La forma delle molecole

Documenti analoghi
GEOMETRIA MOLECOLARE

IL LEGAME COVALENTE SECONDO LA MECCANICA ONDULATORIA L

Il legame chimico II: la geometria molecolare e l ibridizzazione degli orbitali atomici. Capitolo 10

IBRIDAZIONE e GEOMETRIA MOLECOLARE

Metodi basati sulla meccanica quantistica

Teorie del legame chimico. Teorie del legame chimico

Il legame chimico ATOMI MOLECOLE

Formule di Lewis e geometria molecolare

LEGAME COVALENTE: TEORIA DEGLI ORBITALI MOLECOLARI

un legame covalente due legami covalenti? tre legami covalenti due legami covalenti un legame covalente

Legame e struttura molecolare

I legami covalenti eteronucleari spostano la carica del legame sull atomo più elettronegativo

Un compostoè costituito da due o più elementi in proporzioni costanti, ottenibili dai composti per trasformazioni chimiche.

I due atomi di idrogeno condividono un elettrone ciascuno, raggiungendo ambedue la configurazione stabile 1s 2 guadagno globale di energia.

Formule di Lewis e regola dell ottetto

TEORIA DEL LEGAME DI VALENZA (VB) e GEOMETRIA MOLECOLARE (teoria VSEPR)

TEORIA DEGLI ORBITALI MOLECOLARI

TEORIA DEL LEGAME DI VALENZA (VB) e GEOMETRIA MOLECOLARE (teoria VSEPR)

Il Legame Chimico e la Struttura Molecolare

GEOMETRIA MOLECOLARE. La struttura di Lewis non fornisce alcuna indicazione sulla forma delle molecole in

Lezione n. 22. Molecole poliatomiche Metodo VSEPR Orbitali ibridi Coniugazione π. 02/03/2008 Antonino Polimeno 1

Legame covalente: la teoria del legame di valenza

Legame covalente. H 1s un protone e un elettrone

Valitutti, Falasca, Tifi, Gentile. Chimica. concetti e modelli.blu

Energia potenziale. d l. E p

ORBITA ORBIT LI ALI MOLECOLARI

Il legame covalente , P 4 , O 3 , N 2

STRUTTURA E FORMA DELLE MOLECOLE

Per conoscere le proprietà di una sostanza ne dobbiamo conoscere: * la struttura * il tipo di legame presente tra gli atomi

GEOMETRIE MOLECOLARI: TEORIE VSEPR

Introduzione alla chimica organica. 1. Regola ottetto 2. Teoria del legame 3. Geometria delle molecole

GLI ORBITALI ATOMICI

Chimica (A.A. 2010/2011)

Tutti gli atomi (tranne i gas nobili) interagiscono tra di loro per formare molecole

Lezione 3. Legame Chimico. Teoria degli Orbitali Molecolari

ATOMI MONOELETTRONICI

Esercizi sulle Geometrie Molecolari

Le molecole ed il legame chimico

Il legame chimico. Gli atomi sia nelle sostanze elementari che nei composti sono tenuti insieme dai legami chimici

Corso di Studi di Fisica Corso di Chimica

E. SCHRODINGER ( )

CAPITOLO 4 STRUTTURE MOLECOLARI

CHIMICA ORGANICA = STUDIO DEI COMPOSTI DEL CARBONIO. energia superiore. energia inferiore. orbitale s

Caratteristiche dei Metalli. Possibilità di formare un numero elevato di legami. Lavorabilità (slittamento di piani) Lucentezza (riflettono la luce)

CORSO DI LAUREA IN BIOTECNOLOGIE CHIMICA ORGANICA. - Brown, Poon, INTRODUZIONE ALLA CHIMICA ORGANICA, EdiSES

LA STRUTTURA DELLE MOLECOLE. Orbitali molecolari e legame chimico

7.1 LA TEORIA DEL LEGAME DI VALENZA INDICA CHE I LEGAMI SI FORMANO PER SOVRAPPOSIZIONE DEGLI ORBITALI

1.La forma delle molecole 2.La teoria VSEPR 3.Molecole polari e apolari 4.Le forze intermolecolari 5.Legami a confronto

Molecole: Forma e Polarità Orbitali Molecolari

Fra le poche eccezioni notiamo i gas nobili che sono particolarmente stabili e non reattivi.

