio 2. Studiare gli insiemi di livello delle seguenti funzioni:

Anno 5 4 Funzioni reali. elementari

1 Massimi e minimi liberi 1. 2 Massimi e minimi vincolati 7. 3 Soluzioni degli esercizi 12

FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette:

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2015

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

FUNZIONI CONVESSE. + e x 0

Matematica generale CTF

SEGNO DELLA FUNZIONE. Anche in questo caso, per lo studio del segno della funzione, occorre risolvere la disequazione: y > 0 Ne segue:

Quale delle funzioni elencate ha il grafico in figura? 1) f(x)=x 3-2 2) f(x)= x 3-2x 2 -(x-2) 3) f(x)= x 3-2x 2 + x-2 4) f(x)= x 4 -x 2-2

FUNZIONE REALE DI UNA VARIABILE

Grafico qualitativo di una funzione reale di variabile reale

Università di Trieste Facoltà d Ingegneria. Esercizi sul calcolo differenziale in IR N. Dott. Franco Obersnel

1. Distribuzioni campionarie

Studio di una funzione ad una variabile

Lezione 6 (16/10/2014)

Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0.

La f(x) dovrà rimanere all interno di questo intorno quando la x è all interno di un intorno di x 0, cioè I(x 0 ), cioè:

LE FIBRE DI UNA APPLICAZIONE LINEARE

PROVA N Elencare gli elementi che conviene esaminare per tracciare il grafico di una funzione y=f(x) PROVA N 2. è monotona in R?

Relazioni statistiche: regressione e correlazione

Funzioni reali di più variabili reali

3 GRAFICI DI FUNZIONI

Il concetto di valore medio in generale

Funzioni con dominio in R n

Vademecum studio funzione

CONCETTO DI LIMITE DI UNA FUNZIONE REALE

APPLICAZIONI LINEARI

2 + (σ2 - ρσ 1 ) 2 > 0 [da -1 ρ 1] b = (σ ρσ1 σ 2 ) = (σ 1

Insiemi di livello e limiti in più variabili

Anche nel caso che ci si muova e si regga una valigia il lavoro compiuto è nullo: la forza è verticale e lo spostamento orizzontale quindi F s =0 J.

Funzione reale di variabile reale

QUADERNI DI DIDATTICA

Basi di matematica per il corso di micro

SOLUZIONI D = (-1,+ ).

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE

Integrali doppi - Esercizi svolti

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

Appunti sul corso di Complementi di Matematica- modulo Analisi Prof. B.Bacchelli

Limiti e continuità delle funzioni reali a variabile reale

Corso di Matematica per CTF Appello 15/12/2010

Incontriamo la Matematica e la Fisica nelle Applicazioni San Pellegrino Terme (Bergamo) 7/8/9 settembre 2009

Funzioni. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

ECONOMIA DEL LAVORO. Lezioni di maggio (testo: BORJAS) L offerta di lavoro

15 febbraio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

Transcript:

FUNZIONI DI DUE VARIABILI: graöci 3D e curve di livello Una funzione di due variabili Ë una funzione in cui per ottenere un valore numerico bisogna speciöcare il valore di 2 variabili x e y, non pi di una sola z = f(x; y). Esempio f(x; y) =x 2! 2xy 40-6 -4 4 z -2 0 0-20 2 y 20-4 -2 0 2 x 4-6 6 6

Una tripla di numeri (x; y; f(x; y)) si puú associare a un punto nello spazio a 3 dimensioni:

Scegliamo un insieme di punti appartenenti al dominio della funzione nel piano xy, e da ognuno innalziamo la freccia che sale al punto (x; y; f(x; y)), avremo

Tutti i punti di coordinate (x; y; f(x; y)) si distribuiscono formando una superöcie nello spazio

Non tutte le caratteristiche del graöco di funzioni di una variabile potranno essere trasferite ai graöci di funzioni di due variabili; per esempio non avr alcun senso parlare di crescenza o decrescenza, mentre illustreremo i concetti di di massimo e minimo (relativo o assoluto) (monti e valli).

Gli insiemi di livello sono ottenuti intersecando il graöco della funzione con piani orizzontali. Vengono anche chiamate curve di livello, individuate dalla quota del piano intersecante. Le curve di livello si possono proiettare sul piano orizzontale, eventualmente sovrapponendole a un graöco di densit : colori via via pi chiari per indicare le cime e via via pi scuri per indicare le valli..

