STRUTTURE IN ACCIAIO Parte I

Documenti analoghi
Strutture in Acciaio: Introduzione

Strutture in Acciaio: Giunti

LEZIONE 4. PROGETTO DI COSTRUZIONI IN ACCIAIO Sistemi strutturali. Corso di TECNICA DELLE COSTRUZIONI Chiara CALDERINI A.A.

Lezione. Tecnica delle Costruzioni

L ACCIAIO. Costruzione delle Opere di Architettura A Prof. Arch. Alessandro Claudi de Saint Mihiel

Lezione 4 acciaio: L acciaio da costruzione i collegamenti fra elementi

Prof. Ing. Felice Carlo Ponzo. PDF Lezioni sul sito: www2.unibas.it/ponzo


INDICE. INTRODUZIONE... p INQUADRAMENTO NORMATIVO Normativa italiana Normativa europea... 4

REGISTRO DELLE LEZIONI 2006/2007. Tipologia. Addì Tipologia. Addì Tipologia

CENNI ALLA DUTTILITÀ DELLE STRUTTURE IN ACCIAIO

09b - Strutture di elevazione orizzontali ed inclinate (solai, scale e coperture)

Strutture in acciaio

CENNI ALLA DUTTILITÀ DELLE STRUTTURE IN ACCIAIO

INDICE. Pag. STRUTTURA IN ELEVAZIONE

TIPOLOGIE STRUTTURALI E FATTORI DI STRUTTURA

Prof. Ing. Felice Carlo Ponzo. PDF Lezioni sul sito: www2.unibas.it/ponzo

1.6 Il progetto dell edifi cio Campari: Aspetti statici e costruttivi di cantiere

CORSO DI TECNICA DELLE COSTRUZIONI ESERCITAZIONE n 3 del 15/11/2016

Solai intermedi L05 1

Progettare con l acciaio in zona sismica Concezione strutturale

prof. ing. Vincenzo Sapienza

CORSO DI TECNICA DELLE COSTRUZIONI ESERCITAZIONE n 3 del 19/11/2015

Componenti strutturali in acciaio

SCHELETRO PORTANTE IN ACCIAIO UNIVERSITÀ DEGLI STUDI DI BERGAMO

V- PRODOTTI DERIVATI. 1 Travi saldate. 1a - Travi Alveolari. Descrizione:

Prefazione 1 Studio delle deformazioni elastiche con la teoria di Mohr Criteri introduttivi...

TECNICA DELLE COSTRUZIONI. Basi della progettazione Elementi intelaiati in acciaio, Franco Bontempi Stefania Arangio Luca Sgambi.

Le piastre Progettazione

Progetto con modelli tirante-puntone 6.5 EC2

COMUNE DI BARLETTA PROV. DI BARLETTA ANDRIA TRANI

Sistemi piani, p Analisi strutturale elastica di travi e sistemi di travi, p La trave ad asse rettilineo

Collegamenti rigidi per telai costituiti da elementi prefabbricati in c.a.

Dettagli costruttivi - scale

MODULO 1: ELEMENTI LINEARI

Stralci e commenti utili all'inquadramento delle strutture prefabbricate a pilastri isostatici (q 0 =2,5) Rev.: 25/05/2017

I controventi. modulo D L acciaio

Corso di Tecnica delle Costruzioni I e II Prof. Ing. Antonio Formisano

Lezione. Progetto di Strutture

a.a. 2012/2013 CORSO DI LAUREA IN INGEGNERIA CIVILE

Università degli Studi Guglielmo Marconi

Figura 5.102: legami costitutivi reali di calcestruzzo e acciaio. Figura 5.103: Trave continua in c.a. sottoposta a carichi di esercizio.

Edifici con strutture in calcestruzzo armato -lezione 5- Temec Prof. Maria Chiara Torricelli

BIM: la scelta industriale per gestire efficientemente le necessità progettuali

INSEGNAMENTO: COSTRUZIONI Modulo I CEMENTO ARMATO

CALCESTRUZZO... Errore. Il segnalibro non è definito. ACCIAIO PER ARMATURE C.A... 3 INDICAZIONI GENERALI... 4 TENSIONI DI PROGETTO (SLU)...