La struttura di ioni e molecole

IBRIDAZIONE. MODELLO DELL ORBITALE di LEGAME

IL LEGAME SIGMA σ E IL LEGAME PI- GRECO π

06/03/2012. Elementi in chimica organica

Esercizio 1. CF 2 CS 2 CCl 4 ClF 3

I legami chimici. (parte seconda) Lezioni d'autore

Teoria degli orbitali ibridi

GLI ORBITALI ATOMICI

Cap. 3 L ARCHITETTURA DELLE MOLECOLE: MODELLO DEGLI ORBITALI IBRIDI

TEORIA DEL LEGAME DI VALENZA

CHIMICA II (CHIMICA ORGANICA)

Elettronegatività Elettronegatività

Nel 1926 Erwin Schrödinger propose un equazione celebre e mai abbandonata per il calcolo delle proprietà degli atomi e delle molecole

ATOMO. Legge della conservazione della massa Legge delle proporzioni definite Dalton

VSEPR Polarità Ibridizzazione

CHIMICA ORGANICA PER BIOTECNOLOGIE con esercitazioni di LABORATORIO D. Savoia

Legame chimico unità 1, modulo D del libro

Legame chimico: covalente polare Legame covalente polare

Zolfo (Z = 16) Conf. Elettronica 1s 2 2s 2 2p 6 3s 2 3p 4 Conf. Elettronica esterna 3s 2 3p 4

Le molecole ed il legame chimico

Le molecole ed il legame chimico

Valitutti, Falasca, Tifi, Gentile. Chimica. concetti e modelli.blu

LEGAMI CHIMICI e GEOMETRIA MOLECOLARE

Chimica Fisica Biologica

Struttura molecolare

Descrivere come dedurre la polarità delle molecole dalla geometria molecolare STRUTTURA ELETTRONICA DEGLI ATOMI

La chimica della vita: i composti organici. CARBOIDRATI LIPIDI PROTEINE ACIDI NUCLEICI (DNA, RNA)

1. L energia di legame. 2. I gas nobili e a regola dell ottetto. 3. Il legame covalente. 4. Il legame covalente dativo. 5. Il legame covalente polare

Tutti gli atomi (tranne i gas nobili) interagiscono tra di loro per formare molecole

1. L energia di legame

I NUMERI QUANTICI. per l = orbitale: s p d f

LEGAMI INTRAMOLECOLARI

numeri quantici orbitale spin

Struttura Elettronica degli Atomi Meccanica quantistica

Lezione 3 - Legame chimico

Teoria dell Orbitale Molecolare

Elementi di Chimica Organica

I numeri quantici. Numero quantico principale, n: numero intero Caratterizza l energia dell elettrone

I 4 NUMERI QUANTICI. I numeri quantici consentono di definire forma, dimensioni ed energia degli orbitali.

Teoria VB. ChimicaGenerale_lezione9

Gli elettroni della molecola sono quindi descritti da

GEOMETRIA MOLECOLARE

I legami chimici e le molecole inorganiche

Metodi spettroscopici per le Biotecnologie

Molecole. 04/09/13 3-MOL-0.doc 0

FORZE INTERMOLECOLARI

Forze intermolecolari

Comune ordine di riempimento degli orbitali di un atomo

ESERCIZI PREPARATORI PER IL COMPITO DI CHIMICA MODULO 2

Tavola periodica e previsione sul comportamento chimico degli elementi (numero di ossidazione)- orbitali ibridi

Transcript:

