Competenze. Riconoscere che una calamita esercita una forza su una seconda calamita. Riconoscere che l ago di una bussola ruota in direzione Sud-Nord.

Documenti analoghi
PROGRAMMAZIONE DISCIPLINARE E ORGANIZZAZIONE DEI CONTENUTI Anno scolastico 2015 / 16

Istituto Superiore Vincenzo Cardarelli Istituto Tecnico per Geometri Liceo Artistico A.S

Liceo Scientifico Leonardo da Vinci Di Vairano Patenora (CE) Anno scolastico 2015/2016 Programmazione di Fisica Classe 5 D

PROGRAMMA PREVENTIVO PREMESSA DISCIPLINARE

FISICA E LABORATORIO

Liceo Scientifico Statale A. Volta, Torino Anno scolastico 2015 / 2016

quale agisce una forza e viceversa. situazioni. applicate a due corpi che interagiscono. Determinare la forza centripeta di un

LICEO STATALE TERESA CICERI COMO 11 settembre 2012 PROGRAMMAZIONE DISCIPLINARE DI FISICA A. S. 2012/2013

CLASSE 5 A L.S.A. ISTITUTO D ISTRUZIONE SUPERIORE STATALE G. CIGNA ANNO SCOL: 2015/2016 PROGRAMMAZIONE ANNUALE DI FISICA. Docente: Prof.

Indice PREFAZIONE. Capitolo 5 LE LEGGI DEL MOTO DI NEWTON La terza legge di Newton 58

PROGRAMMA SVOLTO. a.s. 2012/2013

I.I.S. N. BOBBIO DI CARIGNANO - PROGRAMMAZIONE PER L A. S

I.S.I.S. Zenale e Butinone di Treviglio Dipartimento di Scienze integrate anno scolastico 2013/14

PROGRAMMAZIONE ANNUALE

INDICE CARICA ELETTRICA E LEGGE DI COULOMB 591 ENERGIA POTENZIALE E POTENZIALI ELETTRICI 663 CAMPO ELETTRICO 613 PROPRIETÀ ELETTRICHE DELLA MATERIA 93

ANNO SCOLASTICO 2014/2015 I.I.S. ITCG L. EINAUDI SEZ.ASSOCIATA LICEO SCIENTIFICO G. BRUNO PROGRAMMA DI FISICA. CLASSE: V A Corso Ordinario

SCIENZE INTEGRATE FISICA

Liceo Marie Curie (Meda) Scientifico Classico Linguistico

PIANO DI LAVORO A.S. 2013/2014

Dipartimento di Fisica Programmazione classi seconde Anno scolastico

PIANO DI LAVORO DEI DOCENTI

LICEO SCIENTIFICO " L. DA VINCI " Reggio Calabria PROGRAMMA di FISICA Classe II G Anno scolastico 2014/15 Docente: Bagnato Maria

PROGRAMMAZIONE ANNUALE

STRUTTURA UDA U.D.A. 2. Classe III A PRESENTAZIONE

Definire la potenza e ricordare l unità di misura della potenza. Definire l energia e la sua unità di misura. Enunciare il teorema delle forze vive

CORSO DI SCIENZE E TECNOLOGIE APPLICATE PROGRAMMAZIONE DIDATTICA DI ELETTRONICA A.S CLASSE III ELN

LICEO STATALE A.VOLTA COLLE DI VAL D ELSA PROGRAMMA DI FISICA SVOLTO NELLA CLASSE VA ANNO SCOLASTICO 2014/2015

ISTITUTO ISTRUZIONE SUPERIORE Federico II di Svevia Indirizzi: Liceo Scientifico Classico Linguistico Artistico e Scienze Applicate

Lezione 18. Magnetismo

PROGRAMMAZIONE DIDATTICA

STRUTTURA UDA U.D.A. 4. Classe III A PRESENTAZIONE

Programmazione Modulare

LICEO CLASSICO C. CAVOUR DISCIPLINA : FISICA PROGRAMMAZIONE DIDATTICA ED EDUCATIVA

Da Newton a Planck. La struttura dell atomo. Da Newton a Planck. Da Newton a Planck. Meccanica classica (Newton): insieme

PROGRAMMAZIONE DI FISICA

I.I.S. "PAOLO FRISI"

Indirizzo odontotecnico a.s. 2015/2016

Fisica II - CdL Chimica. La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche

CLASSE: 1^ CAT. E 1^ GRA

SCUOLA PRIMARIA CURRICOLO DI SCIENZE CLASSE PRIMA. INDICATORI COMPETENZE ABILITA CONOSCENZE 1. Esplorare e descrivere oggetti e materiali

I.I.S Niccolò Machiavelli Pioltello

Competenze Abilità Conoscenze Tempi Leggere, comprendere e interpretare un testo scritto delle varie tipologie previste anche in contesti non noti.

Liceo Scientifico Amaldi. Piano di lavoro a.s Insegnamento: Fisica Classe quarta Docente: prof. Giampaolo Noris

MAPPA OPERATIVA PER U.A. DISCIPLINARI. Scuola Secondaria di I grado

STRUTTURA UDA A PRESENTAZIONE. Alunni della classe quarta (secondo biennio) del settore Manutenzione e Assistenza Tecnica. U.D.A. 1.

ISIS: G. Tassinari Pozzuoli

PIANO DI LAVORO ANNUALE DELLA DISCIPLINA ELETTROTECNICA ED ELETTRONICA. Classe 4ATI A.S. 2013/2014

TORINO PIANO DI LAVORO DI MATEMATICA

Liceo Tecnologico. Indirizzo Elettrico Elettronico. Indicazioni nazionali per Piani di Studi Personalizzati

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE

Classificazione dei Sensori. (raccolta di lucidi)

PROGRAMMAZIONE FISICA SECONDO BIENNIO E ULTIMO ANNO

I poli magnetici isolati non esistono

LABORATORIO DI INFORMATICA

Istituto Tecnico Commerciale Statale e per Geometri E. Fermi Pontedera (Pi)

RELAZIONE FINALE DEL DOCENTE PIETROBELLI LUCA. Materia ELETTROTECNICA ED ELETTRONICA Classe 5 AES Anno Scolastico

OBIETTIVI DI APPRENDIMENTO (AL TERMINE DELLA CLASSE PRIMA DELLA SCUOLA PRIMARIA) TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE SCIENZE

Disciplina: SCIENZE MATEMATICHE UNITÀ DI APPRENDIMENTO 1

Libri di testo adottati: Elettrotecnica generale HOEPLI di Gaetano Conte;

LICEO SCIENTIFICO STATALE G. D. CASSINI

QUADRO COMPETENZE OBBLIGO: PERITI AZ.LI CORR.TI LINGUE ESTERE/TURISTICO

FONDAZIONE MALAVASI ITTL

SCUOLA SECONDARIA DI I GRADO

ISTITUTO STATALE DI ISTRUZIONE SUPERIORE EDITH STEIN.

PIANO DI LAVORO ANNUALE DELLA DISCIPLINA Diritto

LINGUAGGI, CREATIVITA, ESPRESSIONE TECNOLOGIA - INFORMATICA

PROGRAMMAZIONE DISCIPLINARE ISTITUTO TECNICO PER IL TURISMO SCIENZE INTEGRATE FISICA CLASSE PRIMA

Fisica Generale II Facoltà di Ingegneria. a.a. 2013/2014 Prof. Luigi Renna Programma dettagliato

PROGRAMMAZIONE DIDATTICA DISCIPLINARE

TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA PRIMARIA

PROGRAMMAZIONE PER MATERIE SCIENZE UMANE E PSICOLOGIA A. S

Istituto Superiore Cigna Baruffi Garelli, MONDOVI. PROGRAMMA SVOLTO DI FISICA - CLASSE 2^ A EE - Anno scolastico 2014/15

I.P.S.S.S E. DE AMICIS - ROMA

ANO DI LAVORO ANNUALE DELLA DISCIPLINA ELETTROTECNICA ED ELETTRONICA

Programmazione Annuale LICEO ECONOMICO

Mete e coerenze formative. Dalla scuola dell infanzia al biennio della scuola secondaria di II grado

Programmazione annuale docente classi 2^A AM 2^B AM 2^C AM

Conoscenze e abilità che devono accompagnare gli studenti lungo tutto il quinquennio di fisica

Anno Scolastico 2011/2012 RELAZIONE FINALE DEL DOCENTE

PRIMO BIENNIO CLASSE SECONDA - ITALIANO

Piano di Lavoro. Di Matematica. Secondo Biennio

PIANO di LAVORO A. S. 2013/ 2014

PIANO DI LAVORO (a.s. 2015/2016)

LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA

PROGRAMMAZIONE DIDATTICA

LICEO SCIENTIFICO STATALE "G.B.QUADRI" VICENZA DOCUMENTO DEL CONSIGLIO DI CLASSE

Istituto Tecnico Commerciale Statale e per Geometri E. Fermi Pontedera (Pi)

LA FISICA IN LABORATORIO

La pista del mio studio Riflettiamo sulla pista. Guida per l insegnante

May 5, Fisica Quantistica. Monica Sambo. Sommario

Istituto Tecnico Commerciale Statale e per Geometri E. Fermi Pontedera (Pi)

Piano di Lavoro. di STA (Scienze e Tecnologie Applicate) Primo Biennio

SCIENZE E TECNOLOGIA

CLASSE PRIMA LICEO LINGUISTICO

C3 indirizzo Elettronica ed Elettrotecnica Profilo

Liceo Linguistico I.F.R.S. Marcelline. Curriculum di Matematica

Programmazione didattica di Matematica a. s. 2015/2016 IV I

isolanti e conduttori

ISTITUTO STATALE D ISTRUZIONE SUPERIORE Vincenzo Manzini

COORDINAMENTO PER MATERIE SETTEMBRE 2013 MATERIA DI NUOVA INTRODUZIONE PER EFFETTO DELLA RIFORMA

Transcript:

Ist.Magistrale G. Comi Tricase ( LE Allegata al verbale del Consiglio di classe del 19/10/2015 PROGRAMMAZIONE DISCIPLINARE della CLASSE 5 AA Anno scolastico 2015/2016 MATERIA Fisica DOCENTE Nicolì Pasquale 1. Fenomeni magnetici fondamentali Osservare e Riconoscere che una calamita esercita una forza su una seconda calamita. Riconoscere che l ago di una bussola ruota in direzione Sud-Nord. Definire i poli magnetici. Esporre il concetto di campo magnetico. Definire il campo magnetico terrestre. Fare esperienza e Formalizzare un Creare piccoli esperimenti di attrazione, o repulsione, magnetica. Visualizzare il campo magnetico con limatura di ferro. Ragionare sui legami tra fenomeni elettrici e magnetici. Analizzare l interazione tra due conduttori percorsi da corrente. Interrogarsi su come possiamo definire e misurare il valore del campo magnetico. Studiare il campo magnetico generato da un filo, una spira e un solenoide. Formalizzare il concetto di 1 Analizzare le forze di interazione tra poli magnetici. Mettere a confronto campo elettrico e campo magnetico. Analizzare il campo magnetico prodotto da un filo percorso da corrente. Descrivere l esperienza di Faraday. Formulare la legge di Ampère. Rappresentare matematicamente la forza magnetica su un filo percorso da corrente. Descrivere il funzionamento del motore elettrico e degli strumenti di misura di correnti e differenze di potenziale. Utilizzare le relazioni appropriate alla risoluzione dei singoli problemi.

momento della forza magnetica su una spira. Comprendere e Valutare l impatto del motore elettrico in tutte le diverse situazioni della vita reale. 2. Il campo magnetico Osservare e Analizzare le proprietà magnetiche dei materiali. Distinguere le sostanze ferro, para e dia magnetiche. Fare esperienza e Formalizzare un Interrogarsi sul perché un filo percorso da corrente generi un campo magnetico e risenta dell effetto di un campo magnetico esterno. Analizzare il moto di una carica all interno di un campo magnetico e descrivere le applicazioni sperimentali che ne conseguono. Riconoscere che i materiali ferromagnetici possono essere smagnetizzati. Formalizzare il concetto di flusso del campo magnetico. Definire la circuitazione del campo magnetico. Formalizzare il concetto di permeabilità magnetica relativa. Formalizzare le equazioni di Maxwell per i campi statici. Descrivere la forza di Lorentz. Calcolare il raggio e il periodo del moto circolare di una carica che si muove perpendicolar-mente a un campo magnetico uniforme. Interpretare l effetto Hall. Descrivere il funzionamento dello spettrometro di massa. Definire la temperatura di Curie. Esporre e dimostrare il teorema di Gauss per il magnetismo. Esporre il teorema di Ampère e indicarne le implicazioni (il campo magnetico non è conservativo). Analizzare il ciclo di isteresi magnetica. Definire la magnetizzazione permanente. 2

Comprendere e Riconoscere che le sostanze magnetizzate possono conservare una magnetizzazione residua. Descrivere come la magnetizzazione residua possa essere utilizzata nella realizzazione di memorie magnetiche digitali. Discutere l importanza e l utilizzo di un elettromagnete. 3. L induzione elettromagneti ca Osservare e Fare esperienza e Con un piccolo esperimento mostrare che il movimento di una calamita all interno di un circuito (in assenza di pile o batterie) determina un passaggio di corrente. Analizzare il meccanismo che porta alla generazione di una corrente indotta. Capire qual è il verso della corrente indotta. Analizzare i fenomeni dell autoinduzione e della mutua induzione. Analizzare il funzionamento di un alternatore e presentare i circuiti in corrente alternata. Definire il fenomeno dell induzione elettromagnetica. Formulare e dimostrare la legge di Faraday- Neumann. Formulare la legge di Lenz. Definire le correnti di Foucault. Definire i coefficienti di auto e mutua induzione. Individuare i valori efficaci di corrente alternata e tensione alternata. 4. Le equazioni di Maxwell e le Formalizzare un Comprendere e Osservare e Rappresentare i circuiti in corrente alternata e discuterne il bilancio energetico. Cosa genera un campo elettrico e cosa genera un campo magnetico. Risolvere i circuiti in corrente alternata. Utilizzare le relazioni matematiche individuate per risolvere i problemi relativi a ogni singola situazione descritta. Discutere l impiego e l utilizzo di acceleratori lineari e del ciclotrone. Esporre il concetto di campo elettrico indotto. 3

onde elettromagnetiche Fare esperienza e Formalizzare un Analizzare e calcolare la circuitazione del campo elettrico indotto. Formulare l espressione matematica relativa alla circuitazione del campo magnetico secondo Maxwell. Le equazioni di Maxwell permet-tono di derivare tutte le proprietà dell elettricità, del magnetismo e dell elettroma-gnetismo. L oscillazione di una carica tra due punti genera un onda elettromagnetica. Analizzare la propagazione nel tempo di un onda elettromagnetica. La luce è una particolare onda elettromagnetica. L insieme delle frequenze delle onde elettromagnetiche si chiama spettro elettromagnetico. Analizzare le diverse parti dello spettro elettromagnetico e le caratteristiche delle onde che lo compongono. Capire se si può definire un potenziale elettrico per il campo elettrico indotto. Individuare cosa rappresenta la corrente di spostamento. Esporre e discute le equazioni di Maxwell nel caso statico e nel caso generale. Definire le caratteristiche di un onda elettromagnetica e analizzarne la propagazione. Definire il profilo spaziale di un onda elettromagnetica piana. Descrivere il fenomeno della polarizzazione e enunciare la legge di Malus. Enunciare il principio di Huygens e dimostrare la validità delle leggi della riflessione e della rifrazione secondo il modello ondulatorio della luce. Mettere a confronto il fenomeno della dispersione della luce secondo Newton e secondo Maxwell. Affrontare corret-tamente la soluzione dei problemi, anche solo teorici, proposti. 5. Relatività dello spazio e del tempo Comprendere e Osservare e Dalla costanza della velocità della luce alla contraddizione tra meccanica ed elettromagnetismo. Dalla contraddizione tra meccanica ed elettromagnetismo al principio di relatività ristretta. Descrivere l utilizzo delle onde elettromagnetiche nel campo delle trasmissioni radio, televisive e nel settore della telefonia mobile. Descrivere e discutere l esperimento di Michelson-Morley. Formulare gli assiomi della relatività ristretta. Fare esperienza e Analizzare la relatività del concetto di simultaneità. Indagare su cosa significa confrontare tra loro due misure di tempo e due 4 Spiegare perché la durata di un fenomeno non è la stessa in tutti i sistemi di riferimento. Introdurre il concetto di intervallo di tempo proprio.

misure di lunghezza fatte in luoghi diversi. Analizzare la variazione, o meno, delle lunghezze in direzione parallela e perpendicolare al moto. Descrivere la contrazione delle lunghezze e definire la lunghezza propria. Riformulare le trasformazioni di Lorentz alla luce della teoria della relatività. 6. La relatività ristretta Formalizzare un Comprendere e Osservare e Fare esperienza e Un evento viene descritto dalla quaterna ordinata (t, x, y, z). Nella teoria della relatività ristretta hanno un significato fisico la lunghezza invariante e l intervallo di tempo invariante. Analizzare lo spaziotempo. Analizzare la composizione delle velocità alla luce della teoria della relatività. La massa totale di un sistema non si conserva. Analizzare la relazione massa-energia di Einstein. Mettere a confronto l effetto Doppler per il suono e l effetto Doppler per la luce. 5 Capire in che modo le teorie sulla relatività hanno influenzato il mondo scientifico. Definire la lunghezza invariante. Definire l intervallo invariante tra due eventi e discutere il segno di Δσ 2. Discutere la forma dell intervallo invariante per i diversi spazi geometrici. Dimostrare la composizione delle velocità. Formulare e discutere le espressioni dell energia totale, della massa e della quantità di moto in meccanica relativistica. Definire il quadri-vettore energia-quantità di moto. Indagare perché l effetto Doppler per la luce può dimostrare che le galassie si allontanano dalla Via Lattea.

Comprendere e Esperimenti sulla materializzazione o annichilazione delle particelle conferma che un corpo in quiete possiede una quantità di energia, detta energia di riposo. Descrivere, sulla base dell annichi-lazione di due particelle con emissione di energia, il funzionamento e l importanza di esami diagnostici, quali la PET. 7. La crisi della fisica classica Osservare e Fare esperienza e Formulare ipotesi esplicative utilizzando modelli, L assorbimento e l emissione di radiazioni da parte di un corpo nero dipende dalla sua temperatura. L elettromagnetismo classico prevede un irradiamento totale di valore infinito da parte di qualunque corpo nero e non è in grado di spiegare i risultati sperimentali di Lenard sull effetto fotoelettrico. Max Planck introduce l idea dello scambio di radiazione attraverso pacchetti di energia. L esperimento di Compton dimostra che la radiazione elettromagnetica è composta di fotoni che interagiscono con gli elettroni come singole particelle. Analizzare l esperimento di Millikan e discutere la quantizzazione della carica elettrica. Formulare il principio di esclusione di Pauli. Mettere a confronto il modello planetario dell atomo e il modello di 6 Illustrare la legge di Wien. Illustrare l ipotesi di Planck dei pacchetti di energia e come, secondo Einstein si spiegano le proprietà dell effetto fotoelettrico. Descrivere matematicamente l energia dei quanti del campo elettromagnetico. Calcolare l energia totale di un elettrone in un atomo di idrogeno. Esprimere e calcolare i livelli energetici di un elettrone nell atomo di idrogeno. Definire l energia di legame di un elettrone. Giustificare lo spettro dell atomo di idrogeno con il modello di Bohr. Analizzare l esperimento di Rutherford.

8. La fisica quantistica analogie e leggi. Bohr. Descrivere la tavola periodica degli elementi. Osservare e A seconda delle condizioni sperimentali la luce si presenta come onda o come particella. La teoria quantistica ammette due tipi di distribuzioni quantistiche: quella di Bose-Einstein e quella di Fermi-Dirac. Illustrare il dualismo onda-corpuscolo e formulare la relazione di de Broglie. Identificare le particelle che seguono la distribuzione statistica di Bose-Einstein e quelle che seguono la distribuzione statistica di Fermi-Dirac. Fare esperienza e Formulare ipotesi esplicative utilizzando modelli, analogie e leggi. Comprendere e Indagare se la misura di entità e fenomeni ha le stesse conseguenze sia a livello macroscopico che a livello microscopico. Analizzare il concetto di ampiezza di probabilità (o funzione d onda) e spiegare il principio di indeterminazione. Nel campo di forza coulombiano prodotto dal nucleo, gli elettroni possono percorrere orbite ellittiche. Analizzare il fenomeno dell emissione stimolata. Il legame covalente in cui gli elettroni appartengono non a un singolo atomo, ma all intera molecola richiede lo studio dell ampiezza di probabilità. Introdurre il concetto di banda di energia. Mettere a confronto il concetto di probabilità da ignoranza e quello di probabilità quantistica. Mettere a confronto la condizione di indefinito della fisica classica e la condizione di indefinito della teoria quantistica. 7 Illustrare le due forme del principio di indeterminazione di Heisenberg. Enunciare e discutere il principio di sovrapposizione delle funzioni d onda. Discutere sulla stabilità degli atomi. Introdurre lo spin dell elettrone. Identificare i numeri quantici che determinano l orbita ellittica e la sua orientazione. Descrivere il laser. Discutere il legame covalente degli elettroni dell atomo di idrogeno e estenderne le considerazioni al caso dei solidi. Definire la banda di valenza e la banda di conduzione. Discutere i limiti di applicabilità della fisica classica e moderna. Introdurre la logica a tre valori e discutere il paradosso di Schrodinger. Analizzare il funzionamento del diodo e del transistore e valutarne l utilizzo e l importanza nella realtà sociale e scientifica.

9. La fisica nucleare Osservare e Studiare la struttura dei nuclei. Individuare le particelle del nucleo e le loro caratteristiche. Fare esperienza e sperimentale, dove Analizzare le reazioni nucleari. Analizzare il motivo per cui i nucleoni riescono a stare all interno del nucleo. Definire il difetto di massa. La natura ondulatoria dei nuclei porta a definire gli stati energetici dei nuclei. Alcuni nuclei sono instabili e si trasformano in altri nuclei. Analizzare il fenomeno della creazione di particelle. Analizzare i fenomeni della fissione e della fusione nucleare. Descrivere le caratteristiche della forza nucleare. Mettere in rela-zione il difetto di massa e l energia di legame del nucleo. Descrivere il fenomeno della radioattività. Descrivere i diversi tipi di decadimento radioattivo. Formulare la legge del decadimento radioattivo. Definire l inte-razione debole. Descrivere il funzionamento delle centrali nucleari e dei reattori a fusione nucleare. Formulare ipotesi esplicative utilizzando modelli, analogie e leggi. Comprendere e Valutare le applicazioni in campo medico-sanitario e biologico dei radioisotopi. Discutere rischi e benefici della produzione di energia nucleare. 8

OBIETTIVI COGNITIVI Nel corso del triennio prosegue il processo di accumulo e comprensione delle conoscenze iniziato nel biennio, ma il processo deve avvenire su un quadro di fondo diverso che non può più essere solo quello di una acquisizione meccanica accompagnata da una certa abilità operativa, ma deve pervenire ad una diversa consapevolezza dei meccanismi e delle basi razionali della disciplina. Pertanto saranno perseguiti i seguenti obiettivi cognitivi generali: aumentare il grado di astrazione e di formalizzazione delle conoscenze acquisite; creare un modello logico e razionale nel quale inserire, anche storicamente, le conoscenze acquisite; saper applicare con consapevolezza e flessibilità i metodi e gli e fisici anche in contesti diversi da quelli di acquisizione; padroneggiare il linguaggio specifico della materia cogliendo affinità e differenze con quelli di altre discipline; affrontare situazioni problematiche di natura diversa avvalendosi di modelli matematici; riconoscere l ambito di validità delle leggi fisiche; distinguere la realtà fisica dai modelli costruiti per la sua interpretazione; saper analizzare criticamente un fenomeno riconoscendo le grandezze fisiche significative in gioco, i loro legami e relazioni, collegando razionalmente premesse e conseguenze; risolvere problemi reali scegliendo la più idonea tra diverse schematizzazioni; cogliere le relazioni tra lo sviluppo delle conoscenze fisiche e quello del contesto umano storico e tecnologico. METODI E SUPPORTI DIDATTICI Per raggiungere gli obiettivi previsti, e per diversificare ed aumentare i momenti e le occasioni di crescita formativa, nello sviluppo del dialogo educativo si utilizzeranno i seguenti metodi e strumenti: ipotetico-deduttivo e induttivo partendo, quando possibile, da situazioni reali che siano facilmente riscontrabili nel comune bagaglio di esperienza, cercando di coinvolgere in prima persona gli allievi nelle tematiche proposte; presentazione delle tematiche per problemi e partendo dall intuizione arrivare all astrazione e alla sistemazione razionale delle conoscenze; discussione guidata; risoluzione e puntuale correzione guidata di esercizi applicativi; libro di testo e sue integrazioni; attività di laboratorio; utilizzo degli ausili informatici ed audiovisivi a disposizione della scuola; lettura di articoli a carattere scientifico e sulla evoluzione storica della disciplina. Il docente si rende, inoltre, disponibile a collaborare, secondo le proprie competenze e nei limiti di tempo a disposizione, ai progetti di attività di approfondimento curriculari e/o extracurriculari programmate dal consiglio di classe e, in caso di necessità o di esigenze particolari, di porne in essere di nuove. VERIFICA-VALUTAZIONE-RECUPERO La verifica dei livelli di apprendimento raggiunti sarà effettuata attraverso colloqui orali, questionari a risposta multipla e/o aperta e/o vero-falso, relazioni, prove scritte "classiche".le prove saranno, possibilmente, tre per ogni quadrimestre. La valutazione sarà effettuata tenendo conto dei livelli di profitto raggiunti sia nell'apprendimento dei contenuti e del loro corretto utilizzo, sia nel raggiungimento degli obiettivi cognitivi e socio-affettivi e, più in generale, di tutti gli aspetti che rendono un allievo consapevole, produttivo e maturo e secondo la griglia approvata dal Collegio dei docenti, dal Dipartimento e dal Consiglio di classe. Per il recupero di eventuali situazioni di debito formativo, oltre alle attività programmate dal Consiglio di classe, si cercherà di porre in essere adeguate strategie in itinere. RAPPORTI SCUOLA-FAMIGLIA I rapporti scuola-famiglia si terranno nelle occasioni previste (ricevimento personale, ricevimento generale) e tramite comunicazioni scritte periodicamente inviate. Il docente si dichiara, comunque, disponibile ad affrontare eventuali particolari problemi anche in occasioni straordinarie ed in tempi diversi da quelli canonici. TRICASE, 19/10/2015 IL DOCENTE Prof. Pasquale Nicolì 9