Strutture in cemento armato e acciaio con casi tipo analizzati e sviluppati con la tecnica del Workflow

TECNICA DELLE COSTRUZIONI. Fasi di realizzazione di un edificio

Sezione Costruzioni Ambiente e Territorio PROGRAMMAZIONE ANNO SCOLASTICO

COMPOSTE PROGETTAZIONE DI STRUTTURE ACCIAIO-CALCESTRUZZOALCESTRUZZO. Corso di STRUTTURE SPECIALI A.A. 2008/09 - PRIMA PARTE - Prof.

Collegamenti nelle strutture

Edifici in muratura portante. Temec

Con riferimento alla trave reticolare rappresentata in figura, determinare gli sforzi nelle aste. Equilibrio alla rotazione intorno a Q :

QUADRO COMPARATIVO. Comune di Colle di Val D'Elsa Provincia di Siena

Armatura per c.a.: Sistema Unifer Armature preassemblate

Costruzioni in acciaio in zona sismica II

Architettura Tecnica. Lezione La struttura in c.a.

TECNICA DELLE COSTRUZIONI (72 ore, Marzo 2015 Maggio 2015)

Dettagli costruttivi. Limitazioni geometriche e Armature

Tipologie di murature portanti

Solai in calcestruzzo armato e in laterocemento o altri blocchi -lezione 4- Temec Prof. Maria Chiara Torricelli

UNIVERSITA' DEGLI STUDI DI PALERMO FACOLTA' DI INGEGNERIA

Nome file: 5_(6).doc. Inserire figura: ArtsPDF - SOLAI/pag 162.tif Figura L.13.1 Schema solaio con travetti precompressi.

Lezione 9. Laboratorio progettuale (Tecnica delle Costruzioni)

S.T.S. s.r.l. Software Tecnico Scientifico STRUTTURE IN ACCIAIO

Le unioni. 5 L acciaio 5.3 Strutture in acciaio. Unioni con chiodi. Unioni con perni. Unioni con bulloni

GERARCHIA DELLE RESISTENZE TRAVE-COLONNA : GERARCHIA DELLE COMPONENTI NODALI

PROGETTAZIONE DEGLI ELEMENTI COSTRUTTIVI

Calcolo strutture in muratura e miste: 3Muri Listino Offerta. 3Muri - Moduli aggiuntivi

FACOLTA DI INGEGNERIA TECNICA DELLE COSTRUZIONI

Progettazione di strutture in c.a. Armature minime di travi e pilastri

ARMATURE SUPPLEMENTARI

Regione Campania - Genio Civile

29 Maggio 2013 / Parma

LEZIONE N 48 ELEMENTI TOZZI

I SOLAI: TIPOLOGIE E TECNOLOGIE REALIZZATIVE

Laurea specialistica in Ingegneria Civile. Tesi di laurea. Instabilità in compressione di profili sottili in acciaio formati a freddo

DUTTILITA STRUTTURALE RIFLESSIONE!

Hilti Seismic Academy

Acciai per strutture metalliche e composte

Laboratorio di Progettazione Strutturale Immagini lezioni Strutture in c.a. prof.ing. Giuseppe Faella prof.arch. Mariateresa Guadagnuolo

collegamenti a cura di: ing. Ernesto Grande

corso di Analisi e Progetto di Strutture

I principali riflessi del metodo semiprobabilistico agli stati limite nel progetto dei solai latero cementizi

4 L ARMATURA NEGLI ELEMENTI IN CEMENTO ARMATO

LE STRUTTURE IN MURATURA

1 Schema di funzionamento di un edificio monopiano con copertura a capriate

corso di Progetto di Strutture

Capitolo 1- INTRODUZIONE

modulo D L acciaio Gruppo III

INTERVENTI SU EDIFICI ESISTENTI

LA MIA CASA SARÀ IN LEGNO.. Oggi sappiamo perché!