La forma delle molecole Geometria molecolare: disposizione relativa nello spazio degli atomi costituenti una molecola o un composto covalente a struttura infinita La geometria delle molecole si esprime in termini di angoli di legame, cioè degli angoli individuati dagli assi di due legami che hanno un atomo in comune angolo di legame HOH La geometria di una molecola o di un composto covalente a struttura infinita è determinata dal fatto di rendere massima l energia di legame A parità di forze attrattive, ciò si realizza quando si rendono minime le repulsioni elettrostatiche tra le varie coppie elettroniche e tra i nuclei Prof. A. Credi CHIMICA II-B-1

Geometria molecolare: il modello VSEPR Il modello delle repulsioni fra coppie elettroniche del guscio di valenza (VSEPR, Valence Shell Electron Pair Repulsion) permette di prevedere la disposizione spaziale degli atomi legati a un atomo centrale Tale disposizione dipende dal numero di coppie elettroniche esistenti nel guscio di valenza. Ciascuna coppia può essere localizzata fra due atomi (coppia di legame) o su un solo atomo (coppia solitaria). Si considera che le coppie elettroniche (di legame e solitarie) occupino degli spazi sferici intorno al nucleo (sfere elettroniche) Secondo il modello VSEPR la molecola tende ad assumere una disposizione spaziale tale che le coppie elettroniche (di legame e solitarie, ossia le sfere elettroniche) si dispongano il più lontano possibile fra loro NOTA Il problema della determinazione della forma delle molecole si presenta per specie costituite da almeno 3 atomi. Le molecole biatomiche sono necessariamente lineari! Prof. A. Credi CHIMICA II-B-2

Geometria molecolare 1 Esaminiamo i casi più semplici, quelli in cui l atomo centrale è circondato solo da coppie elettroniche di legame che formano legami σ con atomi tutti uguali n. legami σ n. totale coppie el. esempio angoli di legame geometria 2 2 BeCl 2 180 lineare 3 3 BF 3 120 planare trigonale 4 4 CH 4 109.5 tetraedrica 5 5 PCl 5 90 e 120 bipiramidale trigonale 6 6 SF 6 90 ottaedrica Prof. A. Credi CHIMICA II-B-3

Geometria molecolare 2 Consideriamo ora i casi in cui l atomo centrale è circondato da coppie elettroniche di legame σ e coppie solitarie Per esaminare questi casi occorre sapere che le repulsioni che coinvolgono coppie solitarie sono maggiori di quelle che coinvolgono coppie di legame; esse variano nell ordine CS CS > CS CL > CL CL CS=coppia solitaria CL=coppia di legame Le coppie solitarie sono soggette all attrazione di un solo nucleo, quindi sono maggiormente concentrate sull atomo centrale rispetto a quelle di legame, maggiormente localizzate lungo l asse del legame ATTENZIONE La geometria della molecola è determinata dalla disposizione degli atomi e non delle coppie elettroniche! n. legami σ n. coppie solitarie n. totale coppie el. esempio geometria 3 1 4 NH 3 piramidale 2 2 4 H 2 O piegata Prof. A. Credi CHIMICA II-B-4

Repulsione delle coppie solitarie metano ammoniaca acqua (tetraedrica) (piramidale) (piegata) Prof. A. Credi CHIMICA II-B-5

VSEPR Tabella riassuntiva Numero di legami Numero di coppie solitarie Numero di sfere elettroniche Geometria molecolare Esempio Altri esempi lineare 180 planare triangolare 120 BeCl 2 HCN N 2 O BeF 3, CO 3 2 NO 3, SO 3 piegata <120 SnCl 2 NO 2 O 3 tetraedrica 109.5 BeF 4 2, BF 4 SiO 4 4, NH 4 PO 4 3, SO 4 2 ClO 4, XeO 4 piramidale trigonale <109.5 SnCl 3, H 3 O SO 3 2, IO 3 XeO 3 piegata <109.5 NH 2 BrF 2 ClO 2 Prof. A. Credi CHIMICA II-B-6

