( ) ( ) ( ) ( ) Proprietà distributiva: ( ) ( ) ( ) ( ) ( ) ( ) Teoremi dell assorbimento: ( ) ( ) ( ) ( )

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "( ) ( ) ( ) ( ) Proprietà distributiva: ( ) ( ) ( ) ( ) ( ) ( ) Teoremi dell assorbimento: ( ) ( ) ( ) ( )"

Transcript

1 4) ELETTRONICA DIGITALE (Livello M.V. HARDWARE) Al livello MV0 troviamo i circuiti elettronici che determinano il funzionamento della macchina di Von Neumann. Come già accennato precedentemente, la peculiarità di tali circuiti è quella di essere caratterizzati da due stati di funzionamento, corrispondenti a tensione bassa o alta, a circuito aperto o chiuso, a corrente in un verso o nel verso opposto. Per l analisi e la sintesi di questi circuiti si utilizza uno strumento matematico chiamato Algebra Booleana, dal nome del filosofo e matematico inglese George Boole (85-864). Questo tipo di algebra, venne introdotta per provare analiticamente la verità o la falsità delle proposizioni complesse, costruite combinando delle semplici proposizioni secondo la sintassi della lingua inglese. L algebra booleana fu ripresa da Claude Shannon nel 96 per lo studio e la progettazione di circuiti a relè (aperto o chiuso). L algebra booleana è anche detta algebra binaria (perché opera su un insieme costituito da due soli elementi) o algebra di commutazione ( perché i circuiti descritti possono commutare da uno stato all altro) o anche algebra logica ( in conseguenza alle sue origini). I circuiti descritti dall algebra booleana, verranno indicati Circuiti di commutazione o Circuiti logici. Prima di affrontare lo studio di tali circuiti, sarà opportuno richiamare i concetti fondamentali dell algebra booleana. 4.) Elementi di Algebra Booleana L algebra è definita su un insieme di due elementi, chiamati convenzionalmente 0 e e da tre operatori chiamati: negazione (NOT) si indica con il segno - sopra l operando, ad esempio: = 0 0 = prodotto logico (AND) si indica con il segno. tra i due operandi, ad esempio: 0 0 = 0 = 0 = 0 = somma logica (OR) si indica con il segno + tra i due operandi, ad esempio: + = + 0 = 0 + = = 0 Al posto dei valori o 0, è possibile utilizzare delle variabili booleane ovvero delle variabili che possono assumere solo i due valori 0 o. Valgono le seguenti proprietà dirette (basta sostituire i valori 0 o e verificarne la veridicità): + = + 0 = + = + = Valgono inoltre: Proprietà commutativa: 0 = 0 = = 0 4 = 4 idempotenza + y = y + y = y Proprietà associativa: + y + z = + y + z = + y + z y + z = y z = y z ( ) ( ) ( ) ( ) Proprietà distributiva: + y + z = + y z y + z = y + z ( ) ( ) ( ) ( ) ( ) ( ) Teoremi dell assorbimento: + y = + y = Teorema di De Morgan: ( ) ( ) ( ) ( ) + y = + y + y = y + y = y + y = y + Quest ultimo teorema è di fondamentale importanza in quanto ci permette di esprimere l operatore OR in funzione degli operatori AND e NOT e, viceversa, l operatore AND in funzione degli operatori OR e NOT. - Pagina 8

2 Le proprietà precedenti ci permettono di stabilire il principio di dualità dell algebra booleana: ogni identità ed ogni proprietà dell algebra booleana resta valida se si scambiano tra loro gli operatori AND e OR e gli elementi e 0. 4.) Funzioni Logiche Una funzione logica (o booleana o di commutazione) y = f() è una funzione in cui il dominio ed il codominio sono costituiti dall insieme (0,), da cui si deduce che anche il numero di funzioni y i di una variabile è finito e vale 4: y y y y Estendendo la definizione per più variabili, avremo che una funzione logica a n variabili y = f(,,..., n ) è una funzione il cui dominio è costituito da tutte e sole le n-ple (,,..., n ) di elementi dell insieme {0,} n ed il cui codominio è l insieme {0, }. Anche qui il numero di funzioni definibili sarà finito e pari al numero di disposizioni semplici dei due elementi (0,) su n posti e quindi pari a n. Introducendo il vettore X che ha come componenti i valori delle variabili,,..., n, ovvero X = y = (,,..., n ), possiamo interpretare X come il valore corrispondente al numero binario a n bit che si ottiene accostando i simboli,,..., n. Potremo quindi scrivere y = f(x). Per rappresentare efficacemente la funzione y = f(x ) possiamo scrivere una tabella che riporti, per ogni valore di X il corrispondente valore della y. Tale tabella viene detta Tabella di Verità. Ad esempio (4..): X y Si definisce mintermine delle n variabili,,..., n, ogni prodotto tra tutte le combinazioni di variabili i, dirette o negate. Ciascun mintermine m i si riferisce alla combinazione tale che, sostituendo alle variabili dirette e 0 alle variabili negate, si ottiene il valore decimale i. Nella tabella dell esempio precedente, avremo i seguenti mintermini: m0 = m = m = m =... Possiamo ora rappresentare una funzione logica nella forma canonica di somma di prodotti utilizzando i mintermini corrispondenti al valore di y come addendi. Ad esempio, la funzione dell esempio precedente può essere scritta come: y = m0 + m + m5 + m6 = = ( 0,, 5, 6) Per il principio di dualità, è possibile esprimere una stessa funzione logica anche nella forma canonica di prodotto di somme. Definendo infatti il matermine come la somma di tutte le variabili,,..., n dirette o negate. Ciascun matermine M i si riferirà ora alla combinazione tale che, sostituendo 0 alle variabili dirette e alle variabili negate, si ottiene il valore decimale i. Nella tabella dell esempio precedente, avremo i seguenti matermini: M 0 = + + M = + + M = + + M = Per cui la funzione dell esempio precedente potrà essere scritta come il prodotto dei matermini corrispondenti al valore 0 di y: y = M M M 4 M 7 = ( + + ) ( + + ) ( + + ) ( + + ) = (,, 4, 7) Le forme canoniche viste, pur risultando matematicamente corrette, necessitano di un procedimento di semplificazione che porti ad una espressione più sintetica possibile e quindi ad una realizzazione meno costosa. - Pagina 84

