Appunti sul galleggiamento

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Appunti sul galleggiamento"

Transcript

1 Appunti sul galleggiamento Prof.sa Enrica Giordano Corso di Didattica della fisica 1B a.a. 2006/7 Ad uso esclusivo degli studenti frequentanti, non diffondere senza l autorizzazione della professoressa

2 Galleggiare/ affondare Concordiamo un significato condiviso per il verbo galleggiare : Un corpo che immerso completamente in un liquido torna a galla, quando si ferma sta a galla (galleggia) Può capitare però che un corpo, che appoggiato sulla superficie di un liquido sta a galla, immerso nel liquido vada a fondo. Per ora studiamo la prima categoria di oggetti, poi torneremo sulla seconda. Cerchiamo una regola generale che ci permetta di stabilire (senza eseguire l esperimento) se l oggetto immerso in acqua (o altro liquido) tornerà a galla o affonderà. Riprendiamo approfondendole due regole note.

3 Legge di Archimede Un oggetto immerso in acqua riceve una spinta dal basso verso l alto pari al peso di un volume di acqua che si può immaginare corrispondere allo spazio occupato dall oggetto immerso. Più in generale: Un corpo immerso in un fluido (liquido o gas) riceve una spinta diretta dal basso verso l alto pari al peso di un volume di fluido uguale al volume immerso del corpo. Perché non usiamo il più tradizionale volume di acqua spostato? Se la spinta di Archimede su un oggetto completamente immerso è maggiore del peso dell oggetto, questo torna a galla e sta a galla, in generale, stando parzialmente in acqua (quanto? ) e parzialmente fuori. I liquidi galleggiano su altri liquidi stando tutti sopra la superficie di separazione.

4 Regola del peso specifico: Un oggetto omogeneo (costituito da un unico materiale) galleggia in un liquido se il peso specifico del materiale è minore di quello del liquido. Ma cosa è esattamente il peso specifico? Qual è il significato dell operazione di calcolo nota dalle scuole precedenti (P/V)? Cosa cambia se l oggetto è fatto di più materiali? Posso prevedere quanti chiodi serviranno a far affondare un tappo di sughero? E quanti tappi a far galleggiare un chiodo? Impariamo a utilizzare i grafici.

5 Riportiamo su una retta dei numeri il peso (misurato nelle unità di misura della massa) di oggetti vari, determinato con un dinamometro (vedi appunti relativi ed esercitazioni di lab) o una bilancia. Su un altra retta riportiamo il volume di quegli stessi oggetti determinato ad esempio per immersione in un liquido contenuto in un cilindro graduato. Quindi disponiamo i due assi perpendicolarmente tra loro, sull asse delle ascisse riportiamo il volume e su quello delle ordinate il peso. Sul piano cartesiano così ottenuto mettiamo un punto in corrispondenza di ciascun oggetto. Gli oggetti fatti di uno stesso materiale risultano essere punti allineati tra loro e con l origine.

6 Stabilisci le unità di misura sui due assi e i valori numerici corrispondenti alle tacche segnate. Quante informazioni è possibile ricavare da questo grafico? Quali?

7 Ad esempio tracciando rette parallele agli assi si possono trovare: La spinta di Archimede su un oggetto che affonda (peso dell acqua pari al volume immerso) Il volume immerso di un oggetto che galleggia (volume dell acqua il cui peso è pari a quello dell oggetto)

8 P 2 P 1 V 1 V 2 Considera i due triangoli rettangoli che stanno sotto la retta rossa e hanno vertice nell origine: Come sono tra loro? Che relazione c è tra i loro lati V 1, V 2, P 1, P 2? Disegna i corrispondenti triangoli sotto la retta blu, cosa cambia? Disegna due triangoli analoghi anche per la retta verde, cosa cambia?