ESEMPI. 1. La funzione lineare f(x; y) =3x! y +2 ha come linee di livello le rette di equazione 3x! y +2 = k; ovvero y = 3x +2! k tutte parallele al variare di k. y z y x x

2. La funzione (paraboloide iperbolico) f(x; y) =xy ha come linee di livello iperboli equilatere di equazione xy = k: y z y x x

3. La funzione f(x; y) =x 2 + y 2 il cui graöco Ë una semisuperöcie conica ha come linee di livello le circonferenze di equazione x 2 + y 2 = k y z x y x

Domini Anche per le funzioni a due varibili Ë necessario individuare líinsieme di esistenza della funzione f(x; y): Questa volta líinsieme di esistenza di una funzione a due variabili sar un sottoinsieme di R 2 : Esempi. 1. f(x; y) = q 4! x 2! y 2 2. f(x; y) = ln(x! y) 3. f(x; y) = 1 sin(x! y)

Piani tangenti Molto utili per studiare le propriet delle funzioni di due variabili sono le linee intersezione della superöce-graöco della funzione con piani verticali paralleli ai piani coordinati, cioë del tipo x = k e y = k: Queste linee si ottengono risolvendo uno dei seguenti due sistemi: ( ( z = f(x; y) z = f(x; y) =) z = f(x; k) =) z = f(k; y) y = k x = k Nel primo caso si ottiene una funzione della variabile indipendente x, il cui graöco si potr rappresentare in un piano Oxz, nel secondo caso si ottiene una funzione della variabile indipendente y, il cui graöco si potr rappresentare in un piano Oyz.

Esempio. Si consideri la funzione f(x; y) =x 3! 4xy 2 Líintersezione con il piano x = 1=2 conduce alla funzione (della sola variabile y) z = 1 8! 2y2 il cui graöco Ë una parabola nel piano Oyz: Líintersezione con il piano y =1=2 conduce alla funzione (della sola variabile x) z = x 3! x, il cui graöco sar nel piano Oxz:

Le due funzioni ottenute per intersezione sono funzioni di una sola variabile e possono essere derivate: queste derivate saranno utili non solo per le curve intersezione, ma anche per la funzione di due variabili nel suo complesso. Derivate parziali DeÖnizione 1 Data una funzione z = f(x; y) e un punto (x 0 ;y 0 ) interno al suo dominio, possiamo considerare la funzione, della variabile x, z = f(x; y 0 )= g(x), ottenuta Össando y al valore y 0 e lasciando variare x, ovvero la funzione che si ottiene intersecando la superöcie z = f(x; y) con il piano verticale y = y 0 : Possiamo ora considerare lim x!x 0 f(x; y 0 )! f(x 0 ;y 0 ) x! x 0

ovvero il limite del rapporto incrementale della funzione z = g(x). Se questo esiste ed Ë Önito, esso si chiama derivata parziale prima rispetto a x della funzione x, nel punto (x 0 ;y 0 ) e si indica f 0 x (x 0 ;y 0 ) : In maniera analoga possiamo considerare la funzione, della variabile y, z = f(x 0 ;y)=h(y); ottenuta Össando x al valore x 0 e lasciando variare y, ovvero la funzione che si ottiene intersecando la superöcie z = f(x; y) con il piano verticale x = x 0 : Possiamo ora considerare f(x lim 0 ;y)! f(x 0 ;y 0 ) y!y 0 y! y 0 ovvero il limite del rapporto incrementale della funzione z = h(y). Se questo esiste ed Ë Önito, esso si chiama derivata parziale prima rispetto a y della funzione f, nel punto (x 0 ;y 0 ) e si indica con f 0 y (x 0 ;y 0 ) :

In pratica il calcolo delle due derivate parziali in un punto generico (x; y) interno al dominio si fa pensando la funzione f(x; y) come funzione di una sola delle due variabili e trattando líaltra come un parametro costante. DeÖnizione 2 Siano f : A % R 2! R e (x; y) 2 A: Il vettore rf(x; y) = h fx(x; 0 y) fy(x; 0 y) i si dice gradiente di f in (x; y) :

Avendo ottenuto da una funzione due derivate parziali prime, da ciascuna otterrú altre due derivate parziali, per un totale di quattro derivate parziali seconde della funzione originaria: ñ f 00 xx sar la derivata prima rispetto a x della f 0 x; ñ f 00 yy sar la derivata prima rispetto a y della f 0 y; ñ f 00 xy sar la derivata prima rispetto a y della f 0 x ; ñ f 00 yx sar la derivata prima rispetto a x della f 0 y. Le prime due si chiamano derivate parziali seconde pure, le ultime due si chiamano derivate parziali seconde miste.

Osservazione. Le derivate fxy 00 =4+6y = fyx:vale 00 infatti il seguente notevole teorema. Teorema 3 (Teorema di Schwartz). Se le derivate seconde miste sono continue, allora esse sono uguali. La derivata prima per funzioni di una variabile permette il calcolo della pendenza della retta tangente al graöco della funzione e quindi la determinazione dellíequazione di questa tangente. Per le funzioni di due variabili, le derivate parziali,servono a determinare le equazioni delle rette tangenti alle curve intersezione tra la superöcie e il piano verticale parallelo al piano Oxz oppure Oyz. Esse perú servono anche a determinare líequazione del piano tangente alla superöcie graöco della funzione di due variabili.