Classe di Unità Tecnologica. Strutture Portanti

Indice I vettori Geometria delle masse

Q U A D E R N I T E C N I C I 03

PROGETTO DI RICERCA SPERIMENTALE RELATIVA ALL IMPIEGO DEL GASBETON IN ZONA SISMICA

ANALISI E PREDIMENSIONAMENTO DEGLI ELEMENTI STRUTTURALI

Mensola PBH Version: Peikko Group 4/2011

Progetto di travi in c.a.p isostatiche Il progetto a taglio di travi precompresse

TECNICA DELLE COSTRUZIONI (72 ore, Marzo 2012 Maggio 2012)

Transcript:

STRUTTURE IN ACCIAIO Parte I

L acciaio è una lega ferro-carbonio. La quantità di carbonio condiziona la resistenza eladuttilità (la prima cresce e la seconda diminuisce all aumentare del contenuto in carbonio). I più comuni acciai per carpenteria metallica hanno un contenuto in carbonio molto basso (da 0.17% a 0.22%) e sono quindi estremamente duttili. Una caratteristica importante è anche la tenacità dell acciaio, cioè la sua capacità di evitare rottura fragile alle basse temperature. Le normative (DM08 o Eurocodice 3) impongono limitii i alle caratteristiche i meccaniche (tensione di rottura e di snervamento) ed all allungamento a rottura dei diversi tipi di acciaio, nonché limiti alla resilienza (legati alla temperatura ed al grado di saldabilità), necessari per garantire la tenacità. Negli acciai sono contenute anche piccole quantità di manganese e silicio, che favoriscono lasaldabilità, e di altri elementi (fosforo, f zolfo, ecc.) che sono da considerare impurità inevitabili. Per la saldabilità dell acciaio è importante il grado di disossidazione: l ossigeno presente nell acciaio fuso si combina col carbonio formando monossido di carbonio CO che nel raffreddamento torna allo stato gassoso creando diffuse soffiature (l acciaio viene detto effervescente); l aggiunta di alluminio e silicio, che si combinano con l ossigeno formando ossidi che vengono poi eliminati, riduce la formazione di monossido di carbonio (acciai calmati o semicalmati).

Normativa Italiana

STRUTTURE IN ACCIAIO - STRUTTURE CALCESTRUZZO ARMATO Aspetti rilevanti nel confronto: 1) Modalità costruttive: condizionano i il comportamento strutturale, lasceltal di dei modelli di calcolo e l importanza da dare ai dettagli. 2) Rapporto tra resistenza e peso: l elevatol valore per l acciaio i consente l adozione di sezioni decisamente ridotte rispetto a quelle usuali per le strutture in c.a.. Tale aspetto comporta: - problemi di deformabilità; - problemi di instabilità; - maggiore sensibilità a condizioni di carico trascurabili nel calcestruzzo armato; - rilevanti vantaggi nel caso di grandi luci e in zona sismica. 3) Diverso comportamento a trazione e compressione.

Modalità costruttive: - C.A.: realizzazione in opera (maturazione del calcestruzzo), strutture monolitiche; -Acciaio: facilità e rapidità di montaggio (assemblaggio), necessità di intervenire con accorgimenti per realizzare strutture continue, importanza dello studio dei collegamenti. Deformabilità: - Resistenza dell acciaio molto elevata; - Sezioni molto ridotte. Instabilità: - Strutture in acciaio molto snelle: a) Sensibilità al problema della stabilità in presenza di aste compresse; b) Effetti del secondo ordine nell analisi Strutturale; c) influenza della tridimensionalità sull instabilità dll dellastruttura. Elevata deformabilità delle strutture in acciaio rispetto a quelle in c.a., problemi in esercizio molto rilevanti (l EC3 trattatt prima lo stato tt limiteit di sevizio e poi quello ultimo).

Sensibilità a schemi di carico Leggerezza di strutture in acciaio: incidenza meno rilevante del peso proprio rispetto agli altri carichi (variabili come neve e vento). Esempio: copertura non praticabile in acciaio: Peso proprio p = 0.15 0.3 kn/m 2 ; Neve = 1.3 kn/m 2, Vento = 0.3 0.5 kn/m 2 ; (Neve circa 80 % del carico totale di progetto). Strutture di grande luce o in zona sismica Eventuali problemi dovuti a depressione provocata dal vento; Possibilità di realizzare con l acciaio strutture di grande luce; Strutture in zona sismica in acciaio: azione sismica ridotta rispetto al c.a. grazie all elevata capacitàdissipativa dell acciaio (duttilità).