9 La variabile che possiamo calcolare per determinare se un oggetto fatto di un unico materiale galleggia o affonda in acqua è il peso specifico del materiale che possiamo definire come il peso del volume unitario di materiale. Per calcolarlo consideriamo la proporzione: P 1 : P 2 = V 1 : V 2 che lega pesi e volumi di oggetti fatti dello stesso materiale. Poniamo il volume V 2 = 1. Dalle proprietà delle proporzioni si trova che P 1 / V 1 = P 2 / V 2. Quindi dividendo il peso P 1 di un qualsiasi volume V 1 per il numero del volume stesso si trova il peso P 2 del volume unitario. Il numero finale dipende dalle unità di misura scelte per le due variabili. Così il peso specifico dell acqua è 1 se lo misuriamo in Kg/ dm 3, ma è 1000 se lo misuriamo in Kg/ m 3 ; infatti 1 m 3 pieno di acqua pesa 1000 Kg. Il rapporto P/V può essere considerato come la pendenza della retta nel grafico cartesiano (V,P). Se tale pendenza e quindi il numero P/V che la rappresenta è minore di quella dell acqua l oggetto galleggia in acqua.

10 Torniamo agli oggetti fatti da più di un materiale e al caso di oggetti che stanno a galla ma non tornano a galla se vengono immersi nel liquido. Vediamo se anche in questo caso è possibile trovare una regola e quale. Ci sono due possibilità: Oggetti fatti di più materiali Oggetti che stanno a galla solo appoggiati in certe posizioni

11 Le unità di misura sugli assi corrispondono a tappi di sughero (volume) e chiodi di ferro (il peso)

12 Per gli oggetti fatti di due materiali si può tracciare una semiretta equivalente a un materiale omogeneo che si può immaginare costituisca l oggetto misto Oggetti fatti di più materiali

13 Se un oggetto è fatto di due materiali si può trovare la pendenza del materiale equivalente (vedi diapositiva facendo il rapporto tra il peso complessivo dell oggetto (somma dei pesi delle due parti in diverso materiale, ad esempio somma del peso dei chiodi e di quello dei tappi di sughero) e il volume complessivo (somma dei volumi delle due parti in diverso materiale, ad esempio somma del volume dei chiodi e di quello dei tappi di sughero). Per decidere se galleggerà o affonderà in un liquido, si calcola quindi (P tappi + P chiodi )/(V tappi + V chiodi ) e si ottiene la pendenza del segmento che congiunge l origine con il punto corrispondente all oggetto disomogeneo. Si confronta infine questa pendenza con quella della retta del liquido in cui l oggetto viene immerso. Adesso sapresti dire perché una nave sta a galla? E perché immersa va a fondo?

14 La pelle dell acqua è elastica Alcuni oggetti, ad esempio un ago di acciaio, se appoggiati delicatamente sulla superficie dell acqua riescono a stare a galla anche avendo un peso specifico maggiore dell acqua. Questo avviene perché la pelle dell acqua è elastica e si deforma riuscendo ad esercitare una forza (si parla di tensione superficiale, che non ha niente a che vedere con la spinta di Archimede) che bilancia il peso dell ago. Se però l ago è messo di punta, la pelle dell acqua si rompe e l ago affonda. Fate la prova e osservate attentamente la pelle dell acqua intorno all ago ponendo gli occhi all altezza della superficie libera dell acqua.

ESPERIMENTO : 1 Prendete il chiodo, il tappo di sughero, la candela e un oggetto di pongo presenti nel kit, immergeteli in una bacinella d acqua.

ESPERIMENTO : 1 Prendete il chiodo, il tappo di sughero, la candela e un oggetto di pongo presenti nel kit, immergeteli in una bacinella d acqua. Chiara Incerpi IIA Vi ringraziamo per aver scelto il nostro kit. Qui imparerete il segreto del galleggiamento attraverso una serie di esperimenti che potrete eseguire con i diversi materiali. ESPERIMENTO

Dettagli

PICCOLI EINSTEIN. Il liceo Einstein apre le porte dei propri laboratori per le classi delle scuole medie

PICCOLI EINSTEIN. Il liceo Einstein apre le porte dei propri laboratori per le classi delle scuole medie PICCOLI EINSTEIN Il liceo Einstein apre le porte dei propri laboratori per le classi delle scuole medie DESCRIZIONE DEL PROGETTO: Il liceo scientifico Einstein, sito in via Pacini 28, propone alle singole

Dettagli

Progetto Laboratori Saperi Scientifici (2 anno)

Progetto Laboratori Saperi Scientifici (2 anno) IC «M. L. Niccolini» Ponsacco (PI) a.s. 2014-15 Progetto Laboratori Saperi Scientifici (2 anno) «Il Peso Specifico il Principio di Archimede Il Galleggiamento» Classe 3 Scuola Secondaria di 1 grado Docente

Dettagli

Possiamo vedere in azione questo principio nell impianto frenante delle automobili, o nei ponti idraulici delle officine.