VSEPR Tabella riassuntiva Numero di legami Numero di coppie solitarie Numero di sfere elettroniche Geometria molecolare Esempio Altri esempi bipiramidale triangolare 90 120 SiF 5 SOF 4 IO 2 F 3 a sella <90 <120 PBr 4 IF 4 La coppia solitaria si dispone in posizione equatoriale a T <90 XeOF 2 lineare 180 ICl 2 XeF 2 ottaedrica 90 AlF 6 3, SiF 6 2 PF 6, IF 6 XeO 6 4 piramidale quadrata 90 TeCl 5 IF 5 XeOF 4 planare quadrata 90 IF 4 La seconda coppia solitaria si dispone in posizione trans rispetto alla prima Prof. A. Credi CHIMICA II-B-7

Geometria delle molecole poliatomiche e polarità Il momento dipolare totale di una molecola è dato dalla somma vettoriale dei momenti dipolari relativi a tutti i dipoli elettrici dovuti a legami covalenti o a coppie solitarie presenti nella molecola Ammoniaca Acqua Diossido di carbonio Tetracloruro di carbonio Una molecola poliatomica risulta apolare quando l atomo centrale è legato nello stesso modo ad atomi tutti uguali e non possiede coppie solitarie è molto simmetrica Prof. A. Credi CHIMICA II-B-8

Il ruolo delle coppie di legame π Le coppie elettroniche che formano i legami π si trovano nella direzione dei legami σ (in pratica occupano la medesima sfera elettronica) e quindi non contribuiscono a determinare la geometria della molecola, ma esercitano solo effetti secondari Rappresentazione della densità elettronica nel legame π Rappresentazione della densità elettronica nel legame σ Nel modello VSEPR la repulsione esercitata dai legami multipli è leggermente superiore a quella esercitata dai legami singoli H 116 H 122 C=O formaldeide Cl 111 Cl 124.5 C=O fosgene DOMANDA Quali variazioni nella geometria molecolare si verificano in seguito alla formazione di legami dativi (ad es. in F 3 B NH 3 )? Prof. A. Credi CHIMICA II-B-9

Teoria VB e geometria molecolare Secondo la teoria VB, la direzione in cui si forma il legame è quella che porta alla massima sovrapposizione fra gli orbitali atomici La massima stabilizzazione energetica dovuta al legame si ha quando l asse del legame (asse internucleare) coincide con l asse principale degli OA che si devono sovrapporre (ad es. orbitali p) ESEMPIO Molecola di BeCl 2 Be in stato di bivalenza (2s 1 2p 1 ) un legame BeCl è dato dalla sovrapposizione 2s(Be) 3p(Cl) un legame BeCl è dato dalla sovrapposizione 2p(Be) 3p(Cl) Ci si aspetta che i due legami BeCl siano diversi e che la geometria della molecola di BeCl 2 sia indefinita (l orbitale s ha simmetria sferica e quindi non ha una direzione preferenziale) In realtà la molecola BeCl 2 è lineare e i due legami BeCl sono identici Utilizzando gli OA originali non si riesce a spiegare né la geometria delle molecole poliatomiche, né l equivalenza dei legami Ammettiamo che i due elettroni di valenza del Berillio, quando formano i due legami a 180, non siano descritti da OA 2s e 2p, ma da due nuove funzioni d onda ottenute da una combinazione lineare degli OA 2s e 2p (orbitali atomici ibridi) Prof. A. Credi CHIMICA II-B-10

Orbitali atomici ibridi sp Ibridizzazione sp nel Berillio ψ 1 (sp) = ψ(2s) ψ(2p) ψ 1 (sp) = ψ(2s) ψ(2p) Superfici limite dei 2 OA ibridi sp OA in un atomo di Berillio ibridizzato sp Dalla combinazione di 1 OA 2s e 1 OA 2p si ottengono 2 orbitali ibridi sp, fortemente direzionali, orientati a 180. Vi sono inoltre altri due OA 2p non ibridizzati Prof. A. Credi CHIMICA II-B-11

Orbitali atomici ibridi sp 2 Ibridizzazione sp 2 nel Boro Superficie limite di un OA ibrido sp 2 OA in un atomo di Boro ibridizzato sp 2 Dalla combinazione di 1 OA 2s e 2 OA 2p si ottengono 3 orbitali ibridi sp 2, fortemente direzionali, orientati a 120. Vi è inoltre un altro OA 2p non ibridizzato Prof. A. Credi CHIMICA II-B-12

