I. Generalità, definizioni, classificazioni. MACCHINA A FLUIDO

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "I. Generalità, definizioni, classificazioni. MACCHINA A FLUIDO"

Transcript

1 I. eneralità, definizioni, classificazioni. I.1 Definizioni rigardanti: macchine motrici ed operatrici e loro classificazione. Una macchina è n insieme di organi fissi e mobili, vincolati tra loro cinematicamente, in grado di trasformare n energia in ingresso E i fornendo in scita n energia E. Nell accezione di macchina almeno no degli elementi essenziali deve essere soggetto a moto, e almeno na delle energie in ingresso e in scita deve essere di tipo meccanico. La trasformazione è ottenta tramite l tilizzo di n flido (aeriforme o liqido) che è la sostanza di lavoro. Se E = E meccanica e E i =E primaria si parla di macchina motrice; Se invece E = E primaria e E i = E meccanica si parla di macchina operatrice. E i MAHINA A FLUIDO E La trasformazione dell energia nel modo anzidetto non avviene sempre in n nica macchina. Molto spesso qesta conversione è attata da n insieme di macchine che costitiscono n impianto. Lo schema a blocchi di n impianto è del ttto simile a qello di na singola macchina. Per qesto possiamo affermare che n impianto pò essere visto, nel so complesso, come n nica macchina. I.2 Fonti di energia primaria (esaribili e rinnovabili) L energia in ingresso in na macchina motrice pò essere di tipo segente: energia termica: si ottiene dalla combstione di n materiale solido (p.e. carbone), liqido (p.e. petrolio) o gassoso (p.e. gas natrale) denominato combstibile; energia potenziale gravitazionale: è l energia possedta da n corpo qando si trova a na certa altezza rispetto al livello del mare (p.e. na massa d acqa posta ad alta qota); energia cinetica: è l energia possedta da n flido in movimento (p.e. l aria negli impianti eolici o l acqa negli impianti che sfrttano le maree). Le fonti di energia primaria, cioè energia che non deriva da precedenti processi di lavorazione, si classificano in: fonti di energia tradizionale: sono qelle derivanti da energia termica, cinetica, eolica (mlini a vento) o potenziale; fonti di energia non tradizionale: sono qelle derivanti da energia solare, eolica o geotermica (vapori sitati nel sottosolo ad elevata temperatra e pressione). Esiste inoltre na distinzione tra: fonti di energia rinnovabili; fonti di energia non rinnovabili. Ttte le fonti di energia sono in realtà rinnovabili ma alcne di esse si ricostitiscono in tempi troppo lnghi per l omo (p.e. il petrolio); perciò esse sono classificate come fonti di energia non rinnovabili. 1

2 E possibile definire, adesso, na prima nità di misra dell energia. La sigla TEP, acronimo di tonnellata eqivalente di petrolio, è n'nità di misra convenzionale dell energia ed è impiegata come indice per valtare il grado d indstrializzazione di n Paese. kcal kj Atteso che il potere calorifico inferiore del petrolio è di si ottiene che: 1TEP = 10 7 kcal 4, kj I combstibili possiedono sempre na certa qantità di idrogeno che drante la combstione si trasforma in H 2 O e qindi na parte del calore svilppato è sottratta per il passaggio dell acqa dallo stato liqido allo stato di vapore. Il potere calorifico inferiore di n materiale è la qantità di calore, decrtata dalle perdite dovte alla vaporizzazione dell acqa prodotta dalla combstione, che si riesce a ottenere brciando completamente 1 kg di qel materiale. Il potere calorifico inferiore si denota con il simbolo H i. Sommando al potere calorifico inferiore il calore sottratto dalla vaporizzazione dell acqa si ottiene il potere calorifico speriore, che è denotato con il simbolo H s. Il potere calorifico inferiore e il potere calorifico speriore sono de indici che ci consentono di conoscere la qalità di n determinato combstibile. Ricordiamo che l energia che si riesce a ricavare da 1 kg di petrolio vale: E kj Invece l energia che si pò ottenere da na massa d acqa pari ad 1 kg e posta a 1 m di altezza è gale a: E = mgh = 9,81 J i rendiamo facilmente conto che per avere energie paragonabili a qelle derivate dai combstibili si dovranno tilizzare grandi masse d acqa con salti notevoli. In Italia la prodzione di energia elettrica a partire dall energia potenziale idralica ammonta a 21% del totale, qella a partire dall energia termica del sottosolo solo a 1,5%. La prodzione rimanente è coperta da centrali termoelettriche che sfrttano l energia proveniente da combstibili tradizionali (9% della prodzione totale di energia elettrica dal carbone, 49% dai derivati del petrolio, 17,5% dal gas natrale, 2% da gas residi di processi chimici e metallrgici). Ricordiamo infatti che è vietata la prodzione di energia elettrica a partire da combstibili ncleari in rispetto del referendm popolare del novembre L energia solare ed eolica è sata come fonte di energia primaria per la prodzione di energia elettrica solo per piccole applicazioni. I.3 lassificazione delle macchine motrici ed operatrici Le macchine motrici convenzionali sono di tipo termico o idralico secondo la fonte di energia primaria, e lo stesso vale per le macchine operatrici. Tra le macchine motrici ci sono anche qelle non convenzionali che sfrttano fonti di energia primaria non convenzionale (p.e. solare o eolica). Le macchine idraliche e termiche possono, a loro volta, essere classificate in alternative (pistone e cilindro) o rotative secondo il moto prevalente degli organi con i qali sono costitite le macchine. Le macchine alternative o rotative possono essere lteriormente classificate in volmetriche o dinamiche. Le macchine volmetriche, come ad esempio i motori a combstione interna, sono caratterizzate da n volme ben definito in ci evolve il flido. Le macchine dinamiche sono invece attraversate con continità dal flido di lavoro. kg kg 2

3 Rispetto alla direzione del moto del flido si parlerà di macchine dinamiche assiali, radiali e a flsso misto. Non si fa tale distinzione nelle macchine volmetriche perché non esiste na direzione preferenziale di moto. Nel volme di controllo ci sono al più dei moti vorticosi del flido I.4 Potenze installate per impianti termoelettrici ed idroelettrici. Tipo di impianto o macchina Potenza nominale I.V. Impianto a vapore 10 MW 1000 MW T.. Trbina a gas 1 MW 200 MW M..I. Motori a combstione interna 1 kw 30 MW I.. Impianti combinati (gas-vapore) > 100 MW T.I. Trbina idralica 1 MW 200 MW Q 1 =m c H i MAHINA MOTRIE O IMPIANTO MOTORE L Per le macchine o gli impianti motori termici l energia in entrata è rappresentata dalla qantità di calore Q 1 (misrata in kj o kcal) mentre l energia in scita è rappresentata dal lavoro tile L (misrato in kj o ). Potremo anche considerare in ingresso la potenza termica Q & 1 (misrata in kw o kcal h ) ottenendo in scita la potenza tile P (misrata in kw). Il rendimento globale di na macchina motrice termica è definito come: L m H = (I.4.1) c i dove si è indicato con m c la massa di combstibile brciata nella trasformazione. Il rendimento è n indice che ci comnica informazioni slla bontà di na macchina motrice e pò essere intitivamente rivisto come rapporto tra l energia che si riesce a ottenere e qella che si deve spendere per realizzare la conversione. E possibile esprimere il rendimento globale anche in termini di potenza: P m H = (I.4.2) & c i dmc dove si è indicato con m& c = la portata massica del combstibile. dt Negli impianti motore si realizzano sempre delle trasformazioni cicliche e qindi, per il 2 Principio della Termodinamica, non sarà possibile trasformare integralmente il calore disponibile in lavoro 3

4 tile e ciò significa che < 1. Ma di qanto qesto rendimento è minore dell nità? La sitazione prtroppo non è molto confortante, come si vede dalla tabella segente: Tipo di impianto Rendimento globale I.V. Impianto a vapore 0,40 0,45 T.. Trbina a gas 0,35 0,40 M..I. Motori a combstione interna 0,10 0,52 I.. Impianti combinati (gas-vapore) 0,52 0,58 Nel caso della T.I. il rendimento globale va determinato tenendo conto che non è tilizzato combstibile ma acqa ad alta qota che fornisce la propria energia potenziale gravitazionale. Esprimendo il rendimento come rapporto di potenze si avrà: = P ρ g h Q (I.4.3) 3 2 nella qale ρ è la densità dell acqa (espressa in kg m ), g=9,81 m s il modlo dell accelerazione di gravità, h è il dislivello in metri tra i bacini speriore ed inferoire e Q la 3 portata volmetrica d acqa (espressa in m s ) che attraversa l impianto. Tipo di impianto Rendimento globale T.I. Trbina idralica 0,85 0,90 L elevato rendimento è dovto al fatto che le trbine idraliche non sono macchine termiche ma effettano semplicemente na conversione di energia meccanica. Il limite di rendimento è dovto allora essenzialmente a motivi tecnologici di costrzione di tali macchine. I.5 La trasformazione dell energia primaria negli impianti motori termici (IMT): definizione di costo nitario dell energia. Si definisce consmo specifico di calore il reciproco del rendimento globale: S 1 c i = = (I.5.1) m L H Esso rappresenta la qantità di calore necessaria a prodrre di 1 kj di energia meccanica in scita. Se esprimiamo il lavoro in si pò anche scrivere: Se inoltre esprimiamo la qantità di calore in kcal abbiamo ancora: 3600 kj S = (I.5.2) 860 kcal S = (I.5.3) 4

5 Si definisce consmo specifico di combstibile il rapporto tra il consmo specifico di calore e il potere calorifico inferiore del combstibile in esame: s mc kg sc = = H L (I.5.4) che rappresenta la massa di combstibile necessaria per prodrre 1 di energia meccanica. Ma secondo il tipo di combstibile avrò dei costi diversi. Si definisce costo nitario del combstibile il costo di 1 kg di combstibile: [ ] = kg i c (I.5.5) Posso allora ricavare il costo del moltiplicando la (I.5.4) per la (I.5.5): = [ ] = c sc (I.5.6) I costi variabili dell impianto saranno allora dati dal prodotto del costo del per il nmero di prodotti e saranno espressi in : v = E = E (I.5.7) c sc Per ottenere la crva dei costi totali dobbiamo sommare ai costi variabili i costi fissi dell impianto: tot = + = + E (I.5.8) f v f c sc I costi fissi incideranno in maniera diversa secondo il rendimento dell impianto. Dal pnto di vista dell istallazione, gli impianti di maggior rendimento saranno anche qelli più costosi e complessi. Per qesti grossi impianti sarà allora più conveniente prodrre grandi qantità di energia come si pò evincere dalla crva dei costi qi di segito riportata. 5

6 tot f f ϕ E La crva dei costi totali ha n andamento lineare crescente con il nmero di prodotti E. La pendenza φ della retta dei costi è tanto più piccola qanto maggiore è il rendimento, ossia qanto minore è il consmo specifico di calore. Più correttamente l energia prodotta in n certo intervallo di tempo T è gale all integrale della potenza effettiva a ci sta lavorando l impianto perché qesta non è sempre gale alla potenza nominale in ttto T: = T 0 E P dt = f P T (I.5.9) effettiva nella qale f [ 0,1] è il fattore di tilizzo dell impianto alla potenza nominale. Se si prevede che l impianto non debba fnzionare qasi mai alla potenza nominale conviene optare per n impianto con minore rendimento per non incorrere in n costo totale eccessivo, penalizzato da n elevato costo fisso e da n basso nmero di prodotti. Siamo evidentemente nella zona del diagramma a sinistra del pnto E. Se invece si intende prodrre na notevole qantità di energia conviene adottare na solzione che preveda n alto rendimento e far fnzionare l impianto per più tempo possibile alla potenza nominale. In qesto caso siamo invece nella zona del grafico a destra del pnto E. li impianti, che fnzionano come il primo descritto, sono chiamati impianti di pnta perché devono coprire i picchi di potenza richiesti dagli tenti nell arco della giornata; qelli invece che fnzionano secondo le modalità descritte nel secondo caso sono chiamati impianti di base perché sono impiegati per coprire il valore medio del fabbisogno nazionale giornaliero di energia elettrica. n 6

INTRODUZIONE: IL CONTESTO DEI SISTEMI

INTRODUZIONE: IL CONTESTO DEI SISTEMI INTRODUZIONE: IL CONTESTO DEI SISTEMI Il mondo reale è per sa natra complesso e le organizzazioni mane lo sono in modo particolare. Per potere comprendere e gestire la realtà è indispensabile svilppare

Dettagli

configurazione in un sistema) Grandezza fisica connessa al movimento reale o potenziale, macro o microscopico, di un sistema

configurazione in un sistema) Grandezza fisica connessa al movimento reale o potenziale, macro o microscopico, di un sistema ENERGIA Capacità di un sistema di compiere lavoro (Lavoro: atto di produrre un cambiamento di configurazione in un sistema) Grandezza fisica connessa al movimento reale o potenziale, macro o microscopico,

Dettagli

Impianti di produzione dell energia elettrica

Impianti di produzione dell energia elettrica Impianti di produzione dell energia elettrica Alberto Berizzi Dipartimento di Elettrotecnica, Politecnico di Milano e-mail: alberto.berizzi@polimi.it Energia e lavoro Lavoro è l atto di produrre un cambiamento

Dettagli

Sistemi Interconnessi

Sistemi Interconnessi Corso di Fondamenti di Atomatica Università di Roma La Sapienza Sistemi Interconnessi L. Lanari Dipartimento di Informatica e Sistemistica Università di Roma La Sapienza Roma, Ital Ultima modifica Ma 29,

Dettagli

FONTI DI ENERGIA. Fonti energetiche primarie. Fonti energetiche secondarie. sostanza o fenomeno capace di dar luogo ad una liberazione di energia

FONTI DI ENERGIA. Fonti energetiche primarie. Fonti energetiche secondarie. sostanza o fenomeno capace di dar luogo ad una liberazione di energia FONTI DI ENERGIA sostanza o fenomeno capace di dar luogo ad una liberazione di energia Fonti energetiche primarie quelle che si trovano disponibili in natura si possono classificare in: Fonti energetiche

Dettagli

CENTRALI TERMOELETTRICHE

CENTRALI TERMOELETTRICHE CENTRALI TERMOELETTRICHE Introduzione I procedimenti tradizionali di conversione dell energia, messi a punto dall uomo per rendere disponibili, a partire da fonti di energia naturali, energia in forma

Dettagli

Quanti centesimi mancano per avere 1 unità se ho 30 centesimi?... E se ne ho 35?... E se ne ho 73?... 0,5 1,4 3,2 7,4 0,7 0,78 1,12 1,06

Quanti centesimi mancano per avere 1 unità se ho 30 centesimi?... E se ne ho 35?... E se ne ho 73?... 0,5 1,4 3,2 7,4 0,7 0,78 1,12 1,06 I NUMERI DECIMALI Calcolo rapido Rispondi alle segenti domande. Qanti decimi occorrono per fare 1 nità?... E mezza nità?... Qanti decimi mancano per avere 1 nità intera se ho 7 decimi?... E se ne ho 6?...

Dettagli

L ENERGIA. Il calore di un termosifone non si vede, ma provate a metterci una mano sopra!

L ENERGIA. Il calore di un termosifone non si vede, ma provate a metterci una mano sopra! L ENERGIA 1 COS E L ENERGIA? L energia è una cosa astratta, non si tocca e non si vede, ma se ne conoscono gli aspetti e gli effetti. Il calore di un termosifone non si vede, ma provate a metterci una

Dettagli

Struttura elettronica delle molecole. Teoria quantistica del legame chimico

Struttura elettronica delle molecole. Teoria quantistica del legame chimico Strttra elettronica delle molecole. Teoria qantistica del legame chimico Lo ione idrogeno molecolare H 2 + Eq. Schroedinger singolo elettrone La fnzione d onda φ b soddisfa na eqazione analoga. Gli atovalori

Dettagli

M A C C H I N E A F L U I D O

M A C C H I N E A F L U I D O 1 M A C C I N E A F L U I D O MACCINA: è n sistea di organi fissi e obili vincolati gli ni agli altri da legai definiti cineaticaente e disposti in odo tale da copiere, ovendosi sotto l azione di forze

Dettagli

I NUMERI NATURALI. Per cominciare impariamo a leggere alcuni numeri naturali e dopo prova a scriverli nella tua lingua:

I NUMERI NATURALI. Per cominciare impariamo a leggere alcuni numeri naturali e dopo prova a scriverli nella tua lingua: I NUMERI NATURALI Per cominciare impariamo a leggere alcni nmeri natrali e dopo prova a scriverli nella ta linga: NUMERI ITALIANO LA TUA LINGUA 1 UNO 2 DUE 3 TRE 4 QUATTRO 5 CINQUE 6 SEI 7 SETTE 8 OTTO

Dettagli

Corso di Termodinamica Applicata Esercitazione n 2

Corso di Termodinamica Applicata Esercitazione n 2 Corso di Termodinamica Applicata Esercitazione n 2 13 maggio 2013 Indice Consegna 1 1 Dati ed Ipotesi 2 2 Soluzione e Risultati 5 3 Discussione dei Risultati 20 Consegna Si consideri un impianto di condizionamento

Dettagli

Teoria normativa della politica economica

Teoria normativa della politica economica Teoria normativa della politica economica La teoria normativa si occpa di indicare il metodo e, di consegenza, le scelte che n atorità pbblica (policy maker) razionale dovrebbe assmere per persegire il

Dettagli

Appunti ed Esercizi di Fisica Tecnica e Macchine Termiche. Cap.9. Principi di funzionamento delle macchine a fluido

Appunti ed Esercizi di Fisica Tecnica e Macchine Termiche. Cap.9. Principi di funzionamento delle macchine a fluido Appnti ed Esercizi di Fisica Tecnica e Macchine Termiche Cap.9. Principi di fnzionamento delle macchine a flido Paolo Di Marco Versione 006.0 8.05.07. La presente dispensa è redatta ad esclsivo so didattico

Dettagli

CORSO DI TECNOLOGIA INS. MARIO DI PRINZIO INS. DI SOSTEGNO SABRINA DI CELMA

CORSO DI TECNOLOGIA INS. MARIO DI PRINZIO INS. DI SOSTEGNO SABRINA DI CELMA ISITITUTO COMPRENSIVO G. DE PETRA CASOLI (CH) DIR. SCOLASTICO : DOTT. SSA ANNA DI MARINO ANNO SCOLASTICO 2011\2012 CORSO DI TECNOLOGIA INS. MARIO DI PRINZIO INS. DI SOSTEGNO SABRINA DI CELMA CLASSI TERZE

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Università degli Stdi di Siena Facoltà di Economia Esercizi di Matematica Finanziaria relativi ai capitoli XI-XIII del testo Cladio Pacati a.a. 998 99 c Cladio Pacati ttti i diritti riservati. Il presente

Dettagli

Il geotermico. Dati Statistici al 31 dicembre 2008. a cura dell Ufficio Statistiche

Il geotermico. Dati Statistici al 31 dicembre 2008. a cura dell Ufficio Statistiche Il geotermico Dati Statistici al 31 dicembre 2008 a cura dell Ufficio Statistiche INDICE Introduzione... 2 Glossario... 3 Impianti geotermoelettrici... 4 Gli impianti geotermoelettrici in Italia dal 1997

Dettagli

L ENERGIA EOLICA CAPITOLO 2

L ENERGIA EOLICA CAPITOLO 2 CAPITOLO L ENERGIA EOLICA Come noto, l tilizzo dell energia eolica nella sa forma attale rappresenta il perfezionamento di na tecnologia di prodzione energetica già impiegata dall omo nel corso di molti

Dettagli

Energy in our life. 6. Perché risparmiare energia? 1. Forme di energia:

Energy in our life. 6. Perché risparmiare energia? 1. Forme di energia: Energy in our life 1. Forme di energia: Energia meccanica; Energia nucleare; Energia elettrica; Energia chimica; Energia termica; 1. Consumi nel mondo; 2. Consumi in italia; 3. Consumi in Sicilia; 4. Energia

Dettagli

UNIVERSITA DEGLI STUDI DI UDINE

UNIVERSITA DEGLI STUDI DI UDINE UNIVERSITA DEGLI STUDI DI UDINE DIPARTIMENTO DI ENERGETICA E MACCHINE Impianti di accumulo mediante pompaggio: caratteristiche generali e peculiarità funzionali Piero Pinamonti 1 Potenza efficiente degli

Dettagli

CENTRALI TERMOELETTRICHE

CENTRALI TERMOELETTRICHE CENTRALI TERMOELETTRICHE Le centrali termoelettriche sono impianti che utilizzano l energia chimica dei combustibili per trasformarla in energia elettrica. Nelle centrali termoelettriche la produzione

Dettagli

Le fonti di energia rinnovabile

Le fonti di energia rinnovabile Le fonti di energia rinnovabile ENERGIA EOLICA SOLARE FOTOVOLTAICO E TERMICO IDROELETTRICO 26 novembre 2007 26 Le fonti di energia rinnovabile ENERGIA GEOTERMICA ENERGIA DALLE MAREE IL RISPARMIO ENERGETICO

Dettagli

CAPITOLO 1 CICLO RANKINE (CICLO A FLUIDO BIFASE) TURBINE A VAPORE

CAPITOLO 1 CICLO RANKINE (CICLO A FLUIDO BIFASE) TURBINE A VAPORE CAPITOLO 1 CICLO RANKINE (CICLO A FLUIDO BIFASE) TURBINE A VAPORE 1 CICLO RANKINE IL CICLO TERM ODINAM ICO RANKINE E COMPO STO DA Q UATTRO TRASFO RM AZIO NI PRINCIPALI (COMPRESSIO NE, RISCALDAM ENTO, ESPANSIO

Dettagli

Unità di misura. Perché servono le unità di misura nella pratica di laboratorio e in corsia? Le unità di misura sono molto importanti

Unità di misura. Perché servono le unità di misura nella pratica di laboratorio e in corsia? Le unità di misura sono molto importanti Unità di misura Le unità di misura sono molto importanti 1000 è solo un numero 1000 lire unità di misura monetaria 1000 unità di misura monetaria ma il valore di acquisto è molto diverso 1000/mese unità

Dettagli

L'ENERGIA PRIMARIA CONSUMATA DA UN EDIFICIO: FATTORI DI CONVERSIONE

L'ENERGIA PRIMARIA CONSUMATA DA UN EDIFICIO: FATTORI DI CONVERSIONE L'ENERGIA PRIMARIA CONSUMATA DA UN EDIFICIO: FATTORI DI CONVERSIONE (Dott. Renzo Mario Del Duro) Il calcolo del fabbisogno annuale di energia primaria globale di un edificio tiene in considerazione due

Dettagli

I SISTEMI DI UNITA DI MISURA

I SISTEMI DI UNITA DI MISURA Provincia di Reggio Calabria Assessorato all Ambiente Corso di Energy Manager Maggio - Luglio 2008 I SISTEMI DI UNITA DI MISURA Ilario De Marco Il sistema internazionale di unità di misura Lo studio di

Dettagli

Tesina di tecnica. L Energie Rinnovabili

Tesina di tecnica. L Energie Rinnovabili Tesina di tecnica L Energie Rinnovabili L Energia: parte della nostra vita quotidiana Nella vita di tutti i giorni, forse senza saperlo, consumiamo energia, anche senza saperlo. Infatti un corpo che è

Dettagli

Complementi di Termologia. I parte

Complementi di Termologia. I parte Prof. Michele Giugliano (Dicembre 2) Complementi di Termologia. I parte N.. - Calorimetria. Il calore è una forma di energia, quindi la sua unità di misura, nel sistema SI, è il joule (J), tuttavia si

Dettagli

LEZIONE 1. Materia: Proprietà e Misura

LEZIONE 1. Materia: Proprietà e Misura LEZIONE 1 Materia: Proprietà e Misura MISCELE, COMPOSTI, ELEMENTI SOSTANZE PURE E MISCUGLI La materia può essere suddivisa in sostanze pure e miscugli. Un sistema è puro solo se è formato da una singola

Dettagli

COGENERAZIONE. Tipologie di impianti di cogenerazione

COGENERAZIONE. Tipologie di impianti di cogenerazione COGENERAZIONE La cogenerazione, o produzione combinata di energia elettrica e calore, consente di ottenere da una singola unità produttiva energia elettrica e termica, o in alcuni casi, lavoro ed energia

Dettagli

Una forza, per la fisica, compie un lavoro se provoca uno spostamento.

Una forza, per la fisica, compie un lavoro se provoca uno spostamento. Lavoro La forza è la causa del cambiamento di moto di un corpo (dinamica). Se la risultante di puù forze applicate ad un corpo è nulla il corpo è in equilibrio stabile (statica). Una forza può causare

Dettagli

Controlli automatici

Controlli automatici Controlli atomatici Sistemi a tempo discreto Prof. Paolo Rocco (paolo.rocco@polimi.it) Politecnico di Milano Dipartimento di Elettronica, Informaione e Bioingegneria Introdione Un sistema dinamico a tempo

Dettagli

Simone Montali mat.145459 lezione del 08/11/02 dalle ore 10:30 alle ore 12:30

Simone Montali mat.145459 lezione del 08/11/02 dalle ore 10:30 alle ore 12:30 imone Montali mat.55 lezione del 080 dalle ore 0:0 alle ore :0 (VHUFL]LR i vogliono considerare tre diversi tipi di espansione che possono avvenire all interno di un cilindro pieno di gas, al quale viene

Dettagli

14.4 Pompe centrifughe

14.4 Pompe centrifughe 14.4 Pompe centrifughe Le pompe centrifughe sono molto diffuse in quanto offrono una notevole resistenza all usura, elevato numero di giri e quindi facile accoppiamento diretto con i motori elettrici,

Dettagli

Termodinamica. Sistema termodinamico. Piano di Clapeyron. Sistema termodinamico. Esempio. Cosa è la termodinamica? TERMODINAMICA

Termodinamica. Sistema termodinamico. Piano di Clapeyron. Sistema termodinamico. Esempio. Cosa è la termodinamica? TERMODINAMICA Termodinamica TERMODINAMICA Cosa è la termodinamica? La termodinamica studia la conversione del calore in lavoro meccanico Prof Crosetto Silvio 2 Prof Crosetto Silvio Il motore dell automobile trasforma

Dettagli

2) Quale unità di misura si utilizza per misurare il consumo di fonti primarie di energia?

2) Quale unità di misura si utilizza per misurare il consumo di fonti primarie di energia? 28 QM 4 1) Non è una tecnologia di cogenerazione: Turbina a vapore con spillamento di vapore Turbina a vapore in contropressione Ciclo combinato gas-vapore Motore alternativo con recupero sui gas di scarico

Dettagli

TEST TECNICO PER ALLIEVO UFFICIALE DI MACCHINA

TEST TECNICO PER ALLIEVO UFFICIALE DI MACCHINA TEST TECNICO PER ALLIEVO UFFICIALE DI MACCHINA 1. 1 m 3 equivale a: A 10 dm 3 B 100 dm 2 X 1 000 dm 2 D 1 0000 dm 2 2. 1 m 2 equivale a: A 10 cm 2 B 100 cm 2 C 1 000 cm 2 X 10 000 cm 2 3. Anche se non

Dettagli

LA TERMOLOGIA. studia le variazioni di dimensione di un corpo a causa di una

LA TERMOLOGIA. studia le variazioni di dimensione di un corpo a causa di una LA TERMOLOGIA La termologia è la parte della fisica che si occupa dello studio del calore e dei fenomeni legati alle variazioni di temperatura subite dai corpi. Essa si può distinguere in: Termometria

Dettagli

Colora tu l avventura Alla scoperta dell energia

Colora tu l avventura Alla scoperta dell energia Colora tu l avventura Alla scoperta dell energia Energia deriva dalla parola greca energheia che significa attività. Nei tempi antichi il termine energia venne usato per indicare forza, vigore, potenza

Dettagli

Acqua come risorsa scarsa: quali usi energetici?

Acqua come risorsa scarsa: quali usi energetici? Acqua come risorsa scarsa: quali usi energetici? Dario GAMBA Zeco Automazioni Dalla fine degli anni 60 Zeco fornisce prodotti e soluzioni nell ambito della generazione idroelettrica. Zeco produce turbine

Dettagli

1. CLASSIFICAZIONE DELLE MACCHINE

1. CLASSIFICAZIONE DELLE MACCHINE 1. CLASSIFICAZIONE DELLE MACCHINE Si definisce macchina un insieme di organi meccanici, fissi e mobili, collegati tra loro in maniera cinematicamente definita, dei quali almeno uno è in movimento soggetto

Dettagli

PRESENTAZIONE DIDATTICA

PRESENTAZIONE DIDATTICA EDUCATIONAL BOX TEMA ENERGIA PRESENTAZIONE DIDATTICA Scuola primaria 2 ciclo Che cos è l'energia? Quali sono i diversi tipi di energia? Luce & Calore Cinetica & Elettrica Potenziale Rumore Chimica Che

Dettagli

COME SI SONO PRODOTTE? Tutte le fonti di energia rinnovabili ed esauribili, oggi a nostra disposizione si sono generate dal sole.

COME SI SONO PRODOTTE? Tutte le fonti di energia rinnovabili ed esauribili, oggi a nostra disposizione si sono generate dal sole. LE FONTI DI ENERGIA COSA SONO? Le fonti di energia sono sostanze in cui all origine è immagazzinata l energia che gli uomini utilizzano. Le fonti di energia più importanti sono quelle che sono in grado

Dettagli

TurBinde. Energia, valore da gestire

TurBinde. Energia, valore da gestire TurBinde Guarrdarre all ffutturro,, anttiicciiparre ii ttempii.. Biillancciiando essiigenzze enerrgettiicche e rriisspetttto dellll ambiientte.. Cerrccando ssolluzziionii cche ottttiimiizzzziino ii rrendiimenttii..

Dettagli

ENERGIE RINNOVABILI E ESAURIBILI

ENERGIE RINNOVABILI E ESAURIBILI Energie nella storia La storia del lavoro dell uomo è caratterizzata da un continuo aumento del bisogno di energia. Solo trecento anni fa l'uomo consumava un decimo dell'energia di oggi. Allora si usavano

Dettagli

Esercitazione 1 Analisi economica di impianti di potenza

Esercitazione 1 Analisi economica di impianti di potenza Esercitazione 1 Analisi economica di impianti di potenza In questa esercitazione si andrà ad effettuare un analisi di tipo economico al fine di confrontare le prestazioni economiche delle seguenti tecnologie

Dettagli

Impianto di Sollevamento Acqua

Impianto di Sollevamento Acqua CORSO DI FISICA TECNICA e SISTEMI ENERGETICI Esercitazione 3 Proff. P. Silva e G. Valenti - A.A. 2009/2010 Impianto di Sollevamento Acqua Dimensionare un impianto di sollevamento acqua in grado di soddisfare

Dettagli

ISPRA - Istituto Superiore per la Protezione e la Ricerca Ambientale Via Vitaliano Brancati, 48 00144 Roma www.isprambiente.gov.it

ISPRA - Istituto Superiore per la Protezione e la Ricerca Ambientale Via Vitaliano Brancati, 48 00144 Roma www.isprambiente.gov.it Informazioni legali L istitto Speriore per la Protezione e la Ricerca Ambientale (ISPRA) e le persone che agiscono per conto dell Istitto non sono responsabili per l so che pò essere fatto delle informazioni

Dettagli

CAPITOLO 3 CICLO OTTO E CICLO DIESEL MOTORI A COMBUSTIONE INTERNA

CAPITOLO 3 CICLO OTTO E CICLO DIESEL MOTORI A COMBUSTIONE INTERNA CAPITOLO 3 CICLO OTTO E CICLO DIESEL MOTORI A COMBUSTIONE INTERNA 1 CICLO OTTO E CICLO DIESEL MOTORI A COMBUSTIONE INTERNA I MOTORI A COMBUSTIONE INTERNA SONO MACCHINE MOTRICI E POSSONO ESSERE BASATI SU

Dettagli

Il Sistema di Distribuzione dell Energia Elettrica Roberto Faranda Dipartimento di Energia, Via La Masa, 34 (Bovisa) +39.02.2399.

Il Sistema di Distribuzione dell Energia Elettrica Roberto Faranda Dipartimento di Energia, Via La Masa, 34 (Bovisa) +39.02.2399. Il Sistema di Distribuzione dell Energia Elettrica Roberto Faranda Dipartimento di Energia, Via La Masa, 34 (Bovisa) +39.02.2399.3793 Caratteristiche dell energia elettrica 2 Perché l uso dell Energia

Dettagli

FONTI PRO CONTRO. Produce un'energia doppia rispetto al legno. Ha un elevato potere energetico ed è la principale fonte di energia utilizzata

FONTI PRO CONTRO. Produce un'energia doppia rispetto al legno. Ha un elevato potere energetico ed è la principale fonte di energia utilizzata ENERGIA RINNOVABILE (fonti alternative energie pulite green energy) Si definisce energia rinnovabile "una qualsiasi fonte energetica che si rigenera almeno alla stessa velocità con cui si utilizza". In

Dettagli

Le fonti di energia pulita, rinnovabile ed alternativa

Le fonti di energia pulita, rinnovabile ed alternativa Le fonti di energia pulita, rinnovabile ed alternativa FONTI DI ENERGIA RINNOVABILE Solare Eolica Idrica Biomasse Geotermica BIOMASSE Biomasse sono sostanze di origine biologica : materiali e residui di

Dettagli

POMPE DI CALORE. Introduzione

POMPE DI CALORE. Introduzione POMPE DI CALORE Introduzione In impianto tradizionale di riscaldamento si utilizza il potere calorifico di un combustibile (gasolio, metano, legno, carbone, ecc.) per riscaldare a bassa temperatura dei

Dettagli

Home indietro avanti info. Energia solare. 1. Che cos è 2. Come viene sfruttata. Scuola media G. Carducci

Home indietro avanti info. Energia solare. 1. Che cos è 2. Come viene sfruttata. Scuola media G. Carducci Energia solare 1. Che cos è 2. Come viene sfruttata Scuola media G. Carducci 1. Che cos è È l energia da cui derivano tutte le forme di energia sulla Terra ad eccezione dell energia: nucleare, geotermica

Dettagli

Figura 6.2.1: Andamento della solubilità in funzione della temperatura

Figura 6.2.1: Andamento della solubilità in funzione della temperatura 6.2 CRISTALLIZZAZIONE DA SOLUZIONE La cristallizzazione è l'operazione attraverso ci si ottiene na fase solida cristallina a partire da na fase liqida, costitita da na solzione o da n fso. Qesta operazione

Dettagli

LEGGI DEI GAS / CALORI SPECIFICI. Introduzione 1

LEGGI DEI GAS / CALORI SPECIFICI. Introduzione 1 LEGGI DEI GAS / CALORI SPECIFICI Introduzione 1 1 - TRASFORMAZIONE ISOBARA (p = costante) LA PRESSIONE RIMANE COSTANTE DURANTE TUTTA LA TRASFORMAZIONE V/T = costante (m, p costanti) Q = m c p (Tf - Ti)

Dettagli

AMPLIFICATORI PER GRANDI SEGNALI (o DI POTENZA)

AMPLIFICATORI PER GRANDI SEGNALI (o DI POTENZA) OLO 6 MLFO E GND SEGNL (o D OENZ) 6. ntrodzione Finora si è parlato di amplificatori lineari che, se pr progettati a diverse freqenze, erano comnqe amplificatori a piccoli segnali. Lo stdio dell'elaborazione

Dettagli

COMUNE DI SERRAVALLE SESIA PROVINCIA DI VERCELLI LABORATORIO TERRITORIALE Centro di Educazione Ambientale della Provincia di Vercelli

COMUNE DI SERRAVALLE SESIA PROVINCIA DI VERCELLI LABORATORIO TERRITORIALE Centro di Educazione Ambientale della Provincia di Vercelli COMUNE DI SERRAVALLE SESIA PROVINCIA DI VERCELLI LABORATORIO TERRITORIALE Assessorato all Ambiente Centro di Educazione Ambientale della Provincia di Vercelli E' espressione del linguaggio corrente parlare

Dettagli

Ciclo Rankine. Macchina tipica di un ciclo a vapore

Ciclo Rankine. Macchina tipica di un ciclo a vapore di Piraccini Davide OBBIETTIVI : Inserire un impianto ORC (Organic Rankine Cycle) nel ciclo di bassa pressione della centrale Enel di Porto Corsini e studiare la convenienza tramite il confronto dei rendimenti

Dettagli

Modulo di Meccanica e Termodinamica

Modulo di Meccanica e Termodinamica Modulo di Meccanica e Termodinamica 1) Misure e unita di misura 2) Cinematica: + Moto Rettilineo + Moto Uniformemente Accelerato [+ Vettori e Calcolo Vettoriale] + Moti Relativi 3) Dinamica: + Forza e

Dettagli

Impianto di termovalorizzazione I cipressi (FI) Fasi di funzionamento dell'impianto: Prima fase. Schema. Sezione

Impianto di termovalorizzazione I cipressi (FI) Fasi di funzionamento dell'impianto: Prima fase. Schema. Sezione Impianto di termovalorizzazione I cipressi (FI) Fasi di funzionamento dell'impianto: Prima fase Schema Sezione 1 La seconda fase, quella più "calda", dove i rifiuti vengono bruciati e, col calore ottenuto,

Dettagli

FCP 320/FCH 320 rivelatori d'incendio automatici convenzionali

FCP 320/FCH 320 rivelatori d'incendio automatici convenzionali Sistemi di rivelazione incendio FCP 32/FCH 32 rivelatori d'incendio atomatici convenzionali FCP 32/FCH 32 rivelatori d'incendio atomatici convenzionali www.boschsecrity.it Elevata affidabilità di rivelazione

Dettagli

MACCHINE Lezione 8 Impianti idroelettrici e Turbine Idrauliche

MACCHINE Lezione 8 Impianti idroelettrici e Turbine Idrauliche MACCHINE Lezione 8 Impianti idroelettrici e Turbine Idrauliche Dr. Paradiso Berardo Laboratorio Fluidodinamicadelle delle Macchine Dipartimento di Energia Politecnico di Milano Generalità Impianti idroelettrici

Dettagli

LE ENERGIE RINNOVABILI

LE ENERGIE RINNOVABILI LE ENERGIE RINNOVABILI La definizione di energia rinnovabile è spesso legata al termine ecologia. Infatti vengono spesso erroneamente definite come energie che rispettano l ambiente. Ci sono diversi tipi

Dettagli

WORKSHOP. I controlli di ARPA agli impianti di incenerimento dei rifiuti in Emilia - Romagna Stato attuale e prospettive RIMINI.

WORKSHOP. I controlli di ARPA agli impianti di incenerimento dei rifiuti in Emilia - Romagna Stato attuale e prospettive RIMINI. WORKSHOP I controlli di ARPA agli impianti di incenerimento dei rifiuti in Emilia - Romagna Stato attuale e prospettive RIMINI 31 Maggio 2005 Centro Congressi SGR Via Chiabrera 34/B Produzione e recupero

Dettagli

GRANDEZZE FISICHE. Prof.ssa Paravizzini M.R.

GRANDEZZE FISICHE. Prof.ssa Paravizzini M.R. GRANDEZZE FISICHE Prof.ssa Paravizzini M.R. PROPRIETA DEL CORPO SOGGETTIVE OGGETTIVE PR.SOGGETTIVE: gusto, bellezza, freschezza, forma MISURABILI PR. OGGETTIVE: massa, temperatura, diametro, ecc.. Le misure

Dettagli

La cogenerazione: bilancio energetico ed economico

La cogenerazione: bilancio energetico ed economico Facoltà ltàdii Ingegneria La cogenerazione: bilancio energetico ed economico Ing. Gabriele Comodi La cogenerazione La norma UNI 8887:1987, Sistemi i per processi di cogenerazione. Definizioni ii ie classificazione.,

Dettagli

Energia idroelettrica

Energia idroelettrica Energia idroelettrica L'energia idroelettrica è una fonte di energia alternativa e rinnovabile, che sfrutta la trasformazione dell'energia potenziale gravitazionale, posseduta da una certa massa d'acqua

Dettagli

Il settore elettrico italiano: dal Monopolio alla Concorrenza

Il settore elettrico italiano: dal Monopolio alla Concorrenza Università degli Studi di Roma "Tor Vergata" Facoltà di Ingegneria Corso di Gestione ed Economia dell Energia e Fonti Rinnovabili Il settore elettrico italiano: dal Monopolio alla Concorrenza Ing. Tiziana

Dettagli

Insegnamento di Fondamenti di Infrastrutture viarie

Insegnamento di Fondamenti di Infrastrutture viarie Insegnamento di Fondamenti di Infrastrutture viarie Territorio ed infrastrutture di trasporto La meccanica della locomozione: questioni generali Il fenomeno dell aderenza e l equazione generale del moto

Dettagli

Bruno Jannamorelli, traduzione ed edizione critica La potenza motrice del fuoco di Sadi Carnot, Cuen 1996, pp. 19 e 20. 2

Bruno Jannamorelli, traduzione ed edizione critica La potenza motrice del fuoco di Sadi Carnot, Cuen 1996, pp. 19 e 20. 2 LA LEZIONE Lo studio di una macchina termica ideale [ ] Si può paragonare molto bene la potenza motrice del calore a quella di una cascata d acqua: entrambe hanno un massimo che non si può superare, qualunque

Dettagli

PIANO DI LAVORO A.S. 2013/2014

PIANO DI LAVORO A.S. 2013/2014 ISTITUTO D ISTRUZIONE SUPERIORE PROFESSIONALE E TECNICO COMMERCIALE A. CASAGRANDE F. CESI TERNI PIANO DI LAVORO PROF. SCIULLI PERFILIA CLASSE: I D MATERIA: SCIENZE INTEGRATE (FISICA) sez. F. CESI A.S.

Dettagli

FARE ENERGIA. Energia e sue Trasformazioni

FARE ENERGIA. Energia e sue Trasformazioni FARE ENERGIA FARE ENERGIA Cos è l ENERGIA? E LA CAPACITA DI UN CORPO O DI UN SISTEMA A COMPIERE LAVORO!!! Il Lavoro Linguaggio Quotidiano Linguaggio Fisico Attività come correre, saltare, tirare un pallone

Dettagli

Gli appunti contenuti nel presente file sono la sintesi di una lezione e costituiscono un ausilio didattico nell ambito del corso di Complementi di

Gli appunti contenuti nel presente file sono la sintesi di una lezione e costituiscono un ausilio didattico nell ambito del corso di Complementi di Gli appnti contenti nel presente ile sono la sintesi di na lezione e costitiscono n asilio didattico nell amito del corso di Complementi di Macchine, tento presso la Facoltà di Ingegneria dell Università

Dettagli

COMPONENTI TERMODINAMICI APERTI

COMPONENTI TERMODINAMICI APERTI CAPITOLO NONO COMPONENTI TERMODINAMICI APERTI Esempi applicativi Vengono di seguito esaminati alcuni componenti di macchine termiche che possono essere considerati come sistemi aperti A) Macchina termica

Dettagli

GAS NATURALE O METANO

GAS NATURALE O METANO Composto prevalentemente da un idrocarburo: metano da da cui prende il nome. GAS NATURALE O METANO Alto potere calorifico. Mancanza di tossicità e impurità. È un'ottima risorsa energetica. È l'energia

Dettagli

L attenzione verso le cose del passato è sempre più

L attenzione verso le cose del passato è sempre più La gestione della geometria tridimensionale di n oggetto È fondamentale per ogni simlazione nmerica Antonio Giogoli Agiotech Le capacità odierne dell ingegneria inversa aprono novi confini all analista

Dettagli

SCIENZE INTEGRATE FISICA

SCIENZE INTEGRATE FISICA CLASSE DISCIPLINA ORE SETTIMANALI TIPO DI PROVA PER GIUDIZIO SOSPESO MODULO 1: Il moto e l energia I concetti di sistema di riferimento e le grandezze cinematiche. I diversi tipi di rappresentazione del

Dettagli

3 ANNO. COMPETENZE ABILITA CONOSCENZE Progettare strutture ed organi meccanici

3 ANNO. COMPETENZE ABILITA CONOSCENZE Progettare strutture ed organi meccanici PECUP SECONDO BIENNIO (3 E 4 ANNO) Meccanica, Meccatronica ed Energia Articolazione: Meccanica e Meccatronica Disciplina: Meccanica, Macchine ed Energia 3 ANNO Macro-competenze A Progettare strutture,

Dettagli

LBC 14x2/x0 regolatori di volume giapponesi e LBC 1434/10 selettore di programmi

LBC 14x2/x0 regolatori di volume giapponesi e LBC 1434/10 selettore di programmi Sistemi di comnicazione LBC 14x2/x0 regolatori di volme giapponesi e LBC 1434/10 selettore di programmi LBC 14x2/x0 regolatori di volme giapponesi e LBC 1434/10 selettore di programmi www.boschsecrity.it

Dettagli

RICHIAMI DI TERMOCHIMICA

RICHIAMI DI TERMOCHIMICA CAPITOLO 5 RICHIAMI DI TERMOCHIMICA ARIA TEORICA DI COMBUSTIONE Una reazione di combustione risulta completa se il combustibile ha ossigeno sufficiente per ossidarsi completamente. Si ha combustione completa

Dettagli

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri.

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. A partire da questa lezione, ci occuperemo di come si riescono a codificare con sequenze binarie, quindi con sequenze di 0 e 1,

Dettagli

ENERGIA. Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica

ENERGIA. Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica 1 ENERGIA Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica 2 Energia L energia è ciò che ci permette all uomo di compiere uno sforzo o meglio

Dettagli

Optima CG / Optivent CG. Soluzioni innovative a flusso laminare per sale operatorie

Optima CG / Optivent CG. Soluzioni innovative a flusso laminare per sale operatorie Optima CG / Optivent CG Solzioni innovative a flsso laminare per sale operatorie Optima CG / Optivent CG Solzioni innovative a flsso laminare per sale operatorie Applicazioni Clean Air Power Generation

Dettagli

Ventilatori. Generalità e classificazione VENTILATORI. Apparecchi per il trasporto degli aeriformi (pneumofore) e pompe da vuoto

Ventilatori. Generalità e classificazione VENTILATORI. Apparecchi per il trasporto degli aeriformi (pneumofore) e pompe da vuoto Generalità e classificazione Apparecchi per il trasporto degli aeriformi (pneumofore) e pompe da vuoto MACCHINE PNEUMOFORE BASSE P applicano energia cinetica Elicoidali In base al moto dell aria Centrifughi

Dettagli

CALDAIE A GAS A PAVIMENTO AD ACCUMULO

CALDAIE A GAS A PAVIMENTO AD ACCUMULO TM M A D E I N I TA LY CALDAIE A GAS A PAVIMENTO AD ACCUMULO SERIE Solzioni integrate per il riscaldamento All prpose heating soltions ara P0 E camera aperta Grande comfort ES camera stagna pnti forza

Dettagli

elettrodotti. grandi centrali elettriche combustibili fossili produzione elettrica

elettrodotti. grandi centrali elettriche combustibili fossili produzione elettrica 1 2 3 4 Uno dei grandi vantaggi dell energia elettrica è che essa può essere prodotta in luoghi lontani dai centri di consumo. L energia elettrica può essere trasportata facilmente attraverso condutture

Dettagli

2. L ENERGIA MECCANICA

2. L ENERGIA MECCANICA . L ENERGIA MECCANICA.1 Il concetto di forza La forza può essere definita come «azione reciproca tra corpi che ne altera lo stato di moto o li deforma: essa é caratterizzata da intensità direzione e verso».

Dettagli

Tipologia dei flussi energetici

Tipologia dei flussi energetici Tipologia dei flussi energetici Corso: SISTEMI ENERGETICI - Classe: INGEGNERIA INDUSTRIALE, Laurea: INGEGNERIA MECCANICA Pag. 1 Crescita del fabbisogno di energia - Costi Legge del raddoppio del fabbisogno

Dettagli

GUIDA. Consorzio. Napoli 2000. Energia

GUIDA. Consorzio. Napoli 2000. Energia Consorzio Energia Napoli 2000 GUIDA CONSORZIO ENERGIA UNIONE DEGLI INDUSTRIALI DELLA PROVINCIA DI NAPOLI PIAZZA DEI MARTIRI, 58 80121 NAPOLI AMMINISTRATORE UNICO DR. GABRIELE ARIOLA SEGRETARIO RESPONSABILE

Dettagli

Impianti di propulsione navale

Impianti di propulsione navale Con la denominazione Circuito aria comburente si intendono tre distinti sistemi: Sistema di ventilazione della sala macchine; Sistema di fornitura dell aria comburente; Circuito aria di sovralimentazione

Dettagli

APPLICAZIONI DEL 2 PRINCIPIO DELLA TERMODINAMICA ENUNCIATO DEL 2 PRINCIPIO DELLA TERMODINAMICA

APPLICAZIONI DEL 2 PRINCIPIO DELLA TERMODINAMICA ENUNCIATO DEL 2 PRINCIPIO DELLA TERMODINAMICA APPLICAZIONI DEL 2 PRINCIPIO DELLA TERMODINAMICA Per poter illustrare alcune applicazioni del 2 principio della termodinamica penso sia necessario riprendere l'enunciato stesso e ciò che da esso consegue,

Dettagli

La gestione delle risorse energetiche Ing. Maurizio Vaccaro, PhD Ingegneria Senza Frontiere Pisa ONLUS isf-pisa.org info@isf-pisa.

La gestione delle risorse energetiche Ing. Maurizio Vaccaro, PhD Ingegneria Senza Frontiere Pisa ONLUS isf-pisa.org info@isf-pisa. Corso di cooperazione Ingegneria Senza Frontiere Bari Politecnico di Bari, 6 lez. 07/06/2014 La gestione delle risorse energetiche Ing. Maurizio Vaccaro, PhD Ingegneria Senza Frontiere Pisa ONLUS isf-pisa.org

Dettagli

Taglia i costi Dimezza le emissioni

Taglia i costi Dimezza le emissioni Taglia i costi Dimezza le emissioni Il micro-cogeneratore più efficiente a livello mondiale Cos è BlueGEN? Il più efficiente generatore di elettricità e calore di piccola taglia BlueGEN funziona a gas

Dettagli

ENERGIA NELLE REAZIONI CHIMICHE

ENERGIA NELLE REAZIONI CHIMICHE ENERGIA NELLE REAZIONI CHIMICHE Nelle trasformazioni chimiche e fisiche della materia avvengono modifiche nelle interazioni tra le particelle che comportano sempre variazioni di energia "C è un fatto,

Dettagli

Impianti idro-elettrici: caratteristiche generali e peculiarità funzionali

Impianti idro-elettrici: caratteristiche generali e peculiarità funzionali Energia idroelettrica al futuro - Malnisio, Impianti idro-elettrici: caratteristiche generali e peculiarità funzionali Piero Pinamonti UNIVERSITA DEGLI STUDI DI UDINE DIPARTIMENTO Piero Pinamonti DI -

Dettagli

Formulario di Fisica Tecnica Matteo Guarnerio 1

Formulario di Fisica Tecnica Matteo Guarnerio 1 Formulario di Fisica Tecnica Matteo Guarnerio 1 CONVENZIONI DI NOTAZIONE Calore scambiato da 1 a 2. Calore entrante o di sorgente. Calore uscente o ceduto al pozzo. CONVERSIONI UNITÀ DI MISURA PIÙ FREQUENTI

Dettagli

Le fonti energetiche

Le fonti energetiche Le fonti energetiche Le fonti energetiche Dalle fonti di energia si ricava l energia Esse sono suddivise in primarie e secondarie, in relazione al fatto che necessitino più o meno di trasformazioni. Le

Dettagli

LBC 3011/x1 altoparlanti a pannello

LBC 3011/x1 altoparlanti a pannello Sistemi di comnicazione LBC 11/x1 altoparlanti a pannello LBC 11/x1 altoparlanti a pannello www.boschsecrity.it Intelligibilità del parlato e diffsione adio di alta qalità Sistema a de vie Facile impostazione

Dettagli

Hepatex CR. Il punto di riferimento nella filtrazione ULPA

Hepatex CR. Il punto di riferimento nella filtrazione ULPA Hepatex CR Il pnto di riferimento nella filtrazione ULPA Hepatex CR Il pnto di riferimento nella filtrazione ULPA Applicazioni Clean Air Power Generation Clean Room Indstrial Fatti Principali Gli Ultrafiltri

Dettagli