Possiamo vedere in azione questo principio nell impianto frenante delle automobili, o nei ponti idraulici delle officine. La pressione Pressione: intensità della forza F che agisce perpendicolarmente alla superficie S. La formula diretta è: Nota bene che: 1. la pressione è una grandezza scalare, F p = S 2. la forza è espressa

Dettagli

Impariamo a misurare la densità!

Impariamo a misurare la densità! Impariamo a misurare la densità! A cura di Martina Grussu Loredana Orrù Stefania Piroddi Eugenia Rinaldi Chiara Salidu Fabrizio Zucca La densità Si definisce densità il rapporto tra la massa di un corpo

Dettagli

FISICA. Le forze. Le forze. il testo: 2011/2012 La Semplificazione dei Testi Scolastici per gli Alunni Stranieri IPSIA A.

FISICA. Le forze. Le forze. il testo: 2011/2012 La Semplificazione dei Testi Scolastici per gli Alunni Stranieri IPSIA A. 01 In questa lezione parliamo delle forze. Parliamo di forza quando: spostiamo una cosa; solleviamo un oggetto; fermiamo una palla mentre giochiamo a calcio; stringiamo una molla. Quando usiamo (applichiamo)

Dettagli

Corso di Laurea in Scienze della Formazione Primaria Università di Genova MATEMATICA Il

Corso di Laurea in Scienze della Formazione Primaria Università di Genova MATEMATICA Il Lezione 5:10 Marzo 2003 SPAZIO E GEOMETRIA VERBALE (a cura di Elisabetta Contardo e Elisabetta Pronsati) Esercitazione su F5.1 P: sarebbe ottimale a livello di scuola dell obbligo, fornire dei concetti

Dettagli

Forze come grandezze vettoriali

Forze come grandezze vettoriali Forze come grandezze vettoriali L. Paolucci 23 novembre 2010 Sommario Esercizi e problemi risolti. Per la classe prima. Anno Scolastico 2010/11 Parte 1 / versione 2 Si ricordi che la risultante di due

Dettagli

PROGETTO. SID - Scientiam Inquirendo Discere IBSE - Inquiry Based Science. Education

PROGETTO. SID - Scientiam Inquirendo Discere IBSE - Inquiry Based Science. Education PROGETTO SID - Scientiam Inquirendo Discere IBSE - Inquiry Based Science Education 1 Anno scolastico 2013 2014 Classe I A ottici Modulo: Affonda o galleggia? Agata Conti 2 Sintesi Il modulo offre l'opportunità

Dettagli

MISURE CON IL MANOMETRO E DETERMINAZIONE DI DENSITA RELATIVE

MISURE CON IL MANOMETRO E DETERMINAZIONE DI DENSITA RELATIVE MISURE CON IL MANOMETRO E DETERMINAZIONE DI DENSITA RELATIVE Materiali -Manometro: tubo a U fissato verticalmente ad un sostegno, con un braccio libero e l altro collegato ad un tubo flessibile di plastica

Dettagli

ANDREA FARALLI 2 C IL BARICENTRO

ANDREA FARALLI 2 C IL BARICENTRO ANDREA FARALLI 2 C IL BARICENTRO Domenica dieci febbraio siamo andati al laboratorio di fisica della nostra scuola per fare accoglienza ai ragazzi di terza media. Questa accoglienza consisteva nell illustrare

Dettagli

FENOMENI DI SUPERFICIE 1 Un possibile percorso: LA TENSIONE SUPERFICIALE Scheda esperienza 1

FENOMENI DI SUPERFICIE 1 Un possibile percorso: LA TENSIONE SUPERFICIALE Scheda esperienza 1 PIANO ISS P r e s i d i o M I L A N O I s t i t u t o T e c n i c o I n d u s t r i a l e S t a t a l e L i c e o S c i e n t i f i c o T e c n o l o g i c o E t t o r e M o l i n a r i Via Crescenzago,

Dettagli

ESERCIZI CINEMATICA IN UNA DIMENSIONE

ESERCIZI CINEMATICA IN UNA DIMENSIONE ESERCIZI CINEMATICA IN UNA DIMENSIONE ES. 1 - Due treni partono da due stazioni distanti 20 km dirigendosi uno verso l altro rispettivamente alla velocità costante di v! = 50,00 km/h e v 2 = 100,00 km

