Coppie di variabili aleatorie

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Coppie di variabili aleatorie"

Transcript

1 Coppie di variabili aleatorie 1 Coppie di variabili aleatorie Definizione: Si definisce vettore aleatorio la coppia (,) dove,, sono definite sullo stesso spazio campione : S R, : S R (, ) : S R Esempio: peso-altezza di una persona (, ) random vector 1

2 Variabili discrete { } (, ) ω / ( ω), ( ω) = x = = S = x = { ω / ( ω) } ω / ( ω) { } = S = x S = ( ) ω = ( ) ω = x 3 Esempio: S = {( T, T ),( C, C ),( C, T ),( T, C )} massa di probabilità congiunta massa di probabilità marginale 4

3 Il grafico nel lucido precedente è stato costruito in R con le seguenti istruzioni: > librar(scatterplot3d) > x<-matrix(0.5,,) > x [,1] [,] [1,] [,] > sd3.dat<-data.frame(columns=c(col(x)),rows=c(row(x)),value=c(x)) > scatterplot3d(sd3.dat,tpe='h',lwd=5,color='red',main='joint pdf', + x.ticklabs=seq(0,1,0.0),.ticklabs=seq(0,1,0.0)) > 5 { ( ) ( ) } ( ) { } { ( ) } ω S : ω x, ω = ω S : ω x ω S : ω (ω) = ω S (ω) = x { ω : ( ω), ( ω) } P S x = F, ( x, ) Funzione di ripartizione doppia 6 3

4 Torniamo all esempio del lancio delle due monete. Massa di probabilità Funzione di ripartizione Proprietà F ( +, + ) = 1 ( ) F, = 0 ( ) ( ) F, = F x, = 0 7 Il grafico nel lucido precedente è stato costruito con le seguenti istruzioni: > x<-c(0,0.5,1,1.01,1.5,) > =x > z<-matrix(1,length(x),length()) > fix(z) > persp(x=x,=,z,zlim=c(0,),ticktpe='detailed',theta=40,phi=0, + main='cdf') 8 4

5 9 { 1 <, 1 < } = (, ) (, ) (, ) (, ) P x x F x F x F x F x x1 x 10 5

6 Funzioni di ripartizione marginali { ω ( ω) } ω ( ω) { } P S : x = F ( x), P S : = F ( ) Definizione : Le v.a. e si dicono indipendenti se e solo se F, ( x, ) = F ( x) F ( ) x, R 11 Esercizio: In un lotto scelto casualmente di 1000 bulloni, sia il numero di bulloni che non soddisfano la specifica per la lunghezza e sia il numero di quelli che non soddisfano la specifica per diametro. Si assuma che la funzione di probabilità di massa congiunta di e di sia quella presente nella tabella. Calcolare ( = 0 = ) P ( > 0 1) P P ( 1) P ( > 0) > Si calcoli la probabilità che tutti i bulloni nel lotto soddisfino la specifica per la lunghezza. > Si calcoli la probabilità che tutti i bulloni nel lotto soddisfino la specifica per il 1 diametro. 6

7 Variabili continue { ω ω ω } f ( x, ) x = P S / ( ) ( x, x + x), ( ) (, + ) { ω / ( ω) (, )} { ω / ( ω) (, )} = P S x x + x S + { ω ( ω) ( ω) } =, P S : x, F ( x, ) Funzione di ripartizione doppia x F x? = f ( x f, ( s, ) t) d s dt ( ),, Qual è la relazione fra la funzione densità congiunta e la funzione di ripartizione? 13 Gaussiana bidimensionale standard 1 x + f ( x, ) = exp π 1 x 1 f ( x, ) = f ( x) f ( ) = exp exp π π x<-seq(-3,3,0.1) <-seq(-3,3,0.1) fun<-function(x,){(1/(*pi))*exp(-(x^+^)/)} z<-outer(x,,fun) output<-persp(x,,z,theta=60,phi=15,ticktpe = "detailed", main='cdf plot',expand=0.8) 14 7

8 Teorema : Due variabili aleatorie ass. continue sono indipendenti se e solo se f ( x, ) = f ( x) f ( ) In generale, le densità marginali possono essere calcolate come: f ( ) f ( s, ) ds f ( x) f ( x, t) dt = = Ogni curva ottenuta sulla superficie fissando un valore per x o per è ancora gaussiana. I grafici si riferiscono a f ( x, 1.5) f ( x, 0.5) 16 8

9 F Per la funzione di ripartizione congiunta > install.packages('mnormt'), ( x, ) x = f ( s, t) d s dt > x<-seq(-3,3,0.1) > <-x appp<-matrix(0, length(x), length(x)) > fun<-function(x,){pmnorm(c(x,),mu,sigma)} > for (i in 1:61) { for (j in 1:61) { appp[i,j]<-fun1(x[i],[j])}} >persp(x,,appp,zlab="f(x,)",ticktpe = "detailed", + main='gaussian cdf plot',expand=0.8, col=rainbow(0)) 17 B f ( x, ) d x d Selezionando opportune regioni nel dominio, si ottiene un volume. 18 9

10 [ ] f ( x, ) x P x < x + x, < + f ( x, ) ( x, ) F = x Assegnata la funzione di ripartizione, come si calcola la funzione densità? Abbiamo visto che: { 1 <, 1 < } = (, ) (, ) (, ) (, ) P x x F x F x F x F x [ ] f ( x, ) x P x < x + x, < + (, ) (, ) (, ) (, ) = F x + x + F x + x F x + F x ( +, + ) ( +, ) (, + ) (, ) F x x F x x F x F x =? x x, 0 ( +, + ) ( +, ) (, + ) (, ) F x x F x x F x F x lim =? x ( x, ) F = x 0 10

11 Poichè x x x 1 1 allora x x 1 1 Condizione di normalizzazione ( ) { } = x < = f ( x, ) d x d = 1 F?, (, ) d d x P x f x x ( ) { } F P, f ( x, ) d x d ( x ) x = P{ x < x < } F, d d,, 1 1 = < = { } f ( x, ) d x d = P x < x, < Trasformazioni lineari di var. gaussiane sono ancora gaussiane, ossia µ σ µ σ se N(, ) allora = a + b N( a + b, a ) Pertanto i modelli di regressione lineare vengono molto usati in presenza di popolazioni gaussiane. Quando la relazione non è lineare, allora la funzione densità di probabilità diventa: f per ( x, ) R,(, ) R, con parame ( x µ ) ρ ( x µ )( µ ) ( µ ) 1 1 ( x, ) = exp + πσ σ 1 ρ (1 ρ ) σ σ σ σ µ µ tri σ > 0, σ > 0 e ρ (-1,1). [ ] [ ] [ ] [ ] dove µ = E, µ = E, σ = Var, σ = Var, ρ ( 1,1) Teorema : ρ = 0 e indipendenti 11