Comportamento a trazione e compressione Per la struttura in acciaio soggetta a compressione: rischio di instabilità locale, dell elemento o della struttura. Diagramma limite M-N: differenza cemento armato - acciaio

ASTE REALI E ASTE IDEALI IMPERFEZIONI Le strutture si calcolano nell ipotesi che l asta sia ideale cioè perfettamente rettilinea, omogenea, isotropa ed esente da stati tensionali interni precedenti l applicazione del carico. In realtà le aste prodotte industrialmente presentano inevitabilmente delle imperfezioni. Le imperfezioni possono essere: meccaniche geometriche. Per le imperfezioni meccaniche, sia nei profili laminati a caldo che in quelli laminati a freddo e a composizione saldata, sono presenti imperfezioni che riguardano le caratteristiche meccaniche, quali: - la presenza di tensioni residue (stati tensionali autoequilibrati nelle sezioni trasversali); - la disomogenea distribuzione delle caratteristiche meccaniche nelle sezioni trasversali e lungo l asse dei profilati. Nei profili laminati a caldo le tensioni residue si formano a causa del processo di raffreddamento successivo alla laminazione (600 C) e possono venire modificate da eventuali processi termici o da raddrizzamento di natura meccanica.

Nella figura seguente è schematizzato il processo temporale dell andamento dello stato tensionale e della sezione e del profilo po oa seguito del suo raffreddamento. e

Con il termine di imperfezioni geometriche si indicano tutte le variazioni di dimensione o forma dell asta rispetto alla geometria ideale. 1. Si hanno imperfezioni geometriche della sezione trasversale che dipendono da: - variazioni degli spessori e delle dimensioni delle lamiere nei profili saldati; - mancata ortogonalità degli elementi che compongono le sezioni. 2. Inoltre si osservano imperfezioni geometriche dell asse dell asta con la deviazione dell asse dell asta dalla sua posizione ideale perfettamente rettilinea. Le imperfezioni geometriche possono condizionare in modo evidente il Le imperfezioni geometriche possono condizionare in modo evidente il comportamento degli elementi strutturali. Le normative impongono di tenerne conto.

PROFILATI METALLICI

COLONNE O PILASTRI Colonne saldate Profilati industriali tubolari Profilati industriali baionetta 100 Colonne composte 50 0 1 Trim. 3 Trim. Est Ovest Nord Colonne a sezione variabile Cl Calastrellate llt tralicciate

LE GIUNZIONI NELLE STRUTTURE METALLICHE GIUNTI INTERMEDI: Giunti trave-trave; trave; Giunti colonna-colonna. GIUNTI D ESTREMITÀ: Giunti tra travi; Giunti tra trave-colonna; Giunzioni per controventi; Giunti di base; Giunti tra elementi in acciaio ed elementi in calcestruzzo. MODELLAZIONE DEI GIUNTI: I giunti a cerniera; I giunti rigidi; I giunti semi-rigidi.

GIUNTI INTERMEDI: giunti trave-trave a) giunto con piastre in acciaio (flange) saldate all estremità di ogni trave e bullonate in opera; b) giunto con piastre coprigiunto d ala e d anima bullonate in opera; c) giunto con piastre coprigiunto saldate (interamente t in opera oppure all estremità di una trave in stabilimento e a quella dell altra in opera); d) giunto con saldature testa a testa nelle ali e nell anima delle estremità delle travi collegate. Usualmente, per questa soluzione, è conveniente che le estremità delle travi siano opportunamente t lavorate in officina). i

GIUNTI INTERMEDI: giunti colonna-colonna

a) giunto con piastre coprigiunto d ala doppie (ossia due piastre per ogni ala) e piastre coprigiunto d anima bullonate in opera; b) giunto con doppie piastre coprigiunto d ala bullonate in opera; c) giunto con piastre coprigiunto d ala singole e piastre coprigiunto d anima bullonate in opera; d) giunto per contatto con piastre coprigiunto d ala interne al profilo esaldate; e) giunto per contatto con piastre coprigiunto d ala it interne al profilo ebullonate; bll f) giunto per contatto con flangia saldata in stabilimento all estremità della colonna inferiore ed in opera alla colonna superiore; g) giunto per solo contatto tra flange saldate in g) giunto per solo contatto tra flange saldate in stabilimento all estremità di ogni colonna;

a) giunto con piatto saldato in stabilimento alla colonna inferiore irrigidito da costole verticali, saldate allo scopo di evitare concentrazioni sforzi; b) giunto con piatto saldato in stabilimento all estremità della colonna inferiore, irrigidito da costole verticali (in corrispondenza delle ali della colonna superiore) sostenute da costole orizzontali saldate; c) giunto rastremato saldato in officina ad un estremità della colonna e in opera all estremità dell altra colonna. Il carico è trasferito mediante un traliccio costituito da due piastre orizzontali e da due piatti diagonali, di raccordo tra le ali delle membrature.

GIUNTI D ESTREMITA : giunti trave principale-trave secondaria a) giunto con angolari d anima anima, bullonati all anima anima sia della trave principale sia di quella secondaria. b) giunto con angolari d anima anima, saldati in stabilimento all anima della trave secondaria e bullonati in opera a quella della trave principale. c) giunto con angolari bullonati all anima sia della trave principale sia di quella secondaria; d) giunto con un piatto saldato in stabilimento all anima della trave secondaria e bullonato in opera a quella della trave principale. e) giunto con un piatto saldato in stabilimento alla estremità della trave secondaria e bullonato in opera ad una flangia saldata alla trave principale opportunamente irrigidita da costole trasversali elle estremità. f) i t i tt ld t i t bili t ll i f) giunto con un piatto saldato in stabilimento all anima della trave principale e bullonato in opera a quella della trave secondaria.

GIUNTI D ESTREMITA : giunti trave-colonna

a) giunto realizzato mediante angolari bullonati all ala della colonna e all anima della trave; b) giunto con piatto saldato in aggetto alla colonna e bullonato all anima della trave; c) giunto con piastra saldata a parte di anima all estremità della trave e bullonata alla colonna; d) giunto con piastra saldata, con cordoni di saldatura sia d anima sia d ala, alla trave e bullonata alla colonna. Si osservi che tutte le tipologie di giunto travecolonna possono presentare costolature di irrigidimentoi idi dl del pannello d anima nella colonna, in corrispondenza della ali della trave, necessarie a volte per non creare zone preferenziali di debolezza del giunto.

GIUNTI D ESTREMITA : giunti per controventi

GIUNTI D ESTREMITA : giunti di base cerniera e incastro

GIUNTI D ESTREMITA : giunti tra elementi in acciaio ed elementi in calcestruzzo

MODELLAZIONE DEI GIUNTI: i giunti a cerniera a) piastra saldata in stabilimento all ala (o all anima) della colonna e bullonata in opera all anima della trave; b) angolari bullonati all ala (o all anima) della colonna e all anima della trave; c) piastra saldata a parte di anima dll della trave e bullonato all ala (o all anima) della colonna; d) angolari bullonati all ala (o all anima) della colonna e all anima dll della trave; e) piastra saldata in aggetto alla colonna alla quale vengono bullonati piatti in acciaio che consentono il collegamento con l anima della trave (tipico di profili tubolari); f) collegamento che garantisce la continuità della trave ed il trasferimento di sola azione assiale alla colonna (piastra saldata all estremità della colonna e bullonato all ala inferiore della trave).