Orbitali atomici ibridi sp 3 Ibridizzazione sp 3 nel Carbonio Dalla combinazione di 1 OA 2s e 3 OA 2p si ottengono 4 orbitali ibridi sp 3, fortemente direzionali, orientati verso i vertici di un tetraedro al cui centro si trova l atomo di C 4 OA sp 3 di C metano (CH 4 ) 4 OA 1s di H Prof. A. Credi CHIMICA II-B-13

Altri orbitali atomici ibridi Superfici limite dei 5 orbitali ibridi sp 3 d geometria bipiramidale triangolare Superfici limite dei 6 orbitali ibridi sp 3 d 2 geometria ottaedrica Prof. A. Credi CHIMICA II-B-14

Riassumendo La TEORIA DEL LEGAME DI VALENZA (VB) interpreta il legame chimico nelle molecole e nei composti covalenti a struttura infinita; i punti fondamentali sono: si considerano solo gli elettroni più esterni (quelli di valenza) ogni legame si forma dalla messa in comune di una coppia di elettroni da parte dei due atomi (gli elettroni possono anche provenire entrambi dallo stesso atomo, nel caso del legame covalente dativo) le coppie di elettroni di legame sono localizzate tra i due atomi interessati dal legame esistono legami di tipo σ e legami di tipo π la geometria delle molecole si può prevedere con il modello VSEPR o mediante l introduzione degli orbitali atomici ibridi La teoria VB si trova però in difficoltà nel descrivere molecole in cui le coppie di elettroni non si comportano come se fossero localizzate fra i vari atomi (artificio della risonanza) nello spiegare le proprietà magnetiche di molte molecole semplici (ad es. O 2, v. foto a lato) nel descrivere gli stati eccitati delle molecole, quindi nel interpretare le proprietà spettroscopiche Prof. A. Credi CHIMICA II-B-15

Teoria degli orbitali molecolari La teoria degli orbitali molecolari (Molecular Orbitals, MO) considera la molecola come un insieme di nuclei e di elettroni e, valutando le loro reciproche interazioni, determina le funzioni d onda Ψ che descrivono gli elettroni nella molecola in modo analogo a quello usato per individuare le ψ che descrivono gli elettroni negli atomi isolati Secondo la teoria MO, tutti gli elettroni della molecola risentono dell attrazione di tutti i nuclei, che si considerano fissi nelle loro posizioni di equilibrio (approssimazione di Born-Oppenheimer) Gli elettroni di una molecola vengono descritti da funzioni d onda dette orbitali molecolari le cui superfici limite si estendono su tutta la molecola Le superfici limite degli orbitali molecolari sono sempre policentriche, abbracciando tutti i nuclei della molecola, a differenza di quelle degli OA che sono monocentriche, ovvero riferite a un solo nucleo Gli elettroni sono, almeno in linea di principio, delocalizzati su tutta la molecola; secondo questo modello ciascun elettrone contribuisce a tenere insieme tutti i nuclei della molecola Prof. A. Credi CHIMICA II-B-16

Orbitali molecolari monoelettronici Ogni elettrone di una molecola è descritto da una funzione d onda Ψ (orbitale molecolare monoelettronico) tale che il suo quadrato rappresenti la probabilità di trovare l elettrone nell intorno del punto considerato Ciascun orbitale monoelettronico descrive un solo elettrone che risente dell attrazione di tutti i nuclei della molecola e delle repulsioni di tutti gli altri elettroni, mediate nel tempo Come per gli OA, ogni funzione d onda molecolare Ψ è definita da una terna di numeri quantici e a ciascun orbitale molecolare corrisponde un valore di energia La funzione d onda complessiva che descrive l insieme di tutti gli n elettroni della molecola è data dal prodotto delle funzioni d onda monoelettroniche relative ai singoli elettroni Ψ TOT = Ψ 1 Ψ 2 Ψ 3 Ψ 4 Ψ n = ΠΨ i L energia elettronica totale della molecola è data dalla somma delle energie dei singoli orbitali occupati, più o meno un termine correttivo R che tiene conto delle repulsioni istantanee degli elettroni (analogia con gli atomi polielettronici) E TOT = E 1 E 2 E 3 E 4 E n ± R = Σ E i ± R Prof. A. Credi CHIMICA II-B-17