12 Gaussiana bidimensionale Un diverso modo di scrivere la densità è quello di usare la matrice di covarianza: ( x µ ) ρ ( x µ )( µ ) ( µ ) 1 + = Σ (1 ρ ) σ σ σ σ dove x µ σ cov(,) x =, µ = Σ = µ cov (, ) σ T 1 ( x µ ) ( x µ ) Notazione : La f for ( x, ) R ( x, ) = funzione densità di probabilità di una ( π ) 1 n / Σ,( µ, µ ) R 1/ 1 exp, con parametriσ T 1 [( x µ ) Σ ( x µ )] > 0, σ normale bivariata è : > 0 e ρ (-1,1). 4 1

13 Sezioni della gaussiana bidimensionale sono (contour()) 5 Esercizio : Consideriamo le v.a. e con densità congiunta 1 1+ x f(, )( x, ) = exp x 0, 0 3 1/ t x ( / t 1 x ) / x e e 1/ e F(, )( x, ) = f(, )( s, t)d s dt dt e 1 0 = 0 = 0 t 1 + x x 1/ F ( x) = lim F(, )( x, ) = F 1 + ( ) = lim F(, )( x, ) = e x x Istruzioni in R per il grafico della distribuzione congiunta: > x<-seq(0,15,0.5) > <-seq(0,4,0.5) > fun<-function(x,){exp(-1/)*(1-(exp(-x/)/(1+x)))} > z<-outer(x,,fun) > output<-persp(x,,z,theta=60,phi=15,ticktpe = "detailed", + main='cdf plot',expand=0.3,zlim=range(0,1)) > lines (trans3d(x, =0, z=x/(1+x), pmat = output), col = 'red',lwd=4) > lines (trans3d(x=15,, z=exp(-1/), pmat = output), col = 'green',lwd=4) 6 13

14 7 Mediante derivazione si ha: 1 1 f ( x) = f ( ) = e (1 + x) 1/ 8 14

15 Istruzioni in R per il grafico precedente: > x<-seq(0,,0.1) > <-seq(0,1,0.05) > fun<-function(x,){(1/^3)*exp(-(1+x)/)} > z<-outer(x,,fun) > output<-persp(x,,z,theta=40,phi=0,ticktpe = "detailed", + main='pdf plot') > lines (trans3d(x, =0, z=1/(1+x^), pmat = output), col = 'red',lwd=4) > lines (trans3d(x=,, z=exp(-1/)/^, pmat = output), + col = 'green',lwd=4) 9 Domini non rettangolari La probabilità che la coppia (,) appartenga al dominio D si può esprimere come somma (al limite, come integrale) delle probabilità che la coppia (,) appartenga a rettangolini di area infinitesima che ricoprono il dominio D

16 Sia (,) una coppia di variabili aleatorie con pdf congiunta f (x, ): calcoliamo P( ). Il dominio D da considerare in questo caso è quello definito da {(, ) : } D = x R x Tale dominio si può riguardare come normale sia rispetto all asse x che all asse, 31 Esercizio : Siano T e T tempi di vita di due sistemi indipendenti con tassi 1 costanti λ e λ. Calcolare P( T T ). 1 1 t 1 = ( 1 ) 1 1 P( T T ) f t, t dt dt t1 t1 = f ( t ) f ( t )dt d t f ( t ) f ( t )dt = dt t1 = λ exp( λ t ) λ exp( λ t )dt dt [ ] = λ exp( λ t ) 1 exp( λ t ) dt λ = λ + λ

17 Esercizio : Calcolare P( ) quando e sono variabili aleatorie con densità congiunta e e x > > f ( x, ) = 0 altrove x x 0, 0 ( ) P( ) = f x, d x d = Una classe molto importante di trasformazioni: Somme di variabili aleatorie P( Z z) = P( + z) = f ( x, ) d x d z x {( x, ) : x+ z} = f ( x, ) d dx Se le v.a. sono indipendenti allora f ( x, ) = f ( x) f ( ) z x = f ( x) f ( ) d dx = f ( ) ( ) x F z x dx z x poni GZ ( z) = f ( x) f ( ) d dx = t = + x z z f ( x) f ( t x) dt d x = f ( t x) f ( x)d x dt 34 17

18 (font wikimedia) Spesso usate in operazioni di smoothing Convoluzione di una legge gaussiana con una esponenziale Convoluzione di una legge di tipo Heaviside con la bisettrice I e III quadrante. 35 Trasformazioni di variabili aleatorie = g( ) discreta a) g monotona = P(=x) 1/3 1/3 1/3 b) g non monotona P(=x) 1/3 1/3 1/3 = -1 5 P(=) 1/3 1/3 1/3 0 1 P(=) 1/3 /

19 assolutamente continua a) g monotona 1 1 ( ) ( ) ( ( ) ) ( = = = ( )) = ( ( )) F P P g P g F g d f F d ( ) = ( ) µ σ = + Esempio: Provare che se N(, ) allora a b N(?,?) 37 Distribuzione Lognormale Se N( µ, σ ), allora = exp( ) ha distribuzion e lognormale. La distribuzione ha due parametri: µ, σ Usata per modellare il tempo di vita di unità i cui guasti avvengono per usura o per stress. (sistemi meccanici) La funzione di ripartizione è: 1 1 ln x µ + Erf σ erf function 38 19

20 La Erf function è anche detta funzione errore, poichè contribuisce alla funzione di ripartizione della distribuzione gaussiana. x 1 1 x Erf ( x) = exp ( t ) d t Φ ( x) = + Erf π 0 Si può costruire il probabilit plotting paper usando la seguente trasformazione: 1 µ Erfinv Φ ( x) 1 = ln x σ σ 39 Distribuzione di Gumbel Altra legge molto usata in teoria dell affidabilità è ( ) T = µ β log λ con Exp( λ) La v.a. così costruita prende il nome di v.a. di Gumbel (o dei valori estremi) = max o min di campioni casuali. Esercizio: Determinare la funzione densità della v.a. di Gumbel. In R la distribuzione di Gumbel è inserita tra le functions del pacchetto evd. µ location β scale > dgumbel(x,loc,scale) 40 0