MODELLAZIONE DEI GIUNTI: i giunti rigidi (a incastro) a) nodo di sommità per colonna perimetrale preparato in stabilimento; b-c) nodo di sommità ià per colonna perimetrale realizzato saldando piatti forati, inclinati rispetto all asse baricentrico di trave e colonna, e bll bullonandoli dliinopera; d) nodo interno trave-colonna con trave saldata all ala della colonna e costole di irrigidimento interne alla colonna in corrispondenza delle ali della trave; e) nodo interno trave-colonna con piastra forata saldata all estremità della trave e bullonata all ala ala della colonna, dotata come nel caso precedente di irrigidimenti d anima; f) nodo tra la trave alla cui estremità viene saldata una piastra forata in aggetto e l anima della colonna preventivamente forata;

MODELLAZIONE DEI GIUNTI: esempi di nodi trave-colonna cerniere incastri i

incastri cerniere cerniere

SOLAI NELLE COSTRUZIONI IN ACCIAIO L impalcato può essere realizzato con: Pannelli in C.A. o misti con laterizio gettati in opera (soluzione a, b); Pannelli in C.A. o misti con laterizio prefabbricati (soluzione c, d); Lamiere grecate riempite con materiale inerte (soluzione e); Lamiere grecate riempite con calcestruzzo collaborante (soluzione f).

I solai composti in acciaio-calcestruzzo sono solitamente costituiti da una lamiera grecata di acciaio su cui viene eseguito un getto di calcestruzzo normale o alleggerito. La lamiera ha la funzione di cassero durante la costruzione e costituisce parte o tutta l armatura longitudinale l dopo l indurimento i del calcestruzzo. Poiché non è sufficiente la semplice adesione chimica fra la lamiera e il calcestruzzo, sono previste opportune lavorazioni superficiali o particolari sagome per garantire l aderenza fra acciaio e calcestruzzo.

Altre caratteristiche: - leggerezza e riduzione degli ingombri - velocità di realizzazione - facilità di taglio e scarsa suscettibilità a problemi di tolleranze - facilità nella realizzazione di aperture per il passaggio degli impianti. Gli spessori della lamiera variano tra 0.7 e 1.5 mm mentre le altezze tra 40 e 80 mm. Pavimento; Calcestruzzo alleggerito; Getto di calcestruzzo; Lamiera grecata; Trave secondaria; Trave principale; Trave principale; Controsoffitto.

I solai metallici con soletta di calcestruzzo sono posizionati velocemente. Richiedono un contenimento ai bordi per prevenire la caduta dl del calcestruzzo. Il calcestruzzo è in genere pompato sulle lamiere del solaio.

I SISTEMI INTELAIATI A NODI RIGIDI IN ACCIAIO Soluzione economicamente non conveniente.

I SISTEMI INTELAIATI A NODI MOBILI solaio Trave secondaria Trave principale i Trave di bordo Colonna o pilastro Colonna o pilastro Controvento longitudinale l Controvento trasversale

SISTEMI di CONTROVENTAMENTO per TELAI PENDOLARI

Tipologia dei controventi (bracing) I controventi si possono realizzare secondo varie forme, come ad esempio a X, K e forme a V. Con controventi a X (a S. Andrea), le aste sono progettate trascurando il contributo dell asta compressa (le aste sono elementi molto snelli che si instabilizzano con basse forze di compressione). Utilizzando controventi a K o V, le aste del controvento devono essere progettati per resistere a forze di compressione. Piatti o angolari possono essere utilizzati per controventi a X (a S. Andrea) mentre tubolari o sezioni a H sono generalmente adottati per controventi a K o V. () ; (a) Controvento a S. Andrea; (b) Controvento K; (c) Controvento V.

Vento Controvento di falda Controvento verticale R i i i f d i Reazioni in fondazione dovute al vento

Esempi di Controventamento Soluzione a: controvento a croce di S. Andrea progettato non considerando le aste diagonali compresse. Gli arcarecci risultano inflessi e compressi. a) Vento Soluzione b: controventi di testata con diagonali tese. Gli arcarecci risultano inflessi ed eventualmente tesi. Vento b)

Vento o sisma a) b) c) Nucleo di controvento in calcestruzzo armato (a), intelaiato (b) e tralicciato (c).

GIUNTI DI DILATAZIONE a) Senza giunto con 1 controvento (isostatico); b) Senza giunto con 1 controvento (isostatico); c) Senza giunto con 2 controventi (iperstatico); d) Con 1 giunto e con 2 controventi (isostatico); e) Con 1 giunto e con 2 controventi (isostatico).