Orbitali molecolari monoelettronici Per ogni molecola si ottiene una serie infinita di orbitali molecolari monoelettronici, ad energia crescente, da cui si può ricavare la configurazione elettronica fondamentale e le varie configurazioni elettroniche eccitate La configurazione elettronica fondamentale si costruisce seguendo le regole dell Aufbau già viste per gli atomi polielettronici, ossia distribuendo gli elettroni negli orbitali molecolari in ordine di energia crescente, nel rispetto del principio di Pauli e della regola di Hund (per le configurazioni eccitate, invece, occorre rispettare solo il principio di esclusione di Pauli) La molecola più semplice è quella di H 2, costituita da un elettrone sottoposto all azione di due protoni posti ad una certa distanza l uno dall altro. In questo caso si può risolvere l equazione di Schrödinger in modo rigoroso e trovare le funzioni orbitali e i valori delle energie, come per l atomo di idrogeno e gli ioni idrogenoidi In tutti gli altri casi (sistemi a più elettroni) non è possibile risolvere l equazione d onda; bisogna quindi ricorrere a metodi approssimati che tengano conto in qualche modo delle interazioni interelettroniche Prof. A. Credi CHIMICA II-B-18

Combinazione lineare di orbitali atomici (LCAO) Il metodo della combinazione lineare di orbitali atomici (Linear Combination of Atomic Orbitals, LCAO) consiste nel ricavare le funzioni d onda monoelettroniche Ψ di una molecola combinando linearmente le funzioni d onda ψ degli atomi che formano la molecola Nel caso di una molecola biatomica AB si ottiene Ψ' AB = c' A ψ A c' B ψ B Ψ" AB = c" A ψ A c" B ψ B c' A, c' B, c" A e c" B : coefficienti costanti che determinano il contributo dei singoli OA all OM: c' A = c' B e c" A = c" B quando A = B c' A c' B e c" A c" B quando A B Dalla combinazione di due orbitali atomici si ottengono sempre due orbitali molecolari. Dalla combinazione di n OA si ottengono n OM, i cui livelli energetici possono essere tutti distinti o anche in parte coincidenti (orbitali degeneri) Ogni elettrone di una molecola viene descritto da una funzione d onda del tipo Ψ = Σ c i ψ i Prof. A. Credi CHIMICA II-B-19

Combinazione lineare di orbitali atomici (LCAO) Es. funzioni 1s di due atomi di H ψ ψ A(1s) ψ ψ B(1s) A B Molecola di H 2 : formazione dell orbitale molecolare di legame per addizione (interferenza costruttiva) di orbitali atomici Ψ ψ A(1s) A B ψ A(1s) ψ B(1s) ψ B(1s) Ψ = ψ A(1s) ψ B(1s) Ψ 2 Ψ 2 = (ψ A(1s) ψ B(1s) ) 2 = A B = ψ A(1s)2 ψ B(1s)2 2ψ A(1s) ψ B(1s) Prof. A. Credi CHIMICA II-B-20

Combinazione lineare di orbitali atomici (LCAO) Molecola di H 2 : formazione dell orbitale molecolare Ψ di antilegame per sottrazione ψ A(1s) (interferenza distruttiva) di orbitali atomici A B ψ A(1s) ψ B(1s) ψ B(1s) Ψ* = ψ A(1s) ψ B(1s) Ψ 2 Ψ* 2 = (ψ A(1s) ψ B(1s) ) 2 = A B = ψ A(1s)2 ψ B(1s)2 2ψ A(1s) ψ B(1s) Prof. A. Credi CHIMICA II-B-21