Data una funzione di due variabili z = f(x; y) e un punto (x 0 ;y 0 ) del suo dominio, dove la funzione ammette derivate parziali prime continue, líequazione del piano tangente alla superöcie graöco della funzione nel punto (x 0 ;y 0 ;z 0 ), con z 0 = f(x 0 ;y 0 ) sar : z = f(x 0 ;y 0 )+f 0 x (x 0;y 0 )(x 0! x)+f 0 y (x 0;y 0 )(y 0! y) Esempio. La funzione f(x; y) =x 2 +4xy +3xy 2 : Le derivate prime sono f 0 x(x; y) =2x +4y +3y 2 e f 0 y(x; y) =4x +6x: Prendiamo il punto (1;!1) : Avremo f(1;!1) = 0; f 0 x(1;!1) = 1; f 0 y(1;!1) =!2: Líequazione del piano tangente sar : z =0+(x! 1)! 2(y +1)! z = x! 2y! 3

z y x

Ottimizzazione libera Siamo interessati al problema della ricerca dei massimi e minimi nei punti interni al dominio della funzione o nei punti del bordo del dominio. Per questo problema basta lo studio delle derivate prime e seconde della funzione. Se si tiene conto dellíequazione di un piano tangente orizzontale, di equazione z = k; in corrispondenza di un punto di massimo o minimo interno al dominio entrambe le derivate parziali saranno nulle, esattamente caso di una variabile dove si aveva líannullamento della derivata prima. Purtroppo (ancora come nel caso di funzioni di una variabile) líannullarsi delle derivate non garantisce líesistenza di un massimo o un minimo. Teorema 4 (Condizione necessaria per i massimi e minimi in due variabili). Se una funzione f(x; y) dotata di derivate parziali ha, in corrispondenza a un punto

(x 0 ;y 0 ) interno al dominio, un massimo o un minimo, allora necessariamente il gradiente rf(x 0 ;y 0 )=0. Un punto (interno al dominio) in cui le derivate parziali siano contemporaneamente nulle (senza che necessariamente sia un punto di minimo o di massimo) si chiama un punto stazionario per f(x; y): Per stabilire se un punto stazionario Ë di massimo o di minimo cíë un teorema che stabilisce una condizione su ciente perchè un punto stazionario sia di massimo o di minimo. Teorema 5 Sia data una funzione f(x; y) dotata almeno di derivate seconde. Se (x 0 ;y 0 ) Ë un punto stazionario per f (interno al dominio), si calcolano, in (x 0 ;y 0 ), le quattro derivate seconde e si costruisce una matrice, detta matrice hessiana, H = " f 00 xx(x 0 ;y 0 ) fxy(x 00 0 ;y 0 ) fyx 00 0;y 0 ) fyy 00 0;y 0 ) #

Successivamente si calcola il determinante della matrice hessiana dato da f 00 xx(x 0 ;y 0 )f 00 yy(x 0 ;y 0 )!f 00 xy(x 0 ;y 0 )f 00 yx(x 0 ;y 0 )=f 00 xx(x 0 ;y 0 )f 00 yy(x 0 ;y 0 )! h f 00 xy(x 0 ;y Se: - det [H] > 0; allora si guarda il primo termine della matrice hessiana f 00 xx (x 0;y 0 ): ( se f 00 xx(x 0 ;y 0 ) > 0 allora (x 0 ;y 0 ) Ë un punto di minimo (relativo), ( se f 00 xx(x 0 ;y 0 ) < 0 allora (x 0 ;y 0 ) Ë un punto di massimo (relativo), - det [H] < 0; allora il punto (x 0 ;y 0 ) Ë un punto di sella - det [H] = 0; allora nulla si puú concludere.

Osservazione. Si deönisce punto di sella un punto in cui il piano tangente Ë orizzontale e in cui vale la seguente propriet : se passiamo per il punto in certe direzioni il punto si presenta come un massimo, mentre in certe direzioni si presenta come un minimo. Esempio. f(x; y) =x 2! y 2 z x y

Esempio. Data la funzione f(x; y) = 2 ln(x 2 + y 2 +2)! xy determinare il dominio, i punti stazionari e classiöcarli. - Dominio. x 2 + y 2 +2> 0! R 2 : - Gradiente. 8>< >: f 0 x = f 0 y = 4x x 2 + y 2 +2! y =0 4y! x 2 + y 2 +2! x =0 8 >< >: 1 x 2 + y 2 +2 = y 4x 1 x 2 + y 2 +2 = x 4y

Risolvendo il sistema si ottiengono tre punti stazionari (0; 0) ; (1; 1) e (!1;!1) : - Hessiane. Si calcolano le tre matrici hessiane nei tre punti. Intanto líhessiano sar 2 6 4 4!x2 + y 2 +2!4x (x 2 + y 2 +2) 2 (x 2 + y 2 +2) 22y! 1!4x (x 2 + y 2 +2) 22y! 1 4 x2! y 2 +2 (x 2 + y 2 +2) 2 3 7 5

Quindi 2!1 det H(0; 0) = =3> 0; f 00!1 2 1 xx(0; 0) = 2 > 0! minimo locale 1=2!3=2 det H(1; 1) = =!2 < 0! punto di sella 1!3=2 1=2 1 1=2!3=2 det H(!1;!1) = =!2 < 0! punto di sella 1!3=2 1=2 1