Dettagli

Tonzig Fondamenti di Meccanica classica

Tonzig Fondamenti di Meccanica classica 224 Tonzig Fondamenti di Meccanica classica ). Quando il signor Rossi si sposta verso A, la tavola si sposta in direzione opposta in modo che il CM del sistema resti immobile (come richiesto dal fatto

Dettagli

I quesiti di Matematica per la classe di concorso A059

I quesiti di Matematica per la classe di concorso A059 I quesiti di Matematica per la classe di concorso A059 Prof. Michelangelo Di Stasio Liceo Scientifico Statale Galileo Galilei di Piedimonte Matese (CE) michelangelodistasio@tin.it SOMMARIO Si propone la

Dettagli

Kangourou Italia Gara del 20 marzo 2014 Categoria Junior Per studenti di seconda e terza della secondaria di secondo grado

Kangourou Italia Gara del 20 marzo 2014 Categoria Junior Per studenti di seconda e terza della secondaria di secondo grado Kangourou Italia Gara del 20 marzo 2014 Categoria Junior Per studenti di seconda e terza della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Una grande nave cargo

Dettagli

Blocco_A_2014 pag. 1

Blocco_A_2014 pag. 1 Blocco_A_2014 pag. 1 D1. Quattro amiche devono eseguire la seguente moltiplicazione: 25 (-30) Per trovare il risultato ognuna svolge il calcolo in modo diverso. Chi ha svolto il calcolo in modo NON corretto?

Dettagli

ESEMPI DI TEST DI INGRESSO FISICA 2010 G. Selvaggi, R. Stella Dipartimento Interateneo di fisica di Fisica 3 marzo 2010

ESEMPI DI TEST DI INGRESSO FISICA 2010 G. Selvaggi, R. Stella Dipartimento Interateneo di fisica di Fisica 3 marzo 2010 ESEMPI DI TEST DI INGRESSO FISICA 2010 G. Selvaggi, R. Stella Dipartimento Interateneo di fisica di Fisica 3 marzo 2010 1 Fisica 1. Un ciclista percorre 14.4km in mezz ora. La sua velocità media è a. 3.6

Dettagli

Q 1 = +3 10-5 C carica numero 1 Q 2 = +4 10-5 C carica numero 2 forza esercitata tra le cariche distanza tra le cariche, incognita

Q 1 = +3 10-5 C carica numero 1 Q 2 = +4 10-5 C carica numero 2 forza esercitata tra le cariche distanza tra le cariche, incognita Problema n 1 A quale distanza, una dall'altra bisogna porre nel vuoto due cariche (Q 1 =3 10-5 C e Q 2 =4 10-5 C) perché esse esercitino una sull'altra la forza di 200 N? Q 1 = +3 10-5 C carica numero

Dettagli

MASSA VOLUMICA o DENSITA

MASSA VOLUMICA o DENSITA MASSA VOLUMICA o DENSITA Massa volumica di una sostanza: è la massa di sostanza, espressa in kg, che occupa un volume pari a 1 m 3 1 m 3 di aria ha la massa di 1,2 kg 1 m 3 di acqua ha la massa di 1000

Dettagli

I SISTEMI DI NUMERAZIONE

I SISTEMI DI NUMERAZIONE ISTITUTO DI ISTRUZIONE SUPERIORE G. M. ANGIOY CARBONIA I SISTEMI DI NUMERAZIONE Prof. G. Ciaschetti Fin dall antichità, l uomo ha avuto il bisogno di rappresentare le quantità in modo simbolico. Sono nati

Dettagli

Nome..Cognome.. Classe 4G 4 dicembre 2008. VERIFICA DI FISICA: lavoro ed energia

Nome..Cognome.. Classe 4G 4 dicembre 2008. VERIFICA DI FISICA: lavoro ed energia Nome..Cognome.. Classe 4G 4 dicembre 8 VERIFIC DI FISIC: lavoro ed energia Domande ) Energia cinetica: (punti:.5) a) fornisci la definizione più generale possibile di energia cinetica, specificando l equazione

Dettagli

Distinguere grandezze, unità di misura, strumenti di misura.

Distinguere grandezze, unità di misura, strumenti di misura. L A 145 ATTIVITÀ 1 Distinguere grandezze, unità di misura, strumenti di misura. Il tuo libro di scienze; strumenti di misura e non di misura forniti dal tuo insegnante. Osserva il tuo libro di scienze

Dettagli

Galleggiare/ affondare di un materiale

Galleggiare/ affondare di un materiale Appunti sul galleggiamento a cura di E. Giordano Per studenti frequentanti e non frequentanti del Corso di laurea in Scienze della formazione primaria. Draft Non diffondere senza l autorizzazione della

Dettagli

Istituto Tecnico per Geometri Corso di Costruzioni Edili

Istituto Tecnico per Geometri Corso di Costruzioni Edili Istituto Tecnico per Geometri Corso di Costruzioni Edili Prof. Giacomo Sacco LEZIONI SUL CEMENTO ARMATO Sforzo normale, Flessione e taglio CONCETTI FONDAMENTALI Il calcestruzzo ha una bassa resistenza

Dettagli

Giuseppe Ruffo. Fisica: lezioni e

Giuseppe Ruffo. Fisica: lezioni e Giuseppe Ruffo Fisica: lezioni e problemi Unità A2 - La rappresentazione di dati e fenomeni 1. Le rappresentazioni di un fenomeno 2. I grafici cartesiani 3. Le grandezze direttamente proporzionali 4. Altre

Dettagli

Geogebra. Numero lati: Numero angoli: Numero diagonali:

Geogebra. Numero lati: Numero angoli: Numero diagonali: TRIANGOLI Geogebra IL TRIANGOLO 1. Fai clic sull icona Ic2 e nel menu a discesa scegli Nuovo punto : fai clic all interno della zona geometria e individua il punto A. Fai di nuovo clic per individuare

Dettagli

Rilevazione degli apprendimenti

Rilevazione degli apprendimenti Rilevazione degli apprendimenti Anno Scolastico 00-0 PROVA DI MATEMATIA Scuola secondaria di II grado lasse... Studente... Simulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato

Dettagli

Prof. Silvio Reato Valcavasia Ricerche. Il piano cartesiano

Prof. Silvio Reato Valcavasia Ricerche. Il piano cartesiano Il piano cartesiano Per la rappresentazione di grafici su di un piano si utilizza un sistema di riferimento cartesiano. Su questo piano si rappresentano due rette orientate (con delle frecce all estremità

Dettagli

Simulazione della Prova Nazionale. Matematica

Simulazione della Prova Nazionale. Matematica VERSO LA QUARTA PROVA scuola secondaria di primo grado Simulazione della Prova Nazionale Invalsi di Matematica 2 17 maggio 2010 Scuola..................................................................................................................................................

Dettagli

IL CICLO DELL ACQUA. L EVAPORAZIONE Asciughiamo i fazzoletti. Materiale occorrente. Due fazzoletti dello stesso tessuto, acqua.

IL CICLO DELL ACQUA. L EVAPORAZIONE Asciughiamo i fazzoletti. Materiale occorrente. Due fazzoletti dello stesso tessuto, acqua. L EVAPORAZIONE Asciughiamo i fazzoletti IL CICLO DELL ACQUA Materiale occorrente Due fazzoletti dello stesso tessuto, acqua. Immergiamo nell'acqua i due fazzoletti. Li strizziamo bene e li appendiamo fuori

Dettagli

ELEMENTI DI IDROSTATICA IDROSTATICA L'idrostatica (anche detta fluidostatica) è una branca della meccanica dei fluidi che studiailiquidi liquidiin instato statodi diquiete quiete. Grandezze caratteristiche

Dettagli

LA FORZA. Il movimento: dal come al perché

LA FORZA. Il movimento: dal come al perché LA FORZA Concetto di forza Principi della Dinamica: 1) Principio d inerzia 2) F=ma 3) Principio di azione e reazione Forza gravitazionale e forza peso Accelerazione di gravità Massa, peso, densità pag.1

Dettagli

L EQUILIBRIO 1. L EQUILIBRIO DEI SOLIDI. Il punto materiale e il corpo rigido. L equilibrio del punto materiale

L EQUILIBRIO 1. L EQUILIBRIO DEI SOLIDI. Il punto materiale e il corpo rigido. L equilibrio del punto materiale L EQUILIBRIO 1. L EQUILIBRIO DEI SOLIDI Il punto materiale e il corpo rigido Un corpo è in equilibrio quando è fermo e continua a restare fermo. Si intende, per punto materiale, un oggetto così piccolo

Dettagli

Seminario di didattica 1

Seminario di didattica 1 Seminario di didattica - Contents Seminario di didattica 1 Alessia Bonanini, Alessio Cirimele, Alice Bottaro, Laura Spada, Laura Tarigo 28 maggio 2012 1 Seminario di didattica - Contents Indice Introduzione...................................

Dettagli

SCHEDA M MOSAICI CLASSIFICARE CON LA SIMMETRIA

SCHEDA M MOSAICI CLASSIFICARE CON LA SIMMETRIA SCHEDA M MOSAICI CLASSIFICARE CON LA SIMMETRIA Qui sotto avete una griglia, che rappresenta una normale quadrettatura, come quella dei quaderni a quadretti; nelle attività che seguono dovrete immaginare

Dettagli

GEOMETRIA DELLE MASSE

GEOMETRIA DELLE MASSE 1 DISPENSA N 2 GEOMETRIA DELLE MASSE Si prende in considerazione un sistema piano, ossia giacente nel pian x-y. Un insieme di masse posizionato nel piano X-Y, rappresentato da punti individuati dalle loro

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 004 Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PRBLEMA Sia la curva d equazione: ke ove k e

Dettagli

Teoria delle code. Sistemi stazionari: M/M/1 M/M/1/K M/M/S

Teoria delle code. Sistemi stazionari: M/M/1 M/M/1/K M/M/S Teoria delle code Sistemi stazionari: M/M/1 M/M/1/K M/M/S Fabio Giammarinaro 04/03/2008 Sommario INTRODUZIONE... 3 Formule generali di e... 3 Leggi di Little... 3 Cosa cerchiamo... 3 Legame tra N e le

Dettagli

geometriche. Parte Sesta Trasformazioni isometriche

geometriche. Parte Sesta Trasformazioni isometriche Parte Sesta Trasformazioni isometriche In questa sezione di programma di matematica parliamo della geometria delle trasformazioni che studia le figure geometriche soggette a movimenti. Tali movimenti,

Dettagli

IL METODO DEL DISEGNO IN SCALA PREMESSA

IL METODO DEL DISEGNO IN SCALA PREMESSA IL METODO DEL DISEGNO IN SCALA PREMESSA L obiettivo della Copia dal Vero è la trasposizione grafica di ciò che vediamo nella Realtà Tridimensionale (la natura morta), nella Realtà Bidimensionale (il foglio

Dettagli

FISICA. MECCANICA: La Cinematica unidimensionale. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

FISICA. MECCANICA: La Cinematica unidimensionale. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica FISICA MECCANICA: La Cinematica unidimensionale Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica LA MECCANICA La Meccanica è quella parte della fisica che studia il movimento e si compone

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

LEZIONI CON I PAD Docente scuola secondaria IC Moglia Carla Casareggio Classi seconde 2014/2015 Proprietà triangoli e quadrilateri con Sketchometry

LEZIONI CON I PAD Docente scuola secondaria IC Moglia Carla Casareggio Classi seconde 2014/2015 Proprietà triangoli e quadrilateri con Sketchometry LEZIONI CON I PAD Docente scuola secondaria IC Moglia Carla Casareggio Classi seconde 2014/2015 Proprietà triangoli e quadrilateri con Sketchometry La costruzione di figure geometriche al computer con

Dettagli

2. La disequazione 9 (3x 2 + 2) > 16 (x - 3) è soddisfatta: A) sempre B) solo per x < 0 C) solo per x > 2/3 D) mai E) solo per x < 2/3

2. La disequazione 9 (3x 2 + 2) > 16 (x - 3) è soddisfatta: A) sempre B) solo per x < 0 C) solo per x > 2/3 D) mai E) solo per x < 2/3 MATEMATICA 1. Per quali valori di x è x 2 > 36? A) x > - 6 B) x < - 6, x > 6 C) - 6 < x < 6 D) x > 6 E) Nessuno 2. La disequazione 9 (3x 2 + 2) > 16 (x - 3) è soddisfatta: A) sempre B) solo per x < 0 C)

Dettagli

PIANO DI PROGETTO/PROGRAMMAZIONE DIDATTICA

PIANO DI PROGