I NUMERI NATURALI. Per cominciare impariamo a leggere alcuni numeri naturali e dopo prova a scriverli nella tua lingua:

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "I NUMERI NATURALI. Per cominciare impariamo a leggere alcuni numeri naturali e dopo prova a scriverli nella tua lingua:"

Transcript

1 I NUMERI NATURALI Per cominciare impariamo a leggere alcni nmeri natrali e dopo prova a scriverli nella ta linga: NUMERI ITALIANO LA TUA LINGUA 1 UNO 2 DUE 3 TRE 4 QUATTRO 5 CINQUE 6 SEI 7 SETTE 8 OTTO 9 NOVE 10 DIECI 11 UNDICI 12 DODICI 13 TREDICI 14 QUATTORDICI 15 QUINDICI 16 SEDICI 17 DICIASSETTE 18 DICIOTTO 19 DICIANNOVE 20 VENTI 30 TRENTA 40 QUARANTA 50 CINQUANTA 60 SESSANTA 70 SETTANTA 80 OTTANTA 90 NOVANTA 100 CENTO 200 DUECENTO 300 TRECENTO 400 QUATTROCENTO 500 CINQUECENTO 600 SEICENTO 700 SETTECENTO 800 OTTOCENTO 900 NOVECENTO 1000 MILLE 4

2 IMPARA A MEMORIA I NOMI DEI NUMERI DA 1 A 100 IN ITALIANO Adesso associa ad ogni nmero il so nome in italiano. Usa na freccia come qella che vedi: 3 diciassette 17 trentasei 8 qarantatre 11 qindici 36 ventno 21 otto 43 ottantade 67 tre 15 ndici 82 sessantasette Associa ad ogni nome in italiano il nmero. Usa na freccia come qella che vedi: sette 100 dieci 30 cento 7 mille 1000 trenta 10 centotrenta 70 settanta 20 venti 130 Per sapere qanti oggetti ci sono si conta; per contare si sano i nmeri natrali:

3 Prova t adesso Prova ancora I nmeri natrali (si indicano con N) sono composti da cifre, le cifre sono 10: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Un nmero pò essere composto da più cifre NUMERO CIFRA 6

4 I nmeri natrali servono a contare nità intere, esempio: QUESTA E UNA PECORA INTERA QUESTA E MEZZA PECORA OPPURE 0,5 (USIAMO UN NUMERO NATURALE) (NON USIAMO UN NUMERO NATURALE) Il sistema di nmerazione NATURALE nasce in India senza lo zero, sccessivamente gli arabi che commerciavano con essi lo importarono nel loro mondo aggingendovi lo zero che in arabo (zephir) significa NIENTE, NULLO. I nmeri natrali sono INFINITI. Ogni nmero natrale ha n PRECEDENTE e n SUCCESSIVO, tranne lo zero che ha solo il sccessivo: non ha precedente... 0 ha il sccessivo che è 1 ha il precedente che è 0 1 ha il sccessivo che è 2 ha il precedente che è ha il sccessivo che è 22 7

5 Adesso prova t: Completa la tabella, qando è possibile: PRECEDENTE NUMERO SUCCESSIVO

6 I nmeri natrali hanno n ORDINE. Ciò ci permette di confrontarne de o più fra loro: 5 è più grande di 4 6 è più grande di 5 7 è più piccolo di 18 5 > 4 6 > 5 7 < 18 5 è gale a 5 6 è diverso da 5 17 è diverso da 19 5 = I simboli che abbiamo sato per confrontare de o più nmeri natrali si chiamano OPERATORI RELAZIONALI: SIMBOLO SIGNIFICATO ESEMPIO = Ugale 7 = 7 < Minore (è più piccolo) 7 < 11 > Maggiore (è più grande) 12 > 10 diverso 5 9 Scrivi il simbolo > oppre < al posto dei pntini:

7 I nmeri natrali possono essere scritti in ORDINE CRESCENTE 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,, 20,, 30,, 100, 101, oppre in ORDINE DECRESCENTE:, 101, 100,, 30,, 20,, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 Scrivi in ORDINE CRESCENTE i segenti nmeri: 30, 21, 105, 6, 0, 11, 44, 45, 71, 53, 35, 3 Scrivi in ORDINE DECRESCENTE i segenti nmeri: 30, 21, 105, 6, 0, 11, 44, 45, 71, 53, 35, 3 Adesso, cerchiamo di capire il significato delle cifre nei nmeri natrali. Se consideriamo i nmeri: 23 e 32 ci rendiamo conto che contengono le stesse cifre 2 e 3, ma hanno lo stesso valore il nmero 23 e 32? OVVIAMENTE NO. COME ABBIAMO VISTO 23 < 32 10

8 Cosa possiamo capire da ciò? il valore del nmero dipende dalla posizione delle cifre di ci è fatto. Infatti, i nmeri natrali sono posizionali. Inoltre, le cifre dei nmeri vengono raggrppate a tre a tre, separate da n pnto e scritte come sege: Analizziamo la posizione delle varie cifre nei nmeri appena scritti è dato da 4 nità = 4 3 decine = 3 da 2 centinaia = 2 h 1 nità di migliaia = 1 k è dato da 2 nità = 2 0 decine = 0 da 5 centinaia = 5 h 2 nità di migliaia = 2 k 6 decine di migliaia = 6 dak è dato da 9 nità = 9 0 decine = 0 da 2 centinaia = 2 h 3 nità di migliaia = 3 k 0 decine di migliaia = 0 dak 7 centinaia di migliaia = 7 hk 11

9 è dato da 5 nità = 5 6 decine = 6 da 2 centinaia = 2 h 4 nità di migliaia = 4 k 0 decine di migliaia = 0 dak 3 centinaia di migliaia = 3 hk 1 nità di milioni = 1 M da qanto visto possiamo dedrre la segente tabella, in ci riscrivere i nmeri appena stdiati: MILIONI (M) M K h da Prova t adesso: MILIONI (M) M K h da 12

10 MILIONI (M) M K h da 319 MILIONI (M) M K h da MILIONI (M) M K h da MILIONI (M) M K h da 13

11 I nmeri natrali si possono rappresentare come pnti s na retta orientata: O Useremo na retta orientata, la qale ha sempre n origine (O) che la divide in de semirette; da qesto pnto O si inizia a contare verso destra ( verso ). L nità di misra che pò essere fissata a piacere permette di inserire i nmeri sempre alla stessa distanza slla semiretta. I NUMERI DECIMALI Un nmero decimale è n nmero con la virgola. Esso presenta na parte intera e na decimale. Vediamo con n esempio: Prima cifra decimale 3 decimi (3d) Terza cifra decimale 2 millesimi (2m) 5,342 Cifra intera 5 nità (5) Seconda cifra decimale 4 centesimi (4c) Dallo schema si vede che anche i nmeri decimali sono posizionali. Ogni cifra ha n valore in relazione alla posizione che assme nel nmero. Vediamo con la tabella già vista per i nmeri natrali, come posizionare tali cifre: 14

NUMERO in SECONDA, addizioni e sottrazioni

NUMERO in SECONDA, addizioni e sottrazioni NUMERO in SECONDA, addizioni e sottrazioni Anna Dallai, Monica Falleri, Antonio Moro, 2013 Decina e abaco a scatole Se nel precedente anno non è stato introdotta la decina lavoriamo si raggrppamenti, diamo

Dettagli

I NUMERI DECIMALI A. Osserva il bruco: è formato da 10 parti. Colora l intero bruco, 1 bruco.

I NUMERI DECIMALI A. Osserva il bruco: è formato da 10 parti. Colora l intero bruco, 1 bruco. I NUMERI DECIMALI A.Osserva il brco: è formato a parti. Colora l intero brco, 1 brco. Hai colorato s parti el brco, ieci ecimi el brco, cioè 1 brco. Ne poi colorare meno i no? Prova! B.Colora 2/ el brco.

Dettagli

Problemi sul parallelogramma con le incognite

Problemi sul parallelogramma con le incognite Problemi sl parallelogramma con le incognite Qante altezze ha n parallelogramma Il concetto di altezza rimanda direttamente a qello della distanza di in pnto da na retta La distanza di n pnto da na retta

Dettagli

L'orologio. Ricorda. Per capire. 1 giorno = 24 ore 1 ora = 60 minuti 1 minuto = 60 secondi. La lancetta corta indica le ore. I numeri indicano le ore

L'orologio. Ricorda. Per capire. 1 giorno = 24 ore 1 ora = 60 minuti 1 minuto = 60 secondi. La lancetta corta indica le ore. I numeri indicano le ore L'orologio La lancetta corta indica le ore I numeri indicano le ore La lancetta lunga indica i minuti Questa lancetta, che è sempre in movimento, indica i secondi Ricorda Dopo che la lancetta corta ha

Dettagli

Unità uno. barche e vento. I colori. Le parti del corpo. I numeri. da 11 a 20 La casa Chi è? La casa (2) Gli animali.

Unità uno. barche e vento. I colori. Le parti del corpo. I numeri. da 11 a 20 La casa Chi è? La casa (2) Gli animali. Unità uno I numeri da 0 a 10 Che tempo fa? 1 I colori Le parti del corpo I numeri da 11 a 20 La casa Chi è? La casa (2) Gli animali Gli animali (2) I giorni, i mesi, le stagioni barche e vento Da dove

Dettagli

APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI

APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI I numeri naturali I numeri interi I numeri razionali Teoria degli insiemi (cenni) ALESSANDRO BOCCONI Indice 1 L insieme N dei numeri naturali 4 1.1 Introduzione.........................................

Dettagli

Cenni sul calcolo combinatorio

Cenni sul calcolo combinatorio Cenni sul calcolo combinatorio Disposizioni semplici Le disposizioni semplici di n elementi distinti di classe k con kn sono tutti i gruppi di k elementi scelti fra gli n, che differiscono per almeno un

Dettagli

Ogni frazione si può trasformare, dividendo il numeratore per il denominatore, in un numero che sarà:

Ogni frazione si può trasformare, dividendo il numeratore per il denominatore, in un numero che sarà: Ogni frazione si può trasformare, dividendo il numeratore per il denominatore, in un numero che sarà: naturale, se la frazione è apparente. Esempi: 4 2 2 60 12 5 24 8 decimale limitato o illimitato, se

Dettagli

SCUOLA PRIMARIA DI MONTE VIDON COMBATTE CLASSE V INS. VIRGILI MARIA LETIZIA

SCUOLA PRIMARIA DI MONTE VIDON COMBATTE CLASSE V INS. VIRGILI MARIA LETIZIA SCUOLA PRIMARIA DI MONTE VIDON COMBATTE CLASSE V INS. VIRGILI MARIA LETIZIA Regoli di Nepero Moltiplicazioni In tabella Moltiplicazione a gelosia Moltiplicazioni Con i numeri arabi Regoli di Genaille Moltiplicazione

Dettagli

QUELL ATTIMO INFINITAMENTE SIMMETRICO

QUELL ATTIMO INFINITAMENTE SIMMETRICO QUELL ATTIMO INFINITAMENTE SIMMETRICO Illustrazione di Matteo Pericoli 2002 Lui. Onroignoub! Lei. Come dice, scusi? Lui. Ouroignoub. Ah, mi perdoni. Buongiorno. Credevo che si fosse tutti d accordo a parlare

Dettagli

Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una

Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una NUMERI INTERI E NUMERI DECIMALI Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una cassetta sono contenuti 45 penne e che una lamiera misura 1,35 m. dl lunghezza,

Dettagli

Se log a. b = c allora: A) a b = c B) c a = b C) c b = a D) b c = a E) a c = b. L espressione y = log b x significa che:

Se log a. b = c allora: A) a b = c B) c a = b C) c b = a D) b c = a E) a c = b. L espressione y = log b x significa che: MATEMATICA 2005 Se log a b = c allora: A) a b = c B) c a = b C) c b = a D) b c = a E) a c = b L espressione y = log b x significa che: A) y é l esponente di una potenza di base b e di valore x B) x è l

Dettagli

UNITÁ 4. q q q q LA FAMIGLIA DI BADU

UNITÁ 4. q q q q LA FAMIGLIA DI BADU LA FAMIGLIA DI BADU Badu è ghanese. È di Ada, una città vicino ad Accrà, nel Ghana. Ha ventiquattro anni ed è in Italia da tre mesi. Badu è in Italia da solo, la sua famiglia è rimasta in Ghana. La famiglia

Dettagli

La guerra delle posizioni

La guerra delle posizioni www.maestrantonella.it La guerra delle posizioni Gioco di carte per il consolidamento del valore posizionale delle cifre e per il confronto di numeri con l uso dei simboli convenzionali > e < Da 2 a 4

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli

IL VALORE POSIZIONALE

IL VALORE POSIZIONALE SCHEDA N. 1 IL VALORE POSIZIONALE 1. Scomponi ogni numero, seguendo l esempio. Esempio: 1=00000+0000+000+0+0+ =... 1 =... 9 1 =... 0 =... 0 09 =... 0 =.... Componi ogni numero, seguendo l esempio. Esempio:

Dettagli

LA MOLTIPLICAZIONE IN PRIMA ELEMENTARE

LA MOLTIPLICAZIONE IN PRIMA ELEMENTARE LA MOLTIPLICAZIONE IN PRIMA ELEMENTARE E bene presentarla confrontando tra loro varie tecniche: addizione ripetuta; prodotto combinatorio (schieramenti). Rispetto a quest'ultima tecnica, grande utilità

Dettagli

REPUBBLICA IT ALIANA IN NOME DEL POPOLO ITALIANO TRIBUNALE DI MILANO Sezione Lavoro

REPUBBLICA IT ALIANA IN NOME DEL POPOLO ITALIANO TRIBUNALE DI MILANO Sezione Lavoro REPUBBLICA IT ALIANA IN NOME DEL POPOLO ITALIANO TRIBUNALE DI MILANO Seione Lavoro Il dott. Nicola Di Leo in fnione di gidice del lavoro ha pronnciato la segente SENTENZA nella casa civile di I Grado iscritta

Dettagli

Un ripasso di aritmetica: Conversione dalla base 10 alla base 16

Un ripasso di aritmetica: Conversione dalla base 10 alla base 16 Un ripasso di aritmetica: Conversione dalla base 1 alla base 16 Dato un numero N rappresentato in base dieci, la sua rappresentazione in base sedici sarà del tipo: c m c m-1... c 1 c (le c i sono cifre

Dettagli

I db, cosa sono e come si usano. Vediamo di chiarire le formule.

I db, cosa sono e come si usano. Vediamo di chiarire le formule. I db, cosa sono e come si usano. Il decibel è semplicemente una definizione; che la sua formulazione è arbitraria o, meglio, è definita per comodità e convenienza. La convenienza deriva dall osservazione

Dettagli

4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO

4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO 4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO 4.0. Esponenziale. Nella prima sezione abbiamo definito le potenze con esponente reale. Vediamo ora in dettaglio le proprietà della funzione esponenziale a,

Dettagli

Che cosa fai di solito?

Che cosa fai di solito? Che cosa fai di solito? 2 1 Ascolta la canzone La mia giornata, ritaglia e incolla al posto giusto le immagini di pagina 125. 10 dieci Edizioni Edilingua unità 1 2 Leggi. lindylindy@forte.it ciao Cara

Dettagli

DECRETO LEGISLATIVO LUOGOTENENZIALE 23 novembre 1944, n. 382

DECRETO LEGISLATIVO LUOGOTENENZIALE 23 novembre 1944, n. 382 DECRETO LEGISLATIVO LUOGOTENENZIALE 23 novembre 1944, n. 382 Norme sui Consigli degli Ordini e Collegi e sulle Commissioni centrali professionali Pubblicato nella Gazzetta ufficiale n. 98 del 23 Dicembre

Dettagli

Hepatex CR. Il punto di riferimento nella filtrazione ULPA

Hepatex CR. Il punto di riferimento nella filtrazione ULPA Hepatex CR Il pnto di riferimento nella filtrazione ULPA Hepatex CR Il pnto di riferimento nella filtrazione ULPA Applicazioni Clean Air Power Generation Clean Room Indstrial Fatti Principali Gli Ultrafiltri

Dettagli

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI Le disequazioni fratte Le disequazioni di secondo grado I sistemi di disequazioni Alessandro Bocconi Indice 1 Le disequazioni non lineari 2 1.1 Introduzione.........................................

Dettagli

Appunti di Matematica

Appunti di Matematica Silvio Reato Appunti di Matematica Settembre 200 Le quattro operazioni fondamentali Le quattro operazioni fondamentali Addizione Dati due numeri a e b (detti addendi), si ottiene sempre un termine s detto

Dettagli

COMUNE DI VILLAPERUCCIO

COMUNE DI VILLAPERUCCIO COMUNE DI VILLAPERUCCIO Provincia di Carbonia-Iglesias SETTORE : Responsabile: AREA TECNICA Crreli Elvio DETERMINAZIONE N. in data 109 25/03/2014 OGGETTO: Approvazione Relazione Tecnica e Impegno di Spesa

Dettagli

I NUMERI DECIMALI. che cosa sono, come si rappresentano

I NUMERI DECIMALI. che cosa sono, come si rappresentano I NUMERI DECIMALI che cosa sono, come si rappresentano NUMERI NATURALI per contare bastano i numeri naturali N i numeri naturali cominciano con il numero uno e vanno avanti con la regola del +1 fino all

Dettagli

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90-91 69 92 93 94-95 96-97 98-99

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90-91 69 92 93 94-95 96-97 98-99 Bravissimo/a! Sei arrivato/a alla fine della parte di italiano... Adesso perché non ripassi un po di matematica? A settembre sarai un bolide nelle operazioni, nel risolvere i problemi e in geometria! matematica

Dettagli

Introduzione del numero zero

Introduzione del numero zero Introduzione del numero zero E arrivato il momento di introdurre lo zero L'insegnante inizierà un discorso, sulla quantità degli oggetti in classe, formulando delle domande mirate al confronto dello zero

Dettagli

ESTRAZIONE DI RADICE

ESTRAZIONE DI RADICE ESTRAZIONE DI RADICE La radice è l operazione inversa dell elevamento a potenza. L esponente della potenza è l indice della radice che può essere: quadrata (); cubica (); quarta (4); ecc. La base della

Dettagli

Esempi di algoritmi. Lezione III

Esempi di algoritmi. Lezione III Esempi di algoritmi Lezione III Scopo della lezione Implementare da zero algoritmi di media complessità. Verificare la correttezza di un algoritmo eseguendolo a mano. Imparare a valutare le prestazioni

Dettagli

Rappresentazione dei numeri in un calcolatore

Rappresentazione dei numeri in un calcolatore Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri in un calcolatore Lezione 2 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione dei numeri

Dettagli

RAPPRESENTAZIONE BINARIA DEI NUMERI. Andrea Bobbio Anno Accademico 1996-1997

RAPPRESENTAZIONE BINARIA DEI NUMERI. Andrea Bobbio Anno Accademico 1996-1997 1 RAPPRESENTAZIONE BINARIA DEI NUMERI Andrea Bobbio Anno Accademico 1996-1997 Numeri Binari 2 Sistemi di Numerazione Il valore di un numero può essere espresso con diverse rappresentazioni. non posizionali:

Dettagli

M. Silvestrini C. Ciliberto M. Ferretti L. Filippucci. Dai, prova! Pratiche per le abilità linguistiche

M. Silvestrini C. Ciliberto M. Ferretti L. Filippucci. Dai, prova! Pratiche per le abilità linguistiche M. Silvestrini C. Ciliberto M. Ferretti L. Filippucci Dai, prova! Pratiche per le abilità linguistiche Attività per la: competenza linguistica comprensione orale comprensione scritta produzione orale produzione

Dettagli

24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2

24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2 Dati due numeri naturali a e b, diremo che a è divisibile per b se la divisione a : b è esatta, cioè con resto 0. In questo caso diremo anche che b è un divisore di a. 24 : 3 = 8 con resto 0 26 : 4 = 6

Dettagli

MATEMATICA. I numeri relativi. I numeri relativi. il testo:

MATEMATICA. I numeri relativi. I numeri relativi. il testo: 01 sono i numeri che hanno davanti il segno + o il segno -. li usano quando devi far capire se un numero sta sopra o sotto dello zero. Se dico che la temperatura è di 30 gradi per te è sicuramente difficile

Dettagli

come si tiene conto della limitazione d ampiezza e di velocità come si tiene conto della limitazione di frequenza come si tiene conto degli offset

come si tiene conto della limitazione d ampiezza e di velocità come si tiene conto della limitazione di frequenza come si tiene conto degli offset 8a resentazone della lezone 8 /6 Obettv come s tene conto della lmtazone d ampezza e d veloctà come s tene conto della lmtazone d reqenza come s tene conto degl oset 8a saper preved. col calcolo l nlenza

Dettagli

LA NOTAZIONE SCIENTIFICA

LA NOTAZIONE SCIENTIFICA LA NOTAZIONE SCIENTIFICA Definizioni Ricordiamo, a proposito delle potenze del, che = =.000 =.000.000.000.000 ovvero n è uguale ad seguito da n zeri. Nel caso di potenze con esponente negativo ricordiamo

Dettagli

Costituzione della Repubblica Italiana

Costituzione della Repubblica Italiana Artt. 123, 127, 134, 135, 136, 137 della Costituzione Costituzione della Repubblica Italiana (Gazzetta Ufficiale 27 dicembre 1947, n. 298) [ ] TITOLO V LE REGIONI, LE PROVINCIE, I COMUNI Art. 123 Ciascuna

Dettagli

INTRODUZIONE AL RUMORE NEI CIRCUITI ELETTRONICI RAPPRESENTAZIONE DEL RUMORE

INTRODUZIONE AL RUMORE NEI CIRCUITI ELETTRONICI RAPPRESENTAZIONE DEL RUMORE INTODUZIONE A UMOE NEI CICUITI EETTONICI Se prendiao n qalsiasi circito elettronico ed andiao ad analizzare il valore di na grandezza elettrica (tensione o corrente in n pnto, vediao che non è stabile

Dettagli

Misure di base su una carta. Calcoli di distanze

Misure di base su una carta. Calcoli di distanze Misure di base su una carta Calcoli di distanze Per calcolare la distanza tra due punti su una carta disegnata si opera nel modo seguente: 1. Occorre identificare la scala della carta o ricorrendo alle

Dettagli

Optima CG / Optivent CG. Soluzioni innovative a flusso laminare per sale operatorie

Optima CG / Optivent CG. Soluzioni innovative a flusso laminare per sale operatorie Optima CG / Optivent CG Solzioni innovative a flsso laminare per sale operatorie Optima CG / Optivent CG Solzioni innovative a flsso laminare per sale operatorie Applicazioni Clean Air Power Generation

Dettagli

unità 01 un intervista Attività di pre-ascolto Abbinate le parti della colonna A a quelle della colonna B.

unità 01 un intervista Attività di pre-ascolto Abbinate le parti della colonna A a quelle della colonna B. A. Ignone - M. Pichiassi unità 01 un intervista Attività di pre-ascolto Abbinate le parti della colonna A a quelle della colonna B. A B 1. È un sogno a) vuol dire fare da grande quello che hai sempre sognato

Dettagli

Semantica operazionale dei linguaggi di Programmazione

Semantica operazionale dei linguaggi di Programmazione Semantica operazionale dei linguaggi di Programmazione Oggetti sintattici e oggetti semantici Rosario Culmone, Luca Tesei Lucidi tratti dalla dispensa Elementi di Semantica Operazionale R. Barbuti, P.

Dettagli

LIMITI E CONFRONTO LOCALE Esercizi svolti. b) lim. d) lim. h) lim x x + 1 x. l) lim. b) lim x cos x. x 0 sin 2 3x cos x p) lim.

LIMITI E CONFRONTO LOCALE Esercizi svolti. b) lim. d) lim. h) lim x x + 1 x. l) lim. b) lim x cos x. x 0 sin 2 3x cos x p) lim. LIMITI E CONFRONTO LOCALE Esercizi svolti. Calcolare i seguenti iti: a + 4 + b + 4 + 4 c 5 e ± g i + + sin 4 m sin o π q sin π + 4 + 7 d + 4 + + 5 4 + f 4 4 + 5 4 + 4 h + + l + + cos n sin cos p π π +

Dettagli

Approvazione delle modifiche al modello di versamento F24 enti pubblici ed alle relative specifiche tecniche Introduzione del secondo codice fiscale

Approvazione delle modifiche al modello di versamento F24 enti pubblici ed alle relative specifiche tecniche Introduzione del secondo codice fiscale Prot. n. 2012/140335 Approvazione delle modifiche al modello di versamento F24 enti pubblici ed alle relative specifiche tecniche Introduzione del secondo codice fiscale IL DIRETTORE DELL AGENZIA In base

Dettagli

Calcolo combinatorio

Calcolo combinatorio Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico Calcolo combinatorio Ines Campa e Marco Longhi Probabilità e Statistica

Dettagli

,OQXRYRSDUWWLPH 7LSRORJLHFRQWUDWWXDOLDPPHVVH

,OQXRYRSDUWWLPH 7LSRORJLHFRQWUDWWXDOLDPPHVVH ,OQXRYRSDUWWLPH $PELWRGLDSSOLFD]LRQH La circolare ministeriale n. 9 del 18 marzo 2004 ha integrato ed in alcuni casi ampliato, la revisione all istituto del part- time attuata con il D.lgs. n. 276/2003

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 1 per la Scuola secondaria di secondo grado UNITÀ CMPIONE Edizioni del Quadrifoglio à t i n U 1 Insiemi La teoria degli

Dettagli

al via 1 Percorsi guidati per le vacanze di matematica e scienze UNITÀ CAMPIONE Edizioni del Quadrifoglio Evelina De Gregori Alessandra Rotondi

al via 1 Percorsi guidati per le vacanze di matematica e scienze UNITÀ CAMPIONE Edizioni del Quadrifoglio Evelina De Gregori Alessandra Rotondi Evelina De Gregori Alessandra Rotondi al via 1 Percorsi guidati per le vacanze di matematica e scienze per la Scuola secondaria di primo grado UNITÀ CAMPIONE Edizioni del Quadrifoglio Test d'ingresso NUMERI

Dettagli

LA SPESA DELLO STATO DALL UNITÀ D ITALIA

LA SPESA DELLO STATO DALL UNITÀ D ITALIA MINISTERO DELL ECONOMIA E DELLE FINANZE DIPARTIMENTO DELLA RAGIONERIA GENERALE DELLO STATO Servizio Studi Dipartimentale LA SPESA DELLO STATO DALL UNITÀ D ITALIA Anni 1862-2009 Gennaio 2011 INDICE PREMESSA...

Dettagli

Introduzione ad Access

Introduzione ad Access Introduzione ad Access Luca Bortolussi Dipartimento di Matematica e Informatica Università degli studi di Trieste Access E un programma di gestione di database (DBMS) Access offre: un supporto transazionale

Dettagli

Introduzione agli algoritmi e alla programmazione in VisualBasic.Net

Introduzione agli algoritmi e alla programmazione in VisualBasic.Net Lezione 1 Introduzione agli algoritmi e alla programmazione in VisualBasic.Net Definizione di utente e di programmatore L utente è qualsiasi persona che usa il computer anche se non è in grado di programmarlo

Dettagli

La Matematica con il Contafacile Impariamo giocando

La Matematica con il Contafacile Impariamo giocando La Matematica con il Contafacile Impariamo giocando SCUOLA.. A cura dell insegnante Liliana Del Papa e della prof.ssa Maria Pia Saitta classe 1 ª Care colleghe, questo quaderno nasce dal desiderio di condividere

Dettagli

Non tutto, ma un po di tutto

Non tutto, ma un po di tutto ALFREDO MANGIA Non tutto, ma un po di tutto Nozioni fondamentali per conoscere e usare un foglio di calcolo. Corso di alfabetizzazione all informatica Settembre 2004 SCUOLA MEDIA GARIBALDI Genzano di Roma

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Unità 1. I Numeri Relativi

Unità 1. I Numeri Relativi Unità 1 I Numeri Relativi Allinizio della prima abbiamo introdotto i 0numeri 1 naturali: 2 3 4 5 6... E quattro operazioni basilari per operare con essi + : - : Ci siamo però accorti che la somma e la

Dettagli

I numeri relativi. Il calcolo letterale

I numeri relativi. Il calcolo letterale Indice Il numero unità I numeri relativi VIII Indice L insieme R Gli insiemi Z e Q Confronto di numeri relativi Le operazioni fondamentali in Z e Q 0 L addizione 0 La sottrazione La somma algebrica La

Dettagli

Elementi di informatica

Elementi di informatica Elementi di informatica Sistemi di numerazione posizionali Rappresentazione dei numeri Rappresentazione dei numeri nei calcolatori rappresentazioni finalizzate ad algoritmi efficienti per le operazioni

Dettagli

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali 1 Numeri naturali La successione di tutti i numeri del tipo: 0,1, 2, 3, 4,..., n,... forma l'insieme dei numeri naturali, che si indica con il simbolo N. Tale insieme si può disporre in maniera ordinata

Dettagli

Le soluzioni dei quesiti sono in fondo alla prova

Le soluzioni dei quesiti sono in fondo alla prova SCUOLA MEDIA STATALE GIULIANO DA SANGALLO Via Giuliano da Sangallo,11-Corso Duca di Genova,135-00121 Roma Tel/fax 06/5691345-e.mail:scuola.sangallo@libero.it SELEZIONE INTERNA PER LA MARATONA DI MATEMATICA

Dettagli

APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI Indice 1 Le funzioni nel discreto 3 1.1 Le funzioni nel discreto.................................. 3 1.1.1 La rappresentazione grafica............................

Dettagli

2 Rappresentazioni grafiche

2 Rappresentazioni grafiche asi di matematica per la MPT 2 Rappresentazioni grafiche I numeri possono essere rappresentati utilizzando i seguenti metodi: la retta dei numeri; gli insiemi. 2.1 La retta numerica Domanda introduttiva

Dettagli

SEGNO DELLA FUNZIONE. Anche in questo caso, per lo studio del segno della funzione, occorre risolvere la disequazione: y > 0 Ne segue:

SEGNO DELLA FUNZIONE. Anche in questo caso, per lo studio del segno della funzione, occorre risolvere la disequazione: y > 0 Ne segue: CAMPO DI ESISTENZA. Poiché la funzione data è una razionale fratta, essa risulta definita su tutto l asse reale tranne che nei punti in cui il denominatore della frazione si annulla, cioè: C.E. { R: 0}

Dettagli

Funzioni di base. Manualino OE6. Outlook Express 6

Funzioni di base. Manualino OE6. Outlook Express 6 Manualino OE6 Microsoft Outlook Express 6 Outlook Express 6 è un programma, incluso nel browser di Microsoft Internet Explorer, che ci permette di inviare e ricevere messaggi di posta elettronica. È gratuito,

Dettagli

INDICE. Unità 0 LINGUAGGI MATEMATICI, 1. Unità 1 IL SISTEMA DI NUMERAZIONE DECIMALE, 49

INDICE. Unità 0 LINGUAGGI MATEMATICI, 1. Unità 1 IL SISTEMA DI NUMERAZIONE DECIMALE, 49 INDICE Unità 0 LINGUAGGI MATEMATICI, 1 Il libro prosegue nel CD Il linguaggio degli insiemi, 2 1 GLI INSIEMI E LA LORO RAPPRESENTAZIONE, 2 Gli insiemi, 2 Insieme vuoto, finito e infinito, 3 La rappresentazione

Dettagli

METODO VOLTAMPEROMETRICO

METODO VOLTAMPEROMETRICO METODO OLTAMPEOMETCO Tle etodo consente di isrre indirettente n resistenz elettric ed ipieg l definizione stess di resistenz : doe rppresent l tensione i cpi dell resistenz e l corrente che l ttrers coe

Dettagli

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica A ARITMETICA I numeri naturali e le quattro operazioni Esercizi supplementari di verifica Esercizio Rappresenta sulla retta orientata i seguenti numeri naturali. ; ; ; 0;. 0 Esercizio Metti una crocetta

Dettagli

MODIFICHE AL REGOLAMENTO DI GESTIONE DEL FONDO PATRIMONIO UNO

MODIFICHE AL REGOLAMENTO DI GESTIONE DEL FONDO PATRIMONIO UNO MODIFICHE AL REGOLAMENTO DI GESTIONE DEL FONDO PATRIMONIO UNO Regolamento del fondo comune di investimento immobiliare chiuso riservato ad investitori qualificati PATRIMONIO UNO promosso da Patrimonio

Dettagli

Nelle loro impressioni i bambini hanno fatto riferimento a Dante Alighieri. Per la verità non abbiamo disturbato solo lui,

Nelle loro impressioni i bambini hanno fatto riferimento a Dante Alighieri. Per la verità non abbiamo disturbato solo lui, Nelle loro impressioni i bambini hanno fatto riferimento a Dante Alighieri. Per la verità non abbiamo disturbato solo lui, ma abbiamo fatto ricorso ad altri due grandi poeti, vissuti in secoli molto distanti

Dettagli

Esempi di problemi di 1 grado risolti Esercizio 1 Problema: Trovare un numero che sommato ai suoi 3/2 dia 50

Esempi di problemi di 1 grado risolti Esercizio 1 Problema: Trovare un numero che sommato ai suoi 3/2 dia 50 http://einmatman1c.blog.excite.it/permalink/54003 Esempi di problemi di 1 grado risolti Esercizio 1 Trovare un numero che sommato ai suoi 3/2 dia 50 Trovare un numero e' la prima frase e significa che

Dettagli

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti 4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}

Dettagli

I numeri. Premessa: Che cosa sono e a che servono i numeri?

I numeri. Premessa: Che cosa sono e a che servono i numeri? I numeri Premessa: Che cosa sono e a che servono i numeri? Come ti sarai reso conto, i numeri occupano un ruolo importante nella tua vita: dai numeri che esprimono il prezzo degli oggetti venduti in un

Dettagli

PROVA DI MATEMATICA - Scuola Primaria - Classe Seconda

PROVA DI MATEMATICA - Scuola Primaria - Classe Seconda PROVA DI MATEMATICA - Scuola Primaria - Classe Seconda Rilevazione degli apprendimenti Anno Scolastico 2011 2012 PROVA DI MATEMATICA Scuola Primaria Classe Seconda Spazio per l etichetta autoadesiva ISTRUZIONI

Dettagli

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma.

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma. Addizione: PROPRIETA' COMMUTATIVA Cambiando l'ordine degli addendi la somma non cambia. 1) a + b = b + a PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si

Dettagli

VOLUME 2 CAPITOLO 2 MODULO D LE VENTI REGIONI ITALIANE. Alla fine del capitolo scrivi il significato di queste parole nuove: ... ... ... ... ... ...

VOLUME 2 CAPITOLO 2 MODULO D LE VENTI REGIONI ITALIANE. Alla fine del capitolo scrivi il significato di queste parole nuove: ... ... ... ... ... ... LA CITTÀ VOLUME 2 CAPITOLO 2 MODULO D LE VENTI REGIONI ITALIANE 1. Parole per capire Alla fine del capitolo scrivi il significato di queste parole nuove: città... città industriale... pianta della città...

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

300 (RESPONSABILITA' AMMINISTRATIVA PERSONE GIURIDICHE).

300 (RESPONSABILITA' AMMINISTRATIVA PERSONE GIURIDICHE). DECRETO LEGISLATIVO 8 giugno 2001, n. 231 (in Gazzetta Ufficiale, 19 giugno, n. 140). - Disciplina della responsabilità amministrativa delle persone giuridiche, delle società e delle associazioni anche

Dettagli

Fondamenti di Informatica e Laboratorio T-AB Ingengeria dell Automazione a.a. 2008/2009. Lab 02 Tipi semplici in C

Fondamenti di Informatica e Laboratorio T-AB Ingengeria dell Automazione a.a. 2008/2009. Lab 02 Tipi semplici in C Fondamenti di Informatica e Laboratorio T-AB Ingengeria dell Automazione a.a. 2008/2009 Lab 02 Tipi semplici in C Obiettivo dell esercitazione Acquistare familiarità con i tipi di dato semplici supportati

Dettagli

Appunti sulle disequazioni

Appunti sulle disequazioni Premessa Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) Appunti sulle disequazioni Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire

Dettagli

Dispense di Informatica Anno Scolastico 2008/2009 Classe 3APS. Dal Problema all'algoritmo

Dispense di Informatica Anno Scolastico 2008/2009 Classe 3APS. Dal Problema all'algoritmo stituto Tecnico Statale Commerciale Dante Alighieri Cerignola (FG) Dispense di nformatica Anno Scolastico 2008/2009 Classe 3APS Dal Problema all'algoritmo Pr.: 001 Ver.:1.0 Autore: prof. Michele Salvemini

Dettagli

classe delle migliaia seimilionitrecentosedicimilaquattrocento 2 h di miliardi 120 501 926 840... 8 h di milioni 8 926 145 480...

classe delle migliaia seimilionitrecentosedicimilaquattrocento 2 h di miliardi 120 501 926 840... 8 h di milioni 8 926 145 480... ARITMETICA Le classi del numero Leggi i numeri che si riferiscono agli abitanti di alcuni Stati del mondo, poi riscrivili nella tabella in ordine crescente. Argentina 0 5 Nigeria 5 78 900 Australia 06

Dettagli

GENNAIO 2011. download www.maecla.it. Esperienza didattica nella scuola primaria a cura di Giuseppe Amato ( alias Davide Tamatoni )

GENNAIO 2011. download www.maecla.it. Esperienza didattica nella scuola primaria a cura di Giuseppe Amato ( alias Davide Tamatoni ) Esperienza didattica nella scuola primaria a cura di Giuseppe Amato ( alias Davide Tamatoni ) I NUMERI NEGATIVI Lezione tratta da http://www.maecla.it/bibliotecamatematica/af_file/damore_oliva_numeri/mat_fant_classe4.pdf

Dettagli

DAL PROBLEMA AL PROGRAMMA

DAL PROBLEMA AL PROGRAMMA 1. I PROBLEMI E LA LORO SOLUZIONE DAL PROBLEMA AL PROGRAMMA L'uomo, per affrontare gli innumerevoli problemi postigli dallo sviluppo della civiltà, si è avvalso della scienza e della tecnica, i cui destini

Dettagli

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Corso di Scienza Economica (Economia Politica) prof. G. Di Bartolomeo Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Facoltà di Scienze della Comunicazione Università di Teramo Scelta

Dettagli

La mia compagna di vita. il primo passo è l informazione. un racconto ARTRITE REUMATOIDE:

La mia compagna di vita. il primo passo è l informazione. un racconto ARTRITE REUMATOIDE: La mia compagna di vita n racconto ARTRITE REUMATOIDE: il primo passo è l informazione È n iniziativa parte del progetto informativo Articol-AZIONI realizzato da: Il primo passo è l informazione Gidare

Dettagli

Potenze di 10 e il SI

Potenze di 10 e il SI Le potenze di 10 e il SI - 1 Potenze di 10 e il SI Particolare importanza assumono le potenze del numero 10, poiché permettono di semplificare la scrittura di numeri grandissimi e piccolissimi. Tradurre

Dettagli

CONVENZIONE SULL ESAME MEDICO DI ATTITUDINE ALL IMPIEGO NEI LAVORI NON INDUSTRIALI DEI RAGAZZI E DEGLI ADOLESCENTI, 1946 1

CONVENZIONE SULL ESAME MEDICO DI ATTITUDINE ALL IMPIEGO NEI LAVORI NON INDUSTRIALI DEI RAGAZZI E DEGLI ADOLESCENTI, 1946 1 Convenzione 78 CONVENZIONE SULL ESAME MEDICO DI ATTITUDINE ALL IMPIEGO NEI LAVORI NON INDUSTRIALI DEI RAGAZZI E DEGLI ADOLESCENTI, 1946 1 La Conferenza generale dell Organizzazione Internazionale del Lavoro,

Dettagli

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA DEFINIZIONE: Dato un numero reale a che sia a > 0 e a si definisce funzione esponenziale f(x) = a x la relazione che ad ogni valore di x associa uno e un solo

Dettagli

SCUOLA DELL INFANZIA ANDERSEN SPINEA I CIRCOLO ANNO SCOLASTICO 2006/07. Documentazione a cura di Quaglietta Marica

SCUOLA DELL INFANZIA ANDERSEN SPINEA I CIRCOLO ANNO SCOLASTICO 2006/07. Documentazione a cura di Quaglietta Marica SCUOLA DELL INFANZIA ANDERSEN SPINEA I CIRCOLO ANNO SCOLASTICO 2006/07 GRUPPO ANNI 3 Novembre- maggio Documentazione a cura di Quaglietta Marica Per sviluppare Pensiero creativo e divergente Per divenire

Dettagli

COME MASSIMIZZARE UNA FUNZIONE DI UTILITÀ

COME MASSIMIZZARE UNA FUNZIONE DI UTILITÀ icroeconomia Douglas Bernheim, ichael Whinston Copyright 009 The cgraw-hill Companies srl COE ASSIIZZARE UNA FUNZIONE DI UTILITÀ Supponiamo che il reddito mensile di Elena sia pari a Y e sia interamente

Dettagli

Convessità e derivabilità

Convessità e derivabilità Convessità e derivabilità Definizione 1 (convessità per funzioni derivabili) Sia f : (a, b) R derivabile su (a, b). Diremo che f è convessa o concava su (a, b) se per ogni 0 (a,b) il grafico di f sta tutto

Dettagli

Calcolo differenziale Test di autovalutazione

Calcolo differenziale Test di autovalutazione Test di autovalutazione 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = 1 3 2. Sia

Dettagli

APPUNTI DI MATEMATICA CENNI DI RICERCA OPERATIVA ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA CENNI DI RICERCA OPERATIVA ALESSANDRO BOCCONI APPUNTI DI MATEMATICA CENNI DI RICERCA OPERATIVA ALESSANDRO BOCCONI Indice 1 La ricerca operativa 2 1.1 Introduzione......................................... 2 1.2 Le fasi della ricerca operativa...............................

Dettagli

Come utilizzare il contatore elettronico trifase. E scoprirne tutti i vantaggi.

Come utilizzare il contatore elettronico trifase. E scoprirne tutti i vantaggi. Come utilizzare il contatore elettronico trifase. E scoprirne tutti i vantaggi. Indice Il contatore elettronico. Un sistema intelligente che lavora con te 2 Un contatore che fa anche bella figura 3 Oltre

Dettagli

SCOMPOSIZIONE IN FATTORI DI UN POLINOMIO

SCOMPOSIZIONE IN FATTORI DI UN POLINOMIO SCOMPOSIZIONE IN FATTORI DI UN POLINOMIO Così come avviene per i numeri ( 180 = 5 ), la scomposizione in fattori di un polinomio è la trasformazione di un polinomio in un prodotto di più polinomi irriducibili

Dettagli

F (x) = f(x) per ogni x I. Per esempio:

F (x) = f(x) per ogni x I. Per esempio: Funzioni Primitive (Integrali Indefiniti) (l.v.) Pur essendo un argomento che fa parte del Calcolo Differenziale, molti autori inseriscono funzioni primitive nel capitolo sul Calcolo Integrale, in quanto

Dettagli

Pasta per due. Capitolo 1. Una mattina, Libero si sveglia e accende il computer C È POSTA PER TE! e trova un nuovo messaggio della sua amica:

Pasta per due. Capitolo 1. Una mattina, Libero si sveglia e accende il computer C È POSTA PER TE! e trova un nuovo messaggio della sua amica: Pasta per due 5 Capitolo 1 Libero Belmondo è un uomo di 35 anni. Vive a Roma. Da qualche mese Libero accende il computer tutti i giorni e controlla le e-mail. Minni è una ragazza di 28 anni. Vive a Bangkok.

Dettagli

I.Stat Guida utente Versione 1.7 Dicembre 2010

I.Stat Guida utente Versione 1.7 Dicembre 2010 I.Stat Guida utente Versione 1.7 Dicembre 2010 1 Sommario INTRODUZIONE 3 I concetti principali di I.Stat 4 Organizzazione dei dati 4 Ricerca 5 GUIDA UTENTE 6 Per iniziare 6 Selezione della lingua 7 Individuazione

Dettagli