21 Per il probabilit plotting paper si osservi che la funzione di ripartizione risulta: µ x F( x) = exp exp β Di conseguenza la trasformazione cercata è 1 µ 1 log log x F ( x ) = β β Il grafico è costruito su datiprimoesercizio.r 41 Distribuzione chi-quadrato b) Se la gnon è monotona Esercizio: Sia N(0,1). Si calcoli la pdf di = 0 < 0 F ( ) = P ( ) = P( ) = P( ) 0 1 x x = exp dx = exp dx π π 0 Pertanto la funzione densità risulta essere: f 1 ( ) = exp π > <-dchisq(x,1) 1

22 I gradi di libertà di una v.a. chi-quadrato possono assumere valori interi maggiori di 1. Trattandosi di una v.a. che assume valori solo positivi, i quantili non sono simmetrici rispetto all asse delle. Problema: etichettare gli estremi dell intervallo I tale che P( I) = 1 α 43 1 α?? α P χn χ α = 1 n,1 > qchisq(0.05,3) [1] α / α P χn χ α = n, > qchisq(0.975,3) [1]

23 Oltre alla convoluzione di due v.a., è possibile calcolare il rapporto di due variabili aleatorie. Ne segnaliamo due che useremo nel seguito: Distribuzione T-Student Siano Z N(0,1) e χn Chi( n) indip. La variabile aleatoria T n = Z χ / n n è detta variabile aleatoria T-student [ ] E T n [ ] Var T = 0, n n n =, n 3 n William Seal Gosset 45 Per n = 1, T Cauch T N(0,1) = N(0,1) Per n T N(0,1) Esercizio: Determinare il valore del quantile ( n n ) P t < T < t = t α, α /, α / 1 α n, / tale che 46 3

24 Bisogna determinare quel valore del range di T tale che n = 5 e α = 0.05 =.57 t10, α / t5, α / n = 10 e α = 0.15 > qt(0.975,5) [1] = t α / > qt(0.95,30) [1] > qt(0.95,50) [1] α > qt(0.95,10) [1] > qnorm(0.95,0,1) [1] Distribuzione F-fisher Se T è Tn -student, allora F = T ha legge di Fisher (1, n). Infatti T χ /1 / / n = Z 1 χn n χn Siano χm e χn due var. al. con legge chi-quadrato con gradi ( m n) ( χm ) ( χn ) di libertà rispettivamente m e n. La var. al. / m / / n ha legge di Fisher di gradi di libertà,. >df(x, m, n) Sintassi in R 48 4

25 Al variare di m Al variare di n 49 5

Teoria dei Fenomeni Aleatori AA 2012/13. Il Concetto di Distribuzione Condizionata ( )

Teoria dei Fenomeni Aleatori AA 2012/13. Il Concetto di Distribuzione Condizionata ( ) Il Concetto di Distribuzione Condizionata Se B è un evento, la probabilità di un evento A condizionata a B vale: ponendo: P A B = ( ) P A B P B A = { x} si giunge al concetto di distribuzione condizionata

Dettagli

Vettore (o matrice) casuale (o aleatorio): vettore (o matrice) i cui elementi sono variabili aleatorie

Vettore (o matrice) casuale (o aleatorio): vettore (o matrice) i cui elementi sono variabili aleatorie Variabili (vettori e matrici) casuali Variabile casuale (o aleatoria): Variabile che può assumere un insieme di valori ognuno con una certa probabilità La variabile aleatoria rappresenta la popolazione

Dettagli

E (X 2 ) = E (G) + E (E 2 ) = 1, V ar (X 2 ) = V ar (G) + V ar (E 2 ) = 5, Cov(X 1, X 2 ) = Cov(G + E 1, G + E 2 ) = V ar (G) = 4,

E (X 2 ) = E (G) + E (E 2 ) = 1, V ar (X 2 ) = V ar (G) + V ar (E 2 ) = 5, Cov(X 1, X 2 ) = Cov(G + E 1, G + E 2 ) = V ar (G) = 4, Laurea Triennale in Matematica, Università La Sapienza Corso di Probabilità, AA 04/05 Prova di Esonero Maggio 05 degli esercizi proposti Siano G, E, E tre variabili aleatorie gaussiane indipendenti, rispettivamente

Dettagli

Università di Pavia Econometria. Richiami di teoria delle distribuzioni statistiche. Eduardo Rossi

Università di Pavia Econometria. Richiami di teoria delle distribuzioni statistiche. Eduardo Rossi Università di Pavia Econometria Richiami di teoria delle distribuzioni statistiche Eduardo Rossi Università di Pavia Distribuzione di Bernoulli La variabile casuale discreta Y f Y (y; θ) = 0 θ 1, dove

Dettagli

Introduzione al modello Uniforme

Introduzione al modello Uniforme Introduzione al modello Uniforme Esempio: conversione Analogico/Digitale Errore di quantizzazione Ampiezza Continua Discreta x () t x ( t ) q Tempo Discreto Continuo Segnale Analogico ( ) x t k t t Segnale

Dettagli

Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di:

Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di: Teoria dei Fenomeni Aleatori AA 01/13 Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di: N-pla o Sequenza

Dettagli

Corso di Fondamenti di Telecomunicazioni

Corso di Fondamenti di Telecomunicazioni Corso di Fondamenti di Telecomunicazioni Prof. Mario Barbera [parte ] Variabili aleatorie Esempio: sia dato l esperimento: Scegliere un qualunque giorno non festivo della settimana, per verificare casualmente

Dettagli

Calcolo delle Probabilità e Statistica Matematica: definizioni prima parte. Cap.1: Probabilità

Calcolo delle Probabilità e Statistica Matematica: definizioni prima parte. Cap.1: Probabilità Calcolo delle Probabilità e Statistica Matematica: definizioni prima parte Cap.1: Probabilità 1. Esperimento aleatorio (definizione informale): è un esperimento che a priori può avere diversi esiti possibili

Dettagli

Teoria dei Fenomeni Aleatori AA 2012/13. Il Modello Lognormale La funzione di densità di probabilità lognormale è data:

Teoria dei Fenomeni Aleatori AA 2012/13. Il Modello Lognormale La funzione di densità di probabilità lognormale è data: Il Modello Lognormale La funzione di densità di probabilità lognormale è data: ( ln x a) 1 f ( x ) = exp x > 0 X b x b π in cui a e b sono due costanti, con b> 0. Se X è una v.a. lognormale allora Y lnx

Dettagli

Calcolo delle Probabilità 2

Calcolo delle Probabilità 2 Prova d esame di Calcolo delle Probabilità 2 Maggio 2006 Sia X una variabile aleatoria distribuita secondo la densità seguente ke x 1 x < 0 f X (x) = 1/2 0 x 1. 1. Determinare il valore del parametro reale