3 4.) Mappe di Karnaugh Le mappe di Karnaugh sono delle tabelle che permettono di determinare graficamente i mintermini adiacenti e quindi semplificare automaticamente l espressione analitica che rappresenta la funzione logica. E possibile usare, in maniera semplice, le mappe di Karnaugh per funzioni fino a 4 variabili, secondo i seguenti schemi: Mappa per variabili Mappa per variabili Mappa per 4 variabili L utilizzo per più di 4 variabili è possibile ma risulta piuttosto laborioso. Le mappe di Karnaugh permettono di determinare, a partire da una forma normale in somma di prodotti, i mintermini adiacenti ovvero quelli che possono essere semplificati. I gruppi possono essere costituiti da, 4 o 8 insiemi. Le mappe sono da vedersi come sferiche, ovvero i mintermini dell ultima colonna sono adiacenti a quelli della prima colonna e quelli dell ultima riga adiacenti a quelli della prima riga. Facendo riferimento alla mappa per 4 variabili, ad esempio, è agevole riconoscere che il mintermine 4 è adiacente, sia a 4 che a 4. Si ha infatti: + = + = ( ) ( ) = + = In pratica, a partire dalla tabella di verità o dalla forma canonica in somma di prodotti, si costruisce la mappa di Karnaugh, scrivendo in corrispondenza delle combinazioni che determinano y = f(x) =. I - Pagina 85

4 relativi gruppi di 8, 4 o contigui, possono essere espressi da un singolo prodotto, eliminando la o le variabili che compaiono sia in forma diretta che negata, ovvero quelle relative alle colonne o righe con entrambi i valori e 0. Chiariamo il tutto con qualche esempio. Riprendiamo la tabella di verità dell esempio 4.. e scriviamo la mappa di Karnaugh di variabili: Si vede immediatamente che la funzione non è semplificabile in quanto non esistono degli adiacenti. Se invece consideriamo la seguente funzione (4..): X y Avremo due possibili zone che portano ad una semplificazione della forma canonica. Scegliendo di raggruppare le colonne 0 e, avremo il termine. scegliendo le colonne e 0, avremo il termine. ; in definitiva, potremo semplificare immediatamente la forma canonica: y = in: y = + + Esempio y = Pagina 86

5 Esempio y = Pagina 87

6 Le forme semplificate ottenute tramite le mappe di Karnaugh sono espressioni del tipo somma di prodotti; volendo trovare l analoga espressione sotto forma di prodotto di somme, basta applicare il teorema di De Morgan alla funzione di uscita negata. Per questo occorre: prendere gli 0 della funzione y ottenere l espressione come Somma di Prodotti Applicare De Morgan, ottenendo l espressione in Prodotto di somme. Esempio (4..4) : y = 0,,,, 5, 7, 8, 90,, forma canonica in somma di prodotti ( ) Si ricava la seguente Mappa di Karnaugh: (0) () () () (4) () (8) (5) (7) () (9) (5) () (6) (4) (0) dalla quale si ottiene: y = + 4 ed applicando il teorema di De Morgan: y = y = + = + + ( ) ( ) 4 4 Da notare che questo metodo è conveniente nei casi in cui il numero di della funzione sia superiore a n-, con n = numero delle variabili. 4.4) Operatori Universali NAND e NOR Dal teorema di De Morgan, si deduce che gli operatori AND, OR e NOT sono sovrabbondanti in quanto una stessa espressione può essere realizzata solo con AND e NOT o solo con OR e NOT. Viceversa, i soli operatori AND e OR, sono insufficienti per rappresentare una qualsiasi espressione logica. Per questo, si sono introdotti i seguenti operatori: NAND = negazione del prodotto, si indica col simbolo /. Esempio: / y = y = + y NOR = negazione della somma, si indica col simbolo. Esempio: y = y + = y Questi sono anche detti operatori universali in quanto ciascuno di essi può realizzare sia la negazione che la somma od il prodotto: ( negazione) / = = ( s om ma) / y = y = + y ( prodotto) y = y = y - Pagina 88

7 4.5) Operatore OR esclusivo XOR Questo operatore, detto anche somma modulo o anticoincidenza, si indica con il simbolo e realizza la seguente tabella di verità (nel caso di due variabili): l espressione analitica corrispondente è quindi: = + = + + ( ) ( ) L operatore non è universale in quanto, da solo non è in grado di realizzare le operazioni di somma e prodotto. La negazione della funzione XOR, controlla l identità delle variabili alle quali è applicato l operatore e viene spesso indicata con. L operatore si chiama coincidenza o semplicemente XOR. - Pagina 89

8 4.6) Porte logiche e loro rappresentazione grafica Si definisce circuito logico elementare o porta logica o semplicemente porta (gate) ogni circuito elettronico ad n ingressi ed un uscita che assume il valore in corrispondenza delle configurazioni degli ingressi descritte dalle funzioni AND, OR, NOT, NAND, NOR. Per rappresentare le porte logiche, si utilizzano i seguenti simboli grafici: Porta AND n y =... n Porta OR n y = n Porta NOT y = Porta NAND n y =... n Porta NOR n y = n Porta XOR n y =... n Spesso, per connettere le uscite di più circuiti logici, si utilizzano le porte three-state ovvero delle porte che possono presentare in uscita, oltre gli stati 0 e, anche lo stato di alta impedenza, corrispondente allo stato di un circuito aperto. Il simbolo, per una porta three-state è il seguente: y s dove il terminale indica l ingresso, il terminale y l uscita ed il terminale s, l abilitazione dell uscita, secondo la seguente tabella di verità: s y 0 0 circuito aperto 0 circuito aperto 0 0 Le porte logiche possono essere realizzate usando componenti discreti (transistor, diodi, resistenze). Il perfezionamento della tecnologia dei circuiti integrati, ha però reso senz altro conveniente l implementazione di circuiti digitali mediante circuiti integrati. - Pagina 90