Orbitali molecolari di legame e di antilegame Ψ* OM di antilegame ψ A(1s) ψ B(1s) Ψ OM di legame ψ A(1s) ψ B(1s) Energia ψ A ψ B Energia potenziale in funzione della distanza interatomica R per i due OM di legame (ψ A ψ B ) e di antilegame (ψ A ψ B ) R L E L ψ A ψ B R AB Prof. A. Credi CHIMICA II-B-22

Orbitali molecolari nella molecola H 2 OM di antilegame σ* 1s Energia OM di antilegame ψ A ψ B Energia OM di legame ψ A ψ B R AB OA 1s A OA 1s B σ 1s OM di legame Energia potenziale in funzione della distanza interatomica Livelli energetici relativi agli orbitali atomici 1s e agli orbitali molecolari di legame (σ 1s ) e di antilegame (σ* 1s ) quando i due atomi si trovano alla distanza di equilibrio Prof. A. Credi CHIMICA II-B-23

Metodo LCAO Criteri generali Affinché due o più orbitali atomici si possano combinare linearmente fra loro per formare un orbitale molecolare devono essere rispettate le seguenti condizioni: 1) gli orbitali atomici devono avere energie molto simili 2) gli orbitali atomici devono sovrapporsi il più possibile alla distanza di legame (criterio della massima sovrapposizione) 3) gli orbitali atomici devono avere la stessa simmetria rispetto all asse internucleare Prof. A. Credi CHIMICA II-B-24

LCAO e simmetria degli orbitali atomici s p z p x p y s d xy p y d x 2 y 2 Esempi di sovrapposizioni di OA nulle per ragioni di simmetria Prof. A. Credi CHIMICA II-B-25

Schema di formazione di orbitali molecolari 1s 1s ψ A ψ B σ* 1s 2p y 2p y ψ A ψ B π* 2p y A B ψ A ψ B σ 1s ψ A ψ B π 2p x z ψ A ψ B 2p z 2p z ψ A ψ B σ* 2p σ 2p 2p x 2p x ψ A ψ B ψ A ψ B π* 2p π 2p Superfici limite degli OM ottenuti dalla combinazione lineare di OA per una molecola biatomica omonucleare Prof. A. Credi CHIMICA II-B-26

Numero quantico λ Il numero quantico λ definisce la componente del momento angolare orbitale dell elettrone lungo l asse di legame della molecola biatomica h (m.a.o.) z = λ 2π λ = 0, ±1, ±2, λ è per gli orbitali molecolari l equivalente di m l per l orbitali atomici Nell atomo, a causa della simmetria sferica, gli orbitali con lo stesso m.a.o. sono degeneri. Nelle molecole tali situazioni non sono più tutte degeneri, ma lo sono soltanto quelle che hanno lo stesso valore assoluto della componente del m.a.o. lungo l asse di legame, (m.a.o.) z Ad ogni valore assoluto del numero quantico λ corrisponde un tipo di orbitale molecolare, ad energia diversa, indicato con le lettere greche σ (s), π (p), δ (d) λ = 0 OM di tipo σ λ = 1 OM di tipo π λ = 2 OM di tipo δ Gli OM di tipo σ sono non degeneri, mentre tutti gli altri (π, δ) sono 2 volte degeneri, poiché la componente (m.a.o.) z può essere diretta in un senso o nel senso opposto Prof. A. Credi CHIMICA II-B-27

Numero quantico λ Secondo il metodo LCAO, gli orbitali atomici che si combinano per dare un certo orbitale molecolare devono avere simmetria opportuna Nel caso di molecole biatomiche, ciò si verifica quando gli OA di origine hanno lo stesso valore di m l m l orbitali atomici λ orbitali molecolari 0 s, p z, d z 2 0 σ ±1 p x, p y, d xz, d yz ±1 π ±2 d xy, d x 2 y 2 ±2 δ Per determinare i valori di λ degli orbitali molecolari ottenuti basta considerare i valori di ml degli orbitali atomici che si combinano m l λ Prof. A. Credi CHIMICA II-B-28