Dettagli

Statistica Applicata all edilizia: alcune distribuzioni di probabilità

Statistica Applicata all edilizia: alcune distribuzioni di probabilità Statistica Applicata all edilizia: Alcune distribuzioni di probabilità E-mail: orietta.nicolis@unibg.it 23 marzo 2010 Indice Distribuzioni di probabilità discrete 1 Distribuzioni di probabilità discrete

Dettagli

Variabili aleatorie n-dim

Variabili aleatorie n-dim Sessione Live #6 Settimana dal 6 maggio al giugno 003 Variabili aleatorie n-dim Funzioni di ripartizione e di densità (F.D.R. e f.d.d.) congiunte e marginali, valori medi e momenti misti, funzione generatrice

Dettagli

Esercitazioni di Statistica Matematica A Lezione 7. Variabili aleatorie continue

Esercitazioni di Statistica Matematica A Lezione 7. Variabili aleatorie continue Esercitazioni di Statistica Matematica A Lezione 7 Variabili aleatorie continue.) Determinare la costante k R tale per cui le seguenti funzioni siano funzioni di densità. Determinare poi la media e la

Dettagli

Una variabile casuale è una variabile che assume determinati valori in modo casuale (non deterministico).

Una variabile casuale è una variabile che assume determinati valori in modo casuale (non deterministico). VARIABILI CASUALI 1 definizione Una variabile casuale è una variabile che assume determinati valori in modo casuale (non deterministico). Esempi l esito di una estrazione del Lotto; il risultato di una

Dettagli

Distribuzioni di Probabilità

Distribuzioni di Probabilità Distribuzioni di Probabilità Distribuzioni discrete Distribuzione uniforme discreta Distribuzione di Poisson Distribuzioni continue Distribuzione Uniforme Distribuzione Gamma Distribuzione Esponenziale

Dettagli

I appello di calcolo delle probabilità e statistica

I appello di calcolo delle probabilità e statistica I appello di calcolo delle probabilità e statistica A.Barchielli, L. Ladelli, G. Posta 8 Febbraio 13 Nome: Cognome: Matricola: Docente: I diritti d autore sono riservati. Ogni sfruttamento commerciale

Dettagli

DISTRIBUZIONI DI PROBABILITA (parte 2) 1 / 27

DISTRIBUZIONI DI PROBABILITA (parte 2) 1 / 27 DISTRIBUZIONI DI PROBABILITA (parte 2) 1 / 27 Funzione di ripartizione per variabili casuali discrete 2 / 27 Data una variabile casuale discreta possiamo calcolare, analogamente al caso continuo, la probabilità

Dettagli

Corso di probabilità e statistica

Corso di probabilità e statistica Università degli Studi di Verona Facoltà di Scienze MM.FF.NN. Corso di Laurea in Informatica Corso di probabilità e statistica (Prof. L.Morato) Esercizi Parte III: variabili aleatorie dipendenti e indipendenti,

Dettagli

Variabili aleatorie. continue. Discreto continuo

Variabili aleatorie. continue. Discreto continuo Variabili aleatorie continue Discreto continuo.18 Uniforme discreta, n=11 n=21 n=11 n=6 n=51 n=51 Uniforme.16.14.12.1.8.6?.4.2 1 1 2 2 3 3 4 4 5 5 6 6 7 7 Per passare dal modello discreto al modello continuo

Dettagli

Costruzione di macchine. Modulo di: Progettazione probabilistica e affidabilità. Marco Beghini. Lezione 7: Basi di statistica

Costruzione di macchine. Modulo di: Progettazione probabilistica e affidabilità. Marco Beghini. Lezione 7: Basi di statistica Costruzione di macchine Modulo di: Progettazione probabilistica e affidabilità Marco Beghini Lezione 7: Basi di statistica Campione e Popolazione Estrazione da una popolazione (virtualmente infinita) di

Dettagli

COPPIE DI VARIABILI ALEATORIE

COPPIE DI VARIABILI ALEATORIE COPPIE DI VAIABILI ALEATOIE E DI NADO 1 Funzioni di ripartizione congiunte e marginali Definizione 11 Siano X, Y va definite su uno stesso spazio di probabilità (Ω, F, P La coppia (X, Y viene detta va

Dettagli

Richiami di probabilità e statistica

Richiami di probabilità e statistica Richiami di probabilità e statistica Una variabile casuale (o aleatoria) X codifica gli eventi con entità numeriche x ed è caratterizzata dalla funzione di distribuzione di probabilità P(x) : P(x)=Pr ob[x

Dettagli

Probabilità e Statistica per l Informatica Esercitazione 4

Probabilità e Statistica per l Informatica Esercitazione 4 Probabilità e Statistica per l Informatica Esercitazione 4 Esercizio : [Ispirato all Esercizio, compito del 7/9/ del IV appello di Statistica e Calcolo delle probabilità, professori Barchielli, Ladelli,

Dettagli

Nome e cognome:... Matricola...

Nome e cognome:... Matricola... Nome e cognome:................................................... Matricola................. CALCOLO DELLE PROBABILITA - 0/07/008 CdS in Economia e Finanza - Cds in Informatica - Cds SIGAD Motivare dettagliatamente

Dettagli

distribuzione normale

distribuzione normale distribuzione normale Si tratta della più importante distribuzione di variabili continue, in quanto: 1. si può assumere come comportamento di molti fenomeni casuali, tra cui gli errori accidentali; 2.

Dettagli

Esercizi 6 - Variabili aleatorie vettoriali, distribuzioni congiunte

Esercizi 6 - Variabili aleatorie vettoriali, distribuzioni congiunte Esercizi - Variabili aleatorie vettoriali, distribuzioni congiunte Esercizio. X e Y sono v.a. sullo stesso spazio di probabilità (Ω, E, P). X segue la distribuzione geometrica modificata di parametro p

Dettagli

Distribuzioni di probabilità

Distribuzioni di probabilità Distribuzioni di probabilità Distribuzioni di probabilità L analisi statistica spesso studia i fenomeni collettivi confrontandoli con modelli teorici di riferimento. Tra di essi, vedremo: la distribuzione

Dettagli

Variabili casuali multidimensionali

Variabili casuali multidimensionali Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

Calcolo delle probabilità (3/7/2001) (Ing. Elettronica, Informatica, Telecomunicazioni - Latina)

Calcolo delle probabilità (3/7/2001) (Ing. Elettronica, Informatica, Telecomunicazioni - Latina) Calcolo delle probabilità (3/7/00). La distribuzione di probabilità di un numero aleatorio X non negativo soddisfa la condizione P (X > x + y X > y) = P (X > x), x > 0, y > 0. Inoltre la previsione di

Dettagli

UNIVERSITA` di ROMA TOR VERGATA

UNIVERSITA` di ROMA TOR VERGATA UNIVERSITA` di ROMA TOR VERGATA Corso di PS2-Probabilità 2 PBaldi appello, 23 giugno 29 Corso di Laurea in Matematica Esercizio Per α 2 consideriamo la catena di Markov su {, 2, 3} associata alla matrice

Dettagli

Costruzione di macchine. Modulo di: Progettazione probabilistica e affidabilità. Marco Beghini. Lezione 6: Combinazioni di variabili aleatorie

Costruzione di macchine. Modulo di: Progettazione probabilistica e affidabilità. Marco Beghini. Lezione 6: Combinazioni di variabili aleatorie Costruzione di macchine Modulo di: Progettazione probabilistica e affidabilità Marco Beghini ezione 6: Combinazioni di variabili aleatorie Combinazioni di più variabili aleatorie continue Distribuzione

Dettagli

Distribuzioni di probabilità nel continuo

Distribuzioni di probabilità nel continuo Distribuzioni di probabilità nel continuo Prof.ssa Fabbri Francesca Classe 5C Variabili casuali continue Introduzione: Una Variabile Casuale o Aleatoria è una grandezza che, nel corso di un esperimento

Dettagli

Variabili aleatorie continue

Variabili aleatorie continue Variabili aleatorie continue Per descrivere la distribuzione di una variabile aleatoria continua, non si può più assegnare una probabilità positiva ad ogni valore possibile. Si assume allora di poter specificare

Dettagli

Probabilità e Statistica

Probabilità e Statistica Probabilità e Statistica Variabili Casuali multidimensionali Marco Pietro Longhi C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica a.s. 2/29 Marco Pietro Longhi Prob. e Stat.

Dettagli

Modulo di Statistica e Tecnologia (Dott. Giorgio Poletti

Modulo di Statistica e Tecnologia (Dott. Giorgio Poletti Laurea in Scienze dell Educazione Insegnamento di Pedagogia Sperimentale (Prof. Paolo Frignani) Modulo di Statistica e Tecnologia (Dott. Giorgio Poletti giorgio.poletti@unife.it) (discrete) variabile casuale

Dettagli

Richiami di Teoria della probabilità (I)

Richiami di Teoria della probabilità (I) Richiami di Teoria della probabilità (I) ESPERIMENTO: ogni operazione il cui risultato non può essere predetto con certezza EVENTO: è il risultato di un esperimento Eventi semplici e composti Eventi disgiunti

Dettagli

Esercizi su leggi Gaussiane

Esercizi su leggi Gaussiane Esercizi su leggi Gaussiane. Siano X e Y v.a. indipendenti e con distribuzione normale standard. Trovare le densità di X, X +Y e X, X. Mostrare che queste due variabili aleatorie bidimensionali hanno le

Dettagli

Scheda n.3: densità gaussiana e Beta

Scheda n.3: densità gaussiana e Beta Scheda n.3: densità gaussiana e Beta October 10, 2008 1 Definizioni generali Chiamiamo densità di probabilità (pdf ) ogni funzione integrabile f (x) definita per x R tale che i) f (x) 0 per ogni x R ii)

Dettagli

I VETTORI GAUSSIANI E. DI NARDO

I VETTORI GAUSSIANI E. DI NARDO I VETTOI GAUSSIANI E. DI NADO. L importanza della distribuzione gaussiana I vettori di v.a. gaussiane sono senza dubbio uno degli strumenti più utili in statistica. Nell analisi multivariata, per esempio,

Dettagli

Esame di Teoria dei Segnali A Ing. Informatica, Elettronica e Telecomunicazioni. 12 luglio 2004

Esame di Teoria dei Segnali A Ing. Informatica, Elettronica e Telecomunicazioni. 12 luglio 2004 Esame di Teoria dei Segnali A Ing. Informatica, Elettronica e Telecomunicazioni luglio 4 Esercizio Un sacchetto A contiene caramelle ai gusti fragola, limone e lampone. Un sacchetto B contiene caramelle

Dettagli

Probabilità 1, laurea triennale in Matematica Prova scritta sessione invernale a.a. 2008/09 del 26/01/2010

Probabilità 1, laurea triennale in Matematica Prova scritta sessione invernale a.a. 2008/09 del 26/01/2010 Probabilità 1, laurea triennale in Matematica Prova scritta sessione invernale a.a. 2008/09 del 26/01/2010 1. Nello scaffale di un negozio vi sono 20 CD-Rom di software, di cui 2 di grafica e gli altri

Dettagli

Esercitazioni di Statistica Matematica A Lezione 2. Variabili con distribuzione gaussiana

Esercitazioni di Statistica Matematica A Lezione 2. Variabili con distribuzione gaussiana Esercitazioni di Statistica Matematica A Lezione 2 Variabili con distribuzione gaussiana.) Una bilancia difettosa ha un errore sistematico di 0.g ed un errore casuale che si suppone avere la distribuzione

Dettagli

Calcolo delle Probabilità e Statistica Matematica previsioni 2003/04

Calcolo delle Probabilità e Statistica Matematica previsioni 2003/04 Calcolo delle Probabilità e Statistica Matematica previsioni 2003/04 LU 1/3 Esempi di vita reale : calcolo delle probabilità, statistica descrittiva e statistica inferenziale. Lancio dado/moneta: definizione

Dettagli

Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di:

Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di: Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di: N-pla o Sequenza di Variabili Aleatorie Sistema di Variabili

Dettagli

Lezione 2: Descrizione dei Da0. h2p://

Lezione 2: Descrizione dei Da0. h2p:// Lezione 2: Descrizione dei Da0 h2p://www.mi.infn.it/~palombo/dida=ca/analisista0s0ca/lezioni/lezione2.pdf Funzione Densità di Probabilità q La variabile casuale assume valori diversi con diverse probabilità.

Dettagli

Probabilità e Statistica

Probabilità e Statistica Probabilità e Statistica Non faremo una trattazione sistematica di probabilità e statistica (si veda in proposito il corso di Esperimentazioni III) Richiameremo alcuni argomenti che avete già visto quando

Dettagli

La distribuzione normale o distribuzione di Gauss

La distribuzione normale o distribuzione di Gauss La distribuzione normale o distribuzione di Gauss Gauss ha dimostrato che secondo questa legge si possono ritenere distribuiti gli errori accidentali di misura di una qualsivoglia grandezza. Densità di

Dettagli

con distribuzione gaussiana standard e si ponga

con distribuzione gaussiana standard e si ponga Laurea Triennale in Matematica, Università La Sapienza Corso di Probabilità, AA 6/7 Prova di Esonero Maggio 7 Testi e soluzioni degli esercizi proposti Siano Z, Z, Z variabili aleatorie indipendenti e

Dettagli

Sessione Live 4 V.a. n-dimensionali. Funzioni di variabili aleatorie.

Sessione Live 4 V.a. n-dimensionali. Funzioni di variabili aleatorie. Sessione Live 4 V.a. n-dimensionali. Funzioni di variabili aleatorie. 9 e 11 Dicembre 2008 Richiami di teoria Come si calcolano le densità marginali Esercizi Una v.a. n-dimensionale (o vettore aleatorio

Dettagli

Probabilità e Statistica

Probabilità e Statistica Probabilità e Statistica Non faremo una trattazione sistematica di probabilità e statistica (si veda in proposito il corso di Esperimentazioni III) Richiameremo alcuni argomenti che avete già visto quando

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Riepilogo lezione 4 Abbiamo visto: Distribuzioni discrete Modelli probabilistici nel discreto Distribuzione uniforme

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 006/07 Esercizio 1 Prova scritta del 16/1/006 In un ufficio postale lavorano due impiegati che svolgono lo stesso compito in maniera indipendente, sbrigando

Dettagli

9. Test del χ 2 e test di Smirnov-Kolmogorov. 9.1 Stimatori di massima verosimiglianza per distribuzioni con densità finita

9. Test del χ 2 e test di Smirnov-Kolmogorov. 9.1 Stimatori di massima verosimiglianza per distribuzioni con densità finita 9. Test del χ 2 e test di Smirnov-Kolmogorov 9. Stimatori di massima verosimiglianza per distribuzioni con densità finita Supponiamo di avere un campione statistico X,..., X n e di sapere che esso è relativo

Dettagli

Facoltà di Ingegneria Calcolo delle Probabilità e Statistica Ingegneria Civile e A&T e Informatica

Facoltà di Ingegneria Calcolo delle Probabilità e Statistica Ingegneria Civile e A&T e Informatica Facoltà di Ingegneria Calcolo delle Probabilità e Statistica Ingegneria Civile e A&T e Informatica Prima prova scritta A.A. 8-9 Durata della prova h Punteggi: ) + + ; ) + + + ; ) +. Totale. Esercizio Sia

Dettagli

SCHEDA DIDATTICA N 7

SCHEDA DIDATTICA N 7 FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA CIVILE CORSO DI IDROLOGIA PROF. PASQUALE VERSACE SCHEDA DIDATTICA N 7 LA DISTRIBUZIONE NORMALE A.A. 01-13 La distribuzione NORMALE Uno dei più importanti

Dettagli

Regressione lineare. Lucio Demeio Dipartimento di Ingegneria Industriale e Scienze Matematiche Università Politecnica delle Marche.

Regressione lineare. Lucio Demeio Dipartimento di Ingegneria Industriale e Scienze Matematiche Università Politecnica delle Marche. Regressione lineare Lucio Demeio Dipartimento di Ingegneria Industriale e Scienze Matematiche Università Politecnica delle Marche Siano x ed y due variabili legate tra loro da una forma funzionale del

Dettagli

CAPITOLO 9. Vettori Aleatori

CAPITOLO 9. Vettori Aleatori CAPITOLO 9 Vettori Aleatori 9 9 Vettori Aleatori 3 9 Vettori Aleatori In molti esperimenti aleatori, indicando con Ω l insieme dei possibili risultati, al generico risultato dell esperimento, ω Ω, sono

Dettagli

Lezione 13 Corso di Statistica. Domenico Cucina

Lezione 13 Corso di Statistica. Domenico Cucina Lezione 13 Corso di Statistica Domenico Cucina Università Roma Tre D. Cucina (domenico.cucina@uniroma3.it) 1 / 20 obiettivi della lezione comprendere il concetto di variabile aleatoria continua familiarizzare

Dettagli

Probabilità e Statistica

Probabilità e Statistica Diario delle lezioni e del tutorato di Probabilità e Statistica a.a. 2012/2013 www.mat.uniroma2.it/~caramell/did 1213/ps.htm 05/03/2013 - Lezioni 1, 2, 3 Breve introduzione al corso. Fenomeni deterministici

Dettagli

Esercizi di statistica

Esercizi di statistica Esercizi di statistica Test a scelta multipla (la risposta corretta è la prima) [1] Il seguente campione è stato estratto da una popolazione distribuita normalmente: -.4, 5.5,, -.5, 1.1, 7.4, -1.8, -..

Dettagli

Il Modello di Markowitz e la frontiera efficiente (1952)

Il Modello di Markowitz e la frontiera efficiente (1952) Il Modello di Markowitz e la frontiera efficiente (1952) Introduzione La selezione di portafoglio consiste nella ripartizione di un capitale tra più investimenti di reddito aleatorio Il capitale da ripartire

Dettagli

RICHIAMI DI CALCOLO DELLE PROBABILITÀ

RICHIAMI DI CALCOLO DELLE PROBABILITÀ UNIVERSITA DEL SALENTO INGEGNERIA CIVILE RICHIAMI DI CALCOLO DELLE PROBABILITÀ ing. Marianovella LEONE INTRODUZIONE Per misurare la sicurezza di una struttura, ovvero la sua affidabilità, esistono due

Dettagli

Corso Integrato di Statistica Informatica e Analisi dei Dati Sperimentali. Esercitazione E

Corso Integrato di Statistica Informatica e Analisi dei Dati Sperimentali. Esercitazione E Corso Integrato di Statistica Informatica e Analisi dei Dati Sperimentali A.A 2009-2010 Esercitazione E Scopo dell esercitazione Applicazioni del teorema del limite centrale. Rappresentazione delle incertezze

Dettagli

Variabili aleatorie multiple. X = (X 1,..., X n ) vettore aleatorio

Variabili aleatorie multiple. X = (X 1,..., X n ) vettore aleatorio Variabili aleatorie multiple X = (X 1,..., X n ) vettore aleatorio F X (x 1,..., x n ) = P(X 1 x 1,..., X n x n ) caso particolare n = 2 (variabile doppia) F X,Y (x, y) = P(X x, Y y) V.a. discreta: (X,

Dettagli

CP110 Probabilità: Esame 4 giugno Testo e soluzione

CP110 Probabilità: Esame 4 giugno Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 202-3, II semestre 4 giugno, 203 CP0 Probabilità: Esame 4 giugno 203 Testo e soluzione . (6 pts) Un urna contiene inizialmente pallina rossa e 0 palline

Dettagli

Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 2015/ Settembre 2016

Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 2015/ Settembre 2016 Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 205/206 20 Settembre 206 Esercizio. Un dado equilibrato viene lanciato ripetutamente. Indichiamo con X n il risultato dell n-esimo

Dettagli

Richiami di TEORIA DELLE PROBABILITÀ

Richiami di TEORIA DELLE PROBABILITÀ corso di Teoria dei Sistemi di Trasporto Sostenibili 6 CFU A.A. 015-016 Richiami di TEORIA DELLE PROBABILITÀ Prof. Ing. Umberto Crisalli Dipartimento di Ingegneria dell Impresa crisalli@ing.uniroma.it

Dettagli

Eventi numerici e variabili aleatorie

Eventi numerici e variabili aleatorie Capitolo Eventi numerici e variabili aleatorie. Probabilità di eventi numerici Nel capitolo precedente si sono considerate le nozioni di esperimento, risultato, evento. Un evento è individuato dai risultati

Dettagli

0 z < z < 2. 0 z < z 3

0 z < z < 2. 0 z < z 3 CALCOLO DELLE PROBABILITÀ o - 7 gennaio 004. Elettronica : 4; Nettuno: 3.. Data un urna di composizione incognita con palline bianche e nere, sia K = il numero di palline bianche nell urna è il doppio

Dettagli

ESERCITAZIONE N. 5 corso di statistica

ESERCITAZIONE N. 5 corso di statistica ESERCITAZIONE N. 5corso di statistica p. 1/27 ESERCITAZIONE N. 5 corso di statistica Marco Picone Università Roma Tre ESERCITAZIONE N. 5corso di statistica p. 2/27 Introduzione Variabili aleatorie discrete

Dettagli

Es.: una moneta viene lanciata 3 volte. X = n. di T nei primi 2 lanci Y = n. di T negli ultimi 2 lanci

Es.: una moneta viene lanciata 3 volte. X = n. di T nei primi 2 lanci Y = n. di T negli ultimi 2 lanci Es.: una moneta viene lanciata 3 volte. X = n. di T nei primi 2 lanci Y = n. di T negli ultimi 2 lanci X\Y 0 1 2 0 1/8 1/8 0 1/4 1 1/8 1/4 1/8 1/2 2 0 1/8 1/8 1/4 1/4 1/2 1/4 1 X e Y non sono indip. Se

Dettagli

Statistica parametrica e non parametrica. Gli intervalli di confidenza

Statistica parametrica e non parametrica. Gli intervalli di confidenza Statistica parametrica e non parametrica Per un campione univariato Gli intervalli di confidenza MEDIA CAMPIONARIA MEDIA VERA 1 Gli intervalli di confidenza 3 Gli intervalli di confidenza 4 Una introduzione

Dettagli

DISTRIBUZIONI DI PROBABILITA

DISTRIBUZIONI DI PROBABILITA DISTRIBUZIONI DI PROBABILITA La distribuzione di probabilità e un modello matematico, uno schema di riferimento, che ha caratteristiche note e che può essere utilizzato per rispondere a delle domande derivate

Dettagli

{ } { } { } {( ) ( ) ( ) { } { } ( ) ( { } ( ) Valor medio statistico (o valore atteso): Se g(x) è una funzione di V.A., si ha:

{ } { } { } {( ) ( ) ( ) { } { } ( ) ( { } ( ) Valor medio statistico (o valore atteso): Se g(x) è una funzione di V.A., si ha: Variabili Aleatorie Valor medio statistico (o valore atteso: μ + { } ( = E = x f ( x dx Se g( è una funzione di V.A., si ha: + { ( } = ( ( E g g x f x dx Esempi di valore atteso di funzione di variabile

Dettagli

Statistica Applicata all edilizia: il modello di regressione

Statistica Applicata all edilizia: il modello di regressione Statistica Applicata all edilizia: il modello di regressione E-mail: orietta.nicolis@unibg.it 27 aprile 2009 Indice Il modello di Regressione Lineare 1 Il modello di Regressione Lineare Analisi di regressione

Dettagli

Indici di posizione e dispersione per distribuzioni di variabili aleatorie

Indici di posizione e dispersione per distribuzioni di variabili aleatorie Indici di posizione e dispersione per distribuzioni di variabili aleatorie 12 maggio 2017 Consideriamo i principali indici statistici che caratterizzano una distribuzione: indici di posizione, che forniscono

Dettagli

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2016/17 - Prova del

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2016/17 - Prova del Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (69AA) A.A. 06/7 - Prova del 07-07-07 La durata della prova è di tre ore. Le risposte devono essere adeguatamente giustificate. Problema

Dettagli

Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di:

Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di: Teoria dei Fenomeni Aleatori AA 01/13 Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di: N-pla o Sequenza

Dettagli

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2017/18 - Prova scritta

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2017/18 - Prova scritta Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA A.A. 2017/18 - Prova scritta 2018-09-12 La durata della prova è di tre ore. Le risposte devono essere adeguatamente giustificate.

Dettagli

Corso di Laurea in Ingegneria Informatica Anno Accademico 2017/2018 Probabilità e Statistica - Prova pratica

Corso di Laurea in Ingegneria Informatica Anno Accademico 2017/2018 Probabilità e Statistica - Prova pratica Corso di Laurea in Ingegneria Informatica Anno Accademico 2017/201 Probabilità e Statistica - Prova pratica Nome... N. Matricola... Ancona, 1 febbraio 201 1. ( punti) Un azienda che produce relè elettrici

Dettagli

Elaborazione statistica di dati

Elaborazione statistica di dati Elaborazione statistica di dati CONCETTI DI BASE DI STATISTICA ELEMENTARE Taratura strumenti di misura IPOTESI: grandezza da misurare identica da misura a misura Collaudo sistemi di produzione IPOTESI:

Dettagli

1 Richiami di algebra lineare

1 Richiami di algebra lineare 1 Richiami di algebra lineare Definizione 11 (matrici e vettori) Una matrice A e un insieme di numeri A hk, h = 1,, m, k = 1,, n, ordinati in base alla coppia di indici h e k nel modo seguente A 1 A n

Dettagli

(e it + e 5 2 it + e 3it )

(e it + e 5 2 it + e 3it ) CALCOLO DELLE PROBABILITÀ - 13 gennaio 1999 1. Siano A, B, C eventi, con P (A) = 0.3, P (B) = 0.5, P (C) = 0.7, e per i quali è noto che i relativi costituenti sono C 1 = A c B c C c, C 2 = AB c C c, C

Dettagli

Le variabili casuali o aleatorie

Le variabili casuali o aleatorie Le variabili casuali o aleatorie Intuitivamente un numero casuale o aleatorio è un numero sul cui valore non siamo certi per carenza di informazioni - ad esempio la durata di un macchinario, il valore

Dettagli

AFFIDABILITA DEI SISTEMI STOCASTICI (semplici)

AFFIDABILITA DEI SISTEMI STOCASTICI (semplici) AFFIDABILITA DEI SISTEMI STOCASTICI (semplici) Un sistema (o uno qualsiasi dei suoi componenti) può essere soggetto a stress casuali. Es: un fusibile in un circuito; una trave di acciaio sotto carico;

Dettagli

Introduzione al modello Uniforme

Introduzione al modello Uniforme Teoria dei Fenomeni Aleatori 1 AA 01/13 Introduzione al modello Uniforme Esempio: conversione Analogico/Digitale Errore di quantizzazione Ampiezza Continua Discreta x t x q t Tempo Discreto Continuo 0

Dettagli

Teoria dei Fenomeni Aleatori AA 2012/13. Il Concetto di Distribuzione Condizionata

Teoria dei Fenomeni Aleatori AA 2012/13. Il Concetto di Distribuzione Condizionata Il Concetto di Distribuzione Condizionata Se B è un evento, la probabilità di un evento A condizionata a B vale: ponendo: P A B P A B P B A x si giunge al concetto di distribuzione condizionata della v.a.

Dettagli

Esperimentazioni di Fisica 1. Prova in itinere del 12 giugno 2018

Esperimentazioni di Fisica 1. Prova in itinere del 12 giugno 2018 Esperimentazioni di Fisica 1 Prova in itinere del 1 giugno 018 Esp-1 Prova in Itinere n. - - Page of 6 1/06/018 1. (1 Punti) Quesito L incertezza da associare alle misurazioni eseguite con un certo strumento

Dettagli

Esercizi di Calcolo delle Probabilità

Esercizi di Calcolo delle Probabilità Esercizi di Calcolo delle Probabilità M. Pratelli e M. Romito Gli esercizi che seguono sono stati proposti nel corso Probabilità dell Università di Pisa negli a.a. 2012-13 e 2013-14 (M. Romito) e 2014-15

Dettagli

Ulteriori Conoscenze di Informatica e Statistica

Ulteriori Conoscenze di Informatica e Statistica Ulteriori Conoscenze di Informatica e Statistica Carlo Meneghini Dip. di fisica via della Vasca Navale 84, st. 83 (I piano) tel.: 06 55 17 72 17 meneghini@fis.uniroma3.it Indici di forma Descrivono le

Dettagli

Università del Piemonte Orientale. Corso di Laurea Triennale di Infermieristica Pediatrica ed Ostetricia. Corso di Statistica Medica

Università del Piemonte Orientale. Corso di Laurea Triennale di Infermieristica Pediatrica ed Ostetricia. Corso di Statistica Medica Università del Piemonte Orientale Corso di Laurea Triennale di Infermieristica Pediatrica ed Ostetricia Corso di Statistica Medica Le distribuzioni teoriche di probabilità La distribuzione Normale (o di

Dettagli

V.a. continue. Statistica e biometria. D. Bertacchi. Le v.a. continue. Uniforme. Normale. Indipendenza di v.a. continue

V.a. continue. Statistica e biometria. D. Bertacchi. Le v.a. continue. Uniforme. Normale. Indipendenza di v.a. continue gge una v.a. V.a. continue Ricoramo: DEFINIZIONE DI VARIABILE ALEATORIA Una variabile aleatoria (in breve v.a.) X è una funzione che ha come dominio Ω e come codominio R. In formule: X : Ω R. DEFINIZIONE

Dettagli

Probabilità e Statistica

Probabilità e Statistica Diario delle lezioni e del tutorato di Probabilità e Statistica a.a. 2013/2014 www.mat.uniroma2.it/~caramell/did 1314/ps.htm 04/03/2014 - Lezioni 1, 2 Breve introduzione al corso. Fenomeni deterministici

Dettagli

Variabili casuali multidimensionali

Variabili casuali multidimensionali Variabili casuali multidimensionali Variabili casuali multidimensionali: k-ple ordinate di variabili casuali unidimensionali definite sullo stesso spazio di probabilità X = (X 1,..., X k ) Funzione di

Dettagli

DISTRIBUZIONI DI PROBABILITA (parte 1) 1 / 19

DISTRIBUZIONI DI PROBABILITA (parte 1) 1 / 19 DISTRIBUZIONI DI PROBABILITA (parte 1) 1 / 19 Variabili casuali (o aleatorie) 2 / 19 Disponendo di metodi corretti per raccogliere i dati e costruire i campioni data una popolazione, i valori numerici

Dettagli

Statistica Applicata all edilizia: Stime e stimatori

Statistica Applicata all edilizia: Stime e stimatori Statistica Applicata all edilizia E-mail: orietta.nicolis@unibg.it 15 marzo 2011 Statistica Applicata all edilizia: Indice 1 2 Statistica Applicata all edilizia: Uno dei problemi principali della statistica

Dettagli

Stima puntuale di parametri

Stima puntuale di parametri Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica Stima puntuale di parametri Ines Campa Probabilità e Statistica -

Dettagli

CP110 Probabilità: Esonero 2. Testo e soluzione

CP110 Probabilità: Esonero 2. Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2011-12, II semestre 29 maggio, 2012 CP110 Probabilità: Esonero 2 Testo e soluzione 1. (8 punti) La freccia lanciata da un arco è distribuita uniformemente

Dettagli

CONFRONTO DIDUE CAMPIONI CASUALI

CONFRONTO DIDUE CAMPIONI CASUALI CONFRONTO DIDUE CAMPIONI CASUALI ( x, x,, x ) ( y, y,, y ) 1 n 1 n POPOLAZIONE 1 POPOLAZIONE Le due popolazioni hanno lo stesso modello stocastico? Le due popolazioni hanno la stessa media? Le due popolazioni

Dettagli

Distribuzioni di due variabili aleatorie

Distribuzioni di due variabili aleatorie Statistica e analisi dei dati Data: 6 Maggio 206 Distribuzioni di due variabili aleatorie Docente: Prof. Giuseppe Boccignone Scriba: Noemi Tentori Distribuzioni congiunte e marginali Consideriamo due variabili

Dettagli