9 Le configurazioni possibili sono diverse e sono dette famiglie logiche. Le più comuni famiglie logiche sono: Famiglia Descrizione Circuito equivalente RTL Resistor-Transistor Logic: è stata la prima Porta NOR: R c utilizzata, attualmente non è usata. R A = R B = 450 Ω ; R C = 640 Ω U R f = 8 MHz ; Fan out = 5 ; P = mw; A B R B V cc = V A V cc DTL Diode-Transistor Logic: migliora il fan out, ma anche il tempo di propagazione. f = MHz ; Fan out = 8 ; P = 8 o mw V cc = 5 V Porta NAND: A R c U V cc B TTL Transistor-Transistor Logic: si sostituiscono, rispetto alla DTL, i diodi con un transistor ad emettitore multiplo. f = 60 Mhz ; Fan out = 0 ; P = 0mW V cc = 5 V Porta NAND (semplificata) A R c U V cc B ECL Emitter-Coupled Logic: si basa su amplificatori operazionali; non si portano i transistor in saturazione e quindi si aumenta la velocità. Quando V supera - V R T inizia a condurre e T R va in interdizione. I parametri del circuito sono scelti in modo da non saturare né T né T R. V può variare di appena 0, V (da - V R - 0. a - V R + 0. V. f = 400 Mhz ; Fan out = 5 ; P = 50mW V cc = 0 V ; - V R = -.75 V. ; - V EE = - 5. V. Amplificatore Operazionale: U U V -V R - V EE V cc MOS Metal-Oide Semiconductor: si basa sull impiego di MOSFET e qundi hanno un alta impedenza di ingresso, bassa dissipazione, alta densità. f = Mhz ; Fan out = 0 ; P = mw V DD = - 5 V ; V GG = - V (per tipo p) Inverter a MOSFET (enhancement tipo n): V G D B S V DD U - Pagina 9

10 Famiglia Descrizione Circuito equivalente CMOS Complementary Metal-Oide Semiconductor: utilizzano contemporaneamente MOSFET di tipo p e di tipo n. T conduce quando V GS > V T mentre T conduce quando V GS < VT. In fase di costruzione si cerca di rendere uguali le tensioni di soglia dei MOSFET, per cui: V T = Inverter a CMOS S VT = V T. Il circuito non assorbe virtualmente corrente. f = 0 Mhz ; Fan out = 50 ; P = nw ma in G B D T commutazione a MHz si arriva ad mw. V SS = da a V. V D G B S T U V DD IIL Integrated-Injection Logic: derivata dalla RTL, imponendo le resistenze di base=0. La tecnica di costruzione multicollettore e l impiego di un generatore di corrente sulla base (Transistor iniettore) permette di di eliminare problemi derivanti dalla non identica V BE dei transistor. f = 00 Mhz ; Fan out = ; P = 0 nw V cc = da,75 a 5 V. Impiego tipico: Contatori, flip-flop, DAC/ADC - Pagina 9

Algebra di Boole. Introdotta nel 1874 da George Boole per fornire una rappresentazione algebrica della logica

Algebra di Boole. Introdotta nel 1874 da George Boole per fornire una rappresentazione algebrica della logica Algebra di Boole Algebra di Boole Per poter affrontare in modo sistematico lo studio dei sistemi di calcolo, abbiamo inizialmente bisogno di un apparato teorico-formale mediante il quale lavorare sulle

Dettagli

Il livello logico digitale

Il livello logico digitale Il livello logico digitale prima parte Introduzione Circuiti combinatori (o reti combinatorie) Il valore dell uscita in un determinato istante dipende unicamente dal valore degli ingressi in quello stesso

Dettagli

PORTE LOGICHE. Si effettua su due o più variabili, l uscita assume lo stato logico 1 se almeno una variabile di ingresso è allo stato logico 1.

PORTE LOGICHE. Si effettua su due o più variabili, l uscita assume lo stato logico 1 se almeno una variabile di ingresso è allo stato logico 1. PORTE LOGICHE Premessa Le principali parti elettroniche dei computer sono costituite da circuiti digitali che, come è noto, elaborano segnali logici basati sullo 0 e sull 1. I mattoni fondamentali dei

Dettagli

Fondamenti di Informatica

Fondamenti di Informatica Fondamenti di Informatica Algebra di Boole di Boole e Circuiti e Circuiti Logici Logici Prof. XXX Prof. Arcangelo Castiglione A.A. 2016/17 A.A. 2016/17 L Algebra di Boole 1/3 Un po di storia Il matematico

Dettagli

Fondamenti di Informatica. Algebra di Boole

Fondamenti di Informatica. Algebra di Boole Fondamenti di Informatica Prof. Marco Lombardi A.A. 2018/19 L 1/3 Un po di storia Il matematico inglese George Boole nel 1847 fondò un campo della matematica e della filosofia chiamato logica simbolica

Dettagli

Fondamenti di Informatica

Fondamenti di Informatica Fondamenti di Informatica Algebra di Boole e Circuiti Logici Prof. Christian Esposito Corso di Laurea in Ingegneria Meccanica e Gestionale (Classe I) A.A. 2017/18 Algebra di Boole e Circuiti Logici L Algebra

Dettagli

Circuiti digitali combinatori

Circuiti digitali combinatori Circuiti digitali combinatori Parte 1 Definizioni George Boole George Boole (Lincoln, 2 novembre 1815 Ballintemple, 8 dicembre 1864) Matematico e logico britannico Considerato il fondatore della logica

Dettagli

Fondamenti di Informatica

Fondamenti di Informatica Fondamenti di Informatica Algebra di Boole e Circuiti Logici Prof. Christian Esposito Corso di Laurea in Ingegneria Meccanica e Gestionale (Classe I) A.A. 2016/17 Algebra di Boole e Circuiti Logici L Algebra

Dettagli

Algebra di commutazione

Algebra di commutazione Algebra di commutazione Algebra Booleana - Introduzione Per descrivere i dispositivi digitali è necessario avere Un modello che permetta di rappresentare insiemi di numeri binari; Le funzioni che li mettano

Dettagli

Richiami di Algebra di Commutazione

Richiami di Algebra di Commutazione LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n Prof. Rosario Cerbone rosario.cerbone@libero.it http://digilander.libero.it/rosario.cerbone a.a. 6-7 Richiami di Algebra di Commutazione In questa

Dettagli

ALGEBRA DI BOOLE. In caso di errori di battitura o se si volesse contribuire a migliorare la seguente guida contattare:

ALGEBRA DI BOOLE. In caso di errori di battitura o se si volesse contribuire a migliorare la seguente guida contattare: ALGEBRA DI BOOLE Indice Introduzione... 2 PRORIETA E TEOREMI DELL ALGEBRA DI BOOLE... 3 FUNZIONI LOGICHE PRIMARIE... 4 Funzione logica AND... 4 Funzione logica OR... 4 Funzione logica NOT... 5 FUNZIONI

Dettagli

Elementi di informatica

Elementi di informatica Elementi di informatica Algebra di Boole Algebra di Boole I circuiti logici sono componenti hardware che manipolano informazione binaria. I circuiti di base sono detti PORTE LOGICHE (logical gate). Allo

Dettagli

Algebra di Commutazione

Algebra di Commutazione Algebra di Commutazione Maurizio Palesi Maurizio Palesi 1 Algebra Booleana - Introduzione Per descrivere i dispositivi digitali è necessario avere Un modello che permette di rappresentare insiemi di numeri

Dettagli

associate ai corrispondenti valori assunti dall uscita.

associate ai corrispondenti valori assunti dall uscita. 1. Definizione di variabile logica. Una Variabile Logica è una variabile che può assumere solo due valori: 1 True (vero, identificato con 1) False (falso, identificato con 0) Le variabili logiche si prestano

Dettagli

Algebra Booleana. 13. Rif:

Algebra Booleana. 13. Rif: Algebra Booleana Fondatore: George Boole (1815-1864) Boole rilevo le analogie fra oggetti dell'algebra e oggetti della logica l algebra Booleana è il fondamento dei calcoli con circuiti digitali. Rif:

Dettagli

Architettura degli Elaboratori e Laboratorio. Matteo Manzali Università degli Studi di Ferrara Anno Accademico

Architettura degli Elaboratori e Laboratorio. Matteo Manzali Università degli Studi di Ferrara Anno Accademico Architettura degli Elaboratori e Laboratorio Matteo Manzali Università degli Studi di Ferrara Anno Accademico 2016-2017 Algebra booleana L algebra booleana è un particolare tipo di algebra in cui le variabili

Dettagli

Reti logiche: analisi, sintesi e minimizzazione Esercitazione. Venerdì 9 ottobre 2015

Reti logiche: analisi, sintesi e minimizzazione Esercitazione. Venerdì 9 ottobre 2015 Reti logiche: analisi, sintesi e minimizzazione Esercitazione Venerdì 9 ottobre 05 Punto della situazione Stiamo studiando le reti logiche costruite a partire dalle porte logiche AND, OR, NOT per progettare

Dettagli

Lezione 3. Algebra di Boole e circuiti logici. A. Borghese, F. Pedersini Dip. Scienze dell Informazione Università degli Studi di Milano

Lezione 3. Algebra di Boole e circuiti logici. A. Borghese, F. Pedersini Dip. Scienze dell Informazione Università degli Studi di Milano rchitetture dei calcolatori e delle reti Lezione 3 lgebra di oole e circuiti logici. orghese, F. Pedersini Dip. Scienze dell Informazione Università degli Studi di Milano L 3 /25 Sommario! lgebra di oole

Dettagli

Lezione 3. Architetture dei calcolatori e delle reti. Algebra di Boole circuiti logici. Sommario. ! Algebra di Boole

Lezione 3. Architetture dei calcolatori e delle reti. Algebra di Boole circuiti logici. Sommario. ! Algebra di Boole rchitetture dei calcolatori e delle reti Lezione 3 lgebra di oole circuiti logici. orghese, F. Pedersini Dip. Scienze dell Informazione Università degli Studi di Milano L 3 /26 Sommario! lgebra di oole

Dettagli

Algebra di Commutazione

Algebra di Commutazione Algebra di Commutazione Maurizio Palesi Maurizio Palesi 1 Algebra Booleana - Introduzione Per descrivere i dispositivi digitali è necessario avere: Un modello che permette di rappresentare insiemi di numeri

Dettagli

Reti logiche: analisi, sintesi e minimizzazione. Giovedì 9 ottobre 2014

Reti logiche: analisi, sintesi e minimizzazione. Giovedì 9 ottobre 2014 Reti logiche: analisi, sintesi e minimizzazione Giovedì 9 ottobre 2014 Punto della situazione Stiamo studiando le reti logiche costruite a partire dalle porte logiche AND, OR, NOT per progettare l ALU

Dettagli

Y = A + B e si legge A or B.

Y = A + B e si legge A or B. PORTE LOGICHE Le principali parti elettroniche dei computer sono costituite da circuiti digitali che, come è noto, elaborano segnali logici basati sullo 0 e sull 1. I mattoni fondamentali dei circuiti

Dettagli

Per affrontare in modo sistematico lo studio dei sistemi di calcolo, abbiamo bisogno di un formalismo matematico definito su grandezze binarie

Per affrontare in modo sistematico lo studio dei sistemi di calcolo, abbiamo bisogno di un formalismo matematico definito su grandezze binarie Algebra di Boole Algebra di Boole Per affrontare in modo sistematico lo studio dei sistemi di calcolo, abbiamo bisogno di un formalismo matematico definito su grandezze binarie Algebra di Boole Introdotta

Dettagli

Algebra di Boole X Y Z V. Algebra di Boole

Algebra di Boole X Y Z V. Algebra di Boole L algebra dei calcolatori L algebra booleana è un particolare tipo di algebra in cui le variabili e le funzioni possono solo avere valori 0 e 1. Deriva il suo nome dal matematico inglese George Boole che

Dettagli

Elementi di Informatica A. A. 2016/2017

Elementi di Informatica A. A. 2016/2017 Elementi di Informatica A. A. 2016/2017 Ing. Nicola Amatucci Università degli studi di Napoli Federico II Scuola Politecnica e Delle Scienze di Base nicola.amatucci@unina.it Algebra di Boole Elementi di

Dettagli

Algebra di Boole. Tavole di verità. Fondamenti di Informatica Algebra di Boole. Si basa su tre operazioni logiche: AND (*) OR (+) NOT (!

Algebra di Boole. Tavole di verità. Fondamenti di Informatica Algebra di Boole. Si basa su tre operazioni logiche: AND (*) OR (+) NOT (! Fondamenti di Informatica Algebra di Boole Prof.ssa Enrica Gentile Informatica e Comunicazione Digitale a.a. 2-22 Algebra di Boole Si basa su tre operazioni logiche: AND (*) OR () NOT (!) Gli operandi

Dettagli

I circuiti binari: definizione delle funzioni logiche

I circuiti binari: definizione delle funzioni logiche I circuiti binari: definizione delle funzioni logiche Prof. lberto orghese Dipartimento di Scienze dell Informazione borghese@dsi.unimi.it Università degli Studi di Milano /38 Sommario Variabili ed operatori

Dettagli

I circuiti logici: definizione delle funzioni logiche

I circuiti logici: definizione delle funzioni logiche I circuiti logici: definizione delle funzioni logiche Prof. lberto orghese Dipartimento di Informatica borghese@di.unimi.it Università degli Studi di Milano Riferimenti al testo: ppendice C, sezioni C.1

Dettagli

APPUNTI DI ELETTRONICA DIGITALE

APPUNTI DI ELETTRONICA DIGITALE APPUNTI DI ELETTRONICA DIGITALE Prerequisiti: Conoscere il sistema di numerazione binario Modulo 1 1. Concetti fondamentali L elettronica digitale tratta segnali di tipo binario, cioè segnali che possono

Dettagli

Logica booleana. Bogdan Maris ( )

Logica booleana. Bogdan Maris ( ) Logica booleana 1 Algebra di Boole Opera con i soli valori di verità 0 o 1 (variabili booleane o logiche) La struttura algebrica studiata dall'algebra booleana è finalizzata all'elaborazione di espressioni

Dettagli

Minimizzazione di reti/funzioni logiche con le Mappe di Karnaugh. 12 ottobre 2015

Minimizzazione di reti/funzioni logiche con le Mappe di Karnaugh. 12 ottobre 2015 Minimizzazione di reti/funzioni logiche con le Mappe di Karnaugh ottobre 5 Punto della situazione Stiamo studiando le reti logiche costruite a partire dalle porte logiche AND, OR, NOT per progettare l

Dettagli

Fondamenti dell Informatica Algebra di Boole. Prof.ssa Enrica Gentile

Fondamenti dell Informatica Algebra di Boole. Prof.ssa Enrica Gentile Fondamenti dell Informatica Algebra di Boole Prof.ssa Enrica Gentile Algebra di Boole Si basa su tre operazioni logiche: AND (*) OR (+) NOT (!) Gli operandi possono avere solo due valori: Vero () Falso

Dettagli

Reti Logiche Combinatorie

Reti Logiche Combinatorie Testo di riferimento: [Congiu] - 2.4 (pagg. 37 57) Reti Logiche Combinatorie 00.b Analisi Minimizzazione booleana Sintesi Rete logica combinatoria: definizione 2 Una rete logica combinatoria èuna rete

Dettagli

Architettura degli Elaboratori 4 - Reti Combinatorie e Algebra di Boole

Architettura degli Elaboratori 4 - Reti Combinatorie e Algebra di Boole Architettura degli Elaboratori 4 - Reti Combinatorie e Algebra di Boole Zeynep KIZILTAN Dipartimento di Scienze dell Informazione Università degli Studi di Bologna Anno Accademico 2008/2009 Sommario Porte

Dettagli

Calcolatori Elettronici Lezione 2 Algebra delle reti Logiche

Calcolatori Elettronici Lezione 2 Algebra delle reti Logiche Calcolatori Elettronici Lezione 2 Algebra delle reti Logiche Ing. Gestionale e delle Telecomunicazioni A.A. 27/8 Gabriele Cecchetti Algebra delle reti logiche Sommario: Segnali digitali vs. segnali analogici

Dettagli

Introduzione alla logica proposizionale

Introduzione alla logica proposizionale Introduzione alla logica proposizionale Mauro Bianco Questa frase è falsa Contents 1 Proposizioni 1 2 Altri operatori 4 Nota : Le parti delimitate da *** sono da considerarsi facoltative. 1 Proposizioni

Dettagli

Proposizioni logiche e algebra di Boole

Proposizioni logiche e algebra di Boole Proposizioni logiche e algebra di Boole Docente: Ing. Edoardo Fusella Dipartimento di Ingegneria Elettrica e Tecnologie dell Informazione Via Claudio 21, 4 piano laboratorio SECLAB Università degli Studi

Dettagli

I circuiti logici: definizione delle funzioni logiche

I circuiti logici: definizione delle funzioni logiche I circuiti logici: definizione delle funzioni logiche Prof. lberto orghese Dipartimento di Informatica borghese@di.unimi.it Università degli Studi di Milano Riferimenti al testo: ppendice C, sezioni C.1

Dettagli

CIRCUITI DIGITALI. La grandezza fisica utilizzata nella maggior parte dei circuiti digitali è la differenza di potenziale (tensione).

CIRCUITI DIGITALI. La grandezza fisica utilizzata nella maggior parte dei circuiti digitali è la differenza di potenziale (tensione). CIRCUITI DIGITALI Un circuito elettronico viene classificato come circuito digitale quando è possibile definire il suo comportamento per mezzo di due soli stati fisici di una sua grandezza caratteristica.

Dettagli

CODIFICA DELLE INFORMAZIONI MODULO 5

CODIFICA DELLE INFORMAZIONI MODULO 5 CODIFICA DELLE INFORMAZIONI MODULO 5 INFORMAZIONI: tipi Le informazioni sono concetti astratti che esistono indipendentemente dalla loro rappresentazione Tutto ciò che ci circonda è informazione Qualche

Dettagli

Operatori logici e algebra di boole

Operatori logici e algebra di boole Operatori logici e algebra di boole Le principali parti elettroniche dei computer sono costituite da circuiti digitali che, come è noto, elaborano segnali logici basati sullo 0 e sull 1. I mattoni fondamentali

Dettagli

I circuiti digitali: dalle funzioni logiche ai circuiti

I circuiti digitali: dalle funzioni logiche ai circuiti Architettura dei calcolatori e delle Reti Lezione 4 I circuiti digitali: dalle funzioni logiche ai circuiti Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi

Dettagli

Le porte logiche. Elettronica L Dispense del corso

Le porte logiche. Elettronica L Dispense del corso Le porte logiche Elettronica L Dispense del corso Gli Obiettivi Introdurre il concetto di funzione logica. Dare una corrispondenza tra funzioni logiche e strutture di gate elementari. Introdurre l algebra

Dettagli

Le variabili logiche possono essere combinate per mezzo di operatori detti connettivi logici. I principali sono:

Le variabili logiche possono essere combinate per mezzo di operatori detti connettivi logici. I principali sono: Variabili logiche Una variabile logica (o booleana) è una variable che può assumere solo uno di due valori: Connettivi logici True (vero identificato con 1) False (falso identificato con 0) Le variabili

Dettagli

I circuiti logici: definizione delle funzioni logiche

I circuiti logici: definizione delle funzioni logiche I circuiti logici: definizione delle funzioni logiche Prof. lberto orghese Dipartimento di Informatica borghese@di.unimi.it Università degli Studi di Milano Riferimenti al testo: ppendice C, sezioni C.1

Dettagli

Fondamenti di Informatica

Fondamenti di Informatica Fondamenti di Informatica Prof. Arcangelo Castiglione A.A. 2017/18 Outline Algebra di Boole Relazione con i Circuiti Logici Elementi Costitutivi Operatori Logici Elementari Funzioni Logiche (o Booleane)

Dettagli

17/10/16. Espressioni Booleane

17/10/16. Espressioni Booleane Espressioni Booleane Un espressione booleana è una sequenza composta da operatori booleani, parentesi, costanti e variabili booleane, induttivamente definita come segue: Espressioni ed operatori booleani

Dettagli

Dispensa di Informatica I.5

Dispensa di Informatica I.5 LE MACCHINE COMBINATORIE La capacità elaborativa del calcolatore risiede nel processore; il processore è in grado di eseguire un set di azioni elaborative elementari più o meno complesse Le istruzioni

Dettagli

Algebra di Boole Algebra di Boole

Algebra di Boole Algebra di Boole 1 L algebra dei calcolatori L algebra booleana è un particolare tipo di algebra in cui le variabili e le funzioni possono solo avere valori 0 e 1. Deriva il suo nome dal matematico inglese George Boole

Dettagli

Algebra di Boole. Andrea Passerini Informatica. Algebra di Boole

Algebra di Boole. Andrea Passerini Informatica. Algebra di Boole Andrea Passerini passerini@disi.unitn.it Informatica Variabili logiche Una variabile logica (o booleana) è una variable che può assumere solo uno di due valori: True (vero identificato con 1) False (falso

Dettagli

A CHI E' RIVOLTA? CHI PUO' ESSERE DEFINITO PROPOSIZIONE LOGICA?

A CHI E' RIVOLTA? CHI PUO' ESSERE DEFINITO PROPOSIZIONE LOGICA? ALGEBRA BOOLEANA O LOGICA GEORGE BOOLE (1815 1864) A CHI E' RIVOLTA? Alla classe degli elementi binari : 1; 0 Alla classe delle proposizioni logiche CHI PUO' ESSERE DEFINITO PROPOSIZIONE LOGICA? PROPOSIZIONE

Dettagli

Algebra di commutazione

Algebra di commutazione Algebra di commutazione Algebra booleana: introduzione Per descrivere i dispositivi digitali è necessario avere: Un modello che permette di rappresentare insiemi di numeri binari Le funzioni che li mettono

Dettagli

Calcolatori Elettronici

Calcolatori Elettronici Calcolatori Elettronici RETI LOGICHE: RETI COMBINATORIE Massimiliano Giacomin 1 INTRODUZIONE: LIVELLI HARDWARE, LIVELLO LOGICO PORTE LOGICHE RETI LOGICHE 2 LIVELLI HARDWARE Livello funzionale Livello logico

Dettagli

Introduzione all algebra di Boole. Introduzione all'algebra di Boole

Introduzione all algebra di Boole. Introduzione all'algebra di Boole Introduzione all algebra di Boole Introduzione all'algebra di Boole 1 Concetto di logica Esistono regole che sottostanno al ragionamento umano, o questo è una attività spontanea e casuale? Come mai certi

Dettagli

Funzioni booleane. Vitoantonio Bevilacqua.

Funzioni booleane. Vitoantonio Bevilacqua. Funzioni booleane Vitoantonio Bevilacqua bevilacqua@poliba.it Sommario. Il presente paragrafo si riferisce alle lezioni del corso di Fondamenti di Informatica e Laboratorio di Informatica dei giorni 9

Dettagli

Il livello logico digitale

Il livello logico digitale Il livello logico digitale porte logiche e moduli combinatori Algebra di commutazione Algebra booleana per un insieme di due valori Insieme di elementi A={,} Operazioni NOT (operatore unario) => = e =

Dettagli

Algebra di commutazione

Algebra di commutazione Algebra di commutazione Calcolatori Elettronici 1 Algebra booleana: introduzione Per descrivere i dispositivi digitali è necessario avere: Un modello che permette di rappresentare insiemi di numeri binari

Dettagli

Reti logiche: introduzione

Reti logiche: introduzione Corso di Calcolatori Elettronici I Reti logiche: introduzione ing. Alessandro Cilardo Corso di Laurea in Ingegneria Biomedica Circuiti e porte logiche Esempio di rete di commutazione: Circuiti e porte

Dettagli

Università degli Studi di Roma Tor Vergata Facoltà di Ingegneria Corso di Laurea in Ingegneria Medica Operazioni logiche

Università degli Studi di Roma Tor Vergata Facoltà di Ingegneria Corso di Laurea in Ingegneria Medica Operazioni logiche Università degli Studi di Roma Tor Vergata Facoltà di Ingegneria Corso di Laurea in Ingegneria Medica Operazioni logiche L algebra di oole Rev.1.1 of 2012-04-26 Componenti logiche di un elaboratore Possiamo

Dettagli

Corso di studi in Ingegneria Elettronica A.A. 2006/2007. Calcolatori Elettronici. Esercitazione n 2

Corso di studi in Ingegneria Elettronica A.A. 2006/2007. Calcolatori Elettronici. Esercitazione n 2 Corso di studi in Ingegneria Elettronica A.A. 26/27 Calcolatori Elettronici Esercitazione n 2 Codici a correzione di errore Recupero degli errori hardware tramite codifiche ridondanti Codifiche con n =

Dettagli

Operazioni logiche e algebra di Boole

Operazioni logiche e algebra di Boole Operazioni logiche e algebra di Boole Definizioni a parole delle operazioni logiche Condizioni di indifferenza Fasi del progetto di un circuito combinatorio Forma canonica Lista della spesa (per i compiti

Dettagli

Algebra di Boole e circuiti logici

Algebra di Boole e circuiti logici lgebra di oole e circuiti logici Progetto Lauree Scientiiche 29 Dipartimento di Fisica Università di Genova Laboratorio di Fisica in collaborazione con il Liceo Scientiico Leonardo da Vinci Genova - 23

Dettagli

Algebra di Boole. Modulo 2. Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB)

Algebra di Boole. Modulo 2. Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Algebra di Boole Modulo 2 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Algebra di Boole L algebra di Boole o della commutazione è lo strumento

Dettagli

Esercitazioni di Reti Logiche. Lezione 3

Esercitazioni di Reti Logiche. Lezione 3 Esercitazioni di Reti Logiche Lezione 3 Semplificazione & Porte NAND/NOR Zeynep KIZILTAN zkiziltan@deis.unibo.it Argomenti Semplificazione con l uso delle mappe di Karnaugh a 3 variabili a 4 variabili

Dettagli

Algebra di commutazione. Reti combinatorie

Algebra di commutazione. Reti combinatorie lgebra di commutazione Reti combinatorie Corso CSO prof. C. Silvano lgebra di oole L algebra di oole (dal suo inventore, il matematico inglese George oole, 1815-1864) 86 serve e a descrivere e e le operazioni

Dettagli

Calcolo numerico e programmazione Elementi di logica

Calcolo numerico e programmazione Elementi di logica Calcolo numerico e programmazione Elementi di logica Tullio Facchinetti 23 marzo 2012 10:50 http://robot.unipv.it/toolleeo Algebra booleana (George Boole (1815-1864)) è definita

Dettagli

Algebra di Boole e circuiti dalle funzioni logiche ai circuiti digitali

Algebra di Boole e circuiti dalle funzioni logiche ai circuiti digitali rchitetture dei calcolatori e delle reti lgebra di oole e circuiti dalle funzioni logiche ai circuiti digitali. orghese, F. Pedersini Dip. Informatica Università degli Studi di Milano L 3 1 lgebra di oole

Dettagli

Esercitazione del 15/03/ Soluzioni

Esercitazione del 15/03/ Soluzioni Esercitazione del 15/03/2007 - Soluzioni Rappresentazioni possibili per una funzione logica: circuito logico: A B Y forma tabellare (tabella lookup): formula algebrica: A B Y 0 0 0 0 1 1 1 0 1 1 1 0 Y=

Dettagli

Informatica e Bioinformatica: Circuiti

Informatica e Bioinformatica: Circuiti Date TBD Macchina Hardware/Software Sistema Operativo Macchina Hardware La macchina hardware corrisponde alle componenti fisiche del calcolatore (quelle viste nella lezione precedente). Un sistema operativo

Dettagli

Architettura degli elaboratori Ricapitolando (ciascuna freccia rappresenta un procedimento, che vedremo)

Architettura degli elaboratori Ricapitolando (ciascuna freccia rappresenta un procedimento, che vedremo) Ricapitolando 1:1 A + /A /B :1 :1 0 1 0 1 0 1 1 1 1 Tabella verità Espressione booleana Architettura degli elaboratori - 30 - Ricapitolando (ciascuna freccia rappresenta un procedimento, che vedremo) Analisi

Dettagli

I circuiti digitali: dalle funzioni logiche ai circuiti

I circuiti digitali: dalle funzioni logiche ai circuiti rchitettura dei calcolatori e delle Reti Lezione 4 I circuiti digitali: dalle funzioni logiche ai circuiti Proff.. orghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi

Dettagli

Dispensa su. Funzioni Booleane. Jianyi Lin Università degli Studi di Milano

Dispensa su. Funzioni Booleane. Jianyi Lin Università degli Studi di Milano Dispensa su Funzioni Booleane Jianyi Lin Università degli Studi di Milano jianyi.lin@unimi.it 18 novembre 2011 1 Operazioni booleane In questa sezione introduciamo il concetto di funzione booleana e accenniamo

Dettagli

Corso di Calcolatori Elettronici I

Corso di Calcolatori Elettronici I Corso di Calcolatori Elettronici I Algebra di Boole: definizione e proprietà Roberto Canonico Università degli Studi di Napoli Federico II A.A. 2016-2017 Roberto Canonico Corso di Calcolatori Elettronici

Dettagli

CODIFICA DELLE INFORMAZIONI MODULO 5

CODIFICA DELLE INFORMAZIONI MODULO 5 CODIFICA DELLE INFORMAZIONI MODULO 5 INFORMAZIONI: tipi Le informazioni sono concetti astratti che esistono indipendentemente dalla loro rappresentazione Tutto ciò che ci circonda è informazione Qualche

Dettagli

Algebra di Boole e reti logiche. 6 ottobre 2017

Algebra di Boole e reti logiche. 6 ottobre 2017 Algebra di Boole e reti logiche 6 ottobre 2017 Punto della situazione Abbiamo visto le varie rappresentazioni dei numeri in binario e in altre basi e la loro aritmetica Adesso vedremo la logica digitale

Dettagli

Il Livello Logico-Digitale

Il Livello Logico-Digitale Il Livello Logico-Digitale Reti Combinatorie Sommario Il segnale binario. lgebra di oole e funzioni logiche. Porte logiche. nalisi di circuiti combinatori. Sintesi di circuiti combinatori. Sintesi con

Dettagli

Laboratorio del 10/11/ Soluzioni

Laboratorio del 10/11/ Soluzioni Laboratorio del 10/11/2010 - Soluzioni Rappresentazioni possibili per una funzione logica: circuito logico: A B Y forma tabellare (tabella lookup): formula algebrica: A B Y 0 0 0 0 1 1 1 0 1 1 1 0 Y= (NOT

Dettagli

Operatori di relazione

Operatori di relazione Condizioni Negli algoritmi compaiono passi decisionali che contengono una proposizione (o predicato) dal cui valore di verità dipende la sequenza dinamica Chiamiamo condizioni tali proposizioni Nei casi

Dettagli

I circuiti digitali: dalle funzioni logiche ai circuiti (le SOP)

I circuiti digitali: dalle funzioni logiche ai circuiti (le SOP) I circuiti digitali: dalle funzioni logiche ai circuiti (le SOP) Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@di.unimi.it Università degli Studi di Milano Riferimento al testo:

Dettagli

Fondamenti di Informatica B

Fondamenti di Informatica B Fondamenti di Informatica B Lezione n.2 Alberto Broggi Gianni Conte A.A. 25-26 Fondamenti di Informatica B Algebra booleana Circuiti logici Elementi primitivi Esercizi con elementi logici Lezione n.2n

Dettagli

Rappresentazione in virgola mobile (floating-point) Rappresentazione in virgola mobile (floating-point)

Rappresentazione in virgola mobile (floating-point) Rappresentazione in virgola mobile (floating-point) Se ho una rappresentazione in virgola fissa (es. su segno e 8 cifre con 3 cifre alla destra della virgola) rappresento numeri (base ) compresi fra -99999.999 e 99999.999 Non posso rappresentare, quindi:

Dettagli

Algebra di Boole e circuiti dalle funzioni logiche ai circuiti digitali

Algebra di Boole e circuiti dalle funzioni logiche ai circuiti digitali rchitetture dei calcolatori e delle reti lgebra di oole e circuiti dalle funzioni logiche ai circuiti digitali. orghese, F. Pedersini Dip. Informatica Università degli Studi di Milano L 3 1 lgebra di oole

Dettagli

Il Livello Logico-Digitale. Reti combinatorie -2015

Il Livello Logico-Digitale. Reti combinatorie -2015 Il Livello Logico-Digitale Reti combinatorie 18-10 -2015 Sommario Il segnale binario Algebra di Boole e funzioni logiche Porte logiche Analisi e sintesi di reti combinatorie: cenni - 2 - 1- Segnali e informazioni

Dettagli

Algebra di commutazione

Algebra di commutazione Algebra di commutazione Calcolatori Elettronici 1 Algebra booleana Operazione: una operazione op sull'insieme S={s1,s2,...} è una funzione op : SxS S che da SxS (S cartesiano S) porta in S. Calcolatori

Dettagli

Procedimento di sintesi. Dalla tavola della verità si ricavano tante funzioni di commutazione quante sono le variabili di uscita

Procedimento di sintesi. Dalla tavola della verità si ricavano tante funzioni di commutazione quante sono le variabili di uscita CIRCUITI LOGICI COMBINATORI. Generalità Si parla di circuito logico combinatorio quando il valore dell uscita dipende in ogni istante soltanto dalla combinazione dei valori d ingresso. In logica combinatoria

Dettagli

Esercizi di sintesi - Soluzioni

Esercizi di sintesi - Soluzioni Esercizi di sintesi - Soluzioni Rappresentazioni possibili per una funzione logica: circuito logico: A B Y forma tabellare (tabella lookup): formula algebrica: A B Y 0 0 0 0 1 1 1 0 1 1 1 0 Y= (NOT A)B

Dettagli

I circuiti digitali: dalle funzioni logiche ai circuiti (le SOP)

I circuiti digitali: dalle funzioni logiche ai circuiti (le SOP) I circuiti digitali: dalle funzioni logiche ai circuiti (le SOP) Prof. Alberto Borghese Dipartimento di Informatica borghese@di.unimi.it Università degli Studi di Milano Riferimento al testo: Sezione C.3;

Dettagli

FUNZIONI BOOLEANE. Vero Falso

FUNZIONI BOOLEANE. Vero Falso FUNZIONI BOOLEANE Le funzioni booleane prendono il nome da Boole, un matematico che introdusse un formalismo che opera su variabili (dette variabili booleane o variabili logiche o asserzioni) che possono

Dettagli

Le mappe di Karnaugh

Le mappe di Karnaugh Le mappe di Karnaugh Le semplificazioni di una funzione logica possono essere effettuate mediante i teoremi dell'algebra di Boole. Esiste però un metodo molto più pratico di semplificazione che quello

Dettagli

Introduzione ed elementi dell'algebra di Boole

Introduzione ed elementi dell'algebra di Boole Introduzione ed elementi dell'algebra di Boole CORSO DI CALCOLATORI ELETTRONICI I CdL Ingegneria Biomedica (A-I) Università degli Studi di Napoli Federico II Il Calcolatore Elettronico è un sistema:»

Dettagli

PIANO DI LAVORO DEI DOCENTI

PIANO DI LAVORO DEI DOCENTI Pag. 1 di 5 Docente: Materia insegnamento: ELETTRONICA GENERALE Dipartimento: Anno scolastico: ELETTRONICA ETR Classe 1 Livello di partenza (test di ingresso, livelli rilevati) Il corso richiede conoscenze

Dettagli

Michele Scarpiniti. L'Amplificatore Operazionale

Michele Scarpiniti. L'Amplificatore Operazionale Michele Scarpiniti L'Amplificatore Operazionale MICHELE SCARPINITI L Amplificatore Operazionale Versione 1.0 Dipartimento DIET Università di Roma La Sapienza via Eudossiana 18, 00184 Roma L AMPLIFICATORE

Dettagli

Dalla tabella alla funzione canonica

Dalla tabella alla funzione canonica Dalla tabella alla funzione canonica La funzione canonica è la funzione logica associata alla tabella di verità del circuito che si vuole progettare. Essa è costituita da una somma di MinTerm con variabili

Dettagli

Prof. Pagani Corrado ALGEBRA BOOLEANA

Prof. Pagani Corrado ALGEBRA BOOLEANA Prof. Pagani Corrado ALGEBRA BOOLEANA INTRODUZIONE L'algebra di Boole è definita da G. Boole, britannico, seconda metà 8 E un modello matematico che rappresenta le leggi della logica utilizzando variabili

Dettagli

Algebra e circuiti elettronici

Algebra e circuiti elettronici Algebra e circuiti elettronici I computer operano con segnali elettrici con valori di potenziale discreti Sono considerati significativi soltanto due potenziali (high/ low); i potenziali intermedi, che

Dettagli

Sistemi Combinatori & Mappe di Karnaugh

Sistemi Combinatori & Mappe di Karnaugh Sistemi Combinatori & Mappe di Karnaugh AB E=0 F=0 E=1 F=0 00 01 11 10 AB 00 01 11 10 00 1 0 0 0 00 0 0 0 0 01 0 0 0 0 01 0 0 0 0 11 0 0 1 0 11 0 0 1 0 10 0 0 0 1 10 0 0 0 1 AB 00 01 11 10 AB 00 01 11

Dettagli

Sintesi di reti combinatorie. Motivazioni. Sommario. Funzioni Espressioni

Sintesi di reti combinatorie. Motivazioni. Sommario. Funzioni Espressioni 1 Teorema di espansione di Shannon (Boole) Sintesi di reti combinatorie Funzioni Espressioni 2 Forme canoniche 3 Metriche per il costo di una rete 4 Forme normali Motivazioni Si deve trovare una metodologia

Dettagli

4 STRUTTURE CMOS. 4.1 I componenti CMOS

4 STRUTTURE CMOS. 4.1 I componenti CMOS 4.1 4 STRUTTURE CMOS 4.1 I componenti CMOS Un componente MOS (Metal-Oxide-Silicon) transistor è realizzato sovrapponendo vari strati di materiale conduttore, isolante, semiconduttore su un cristallo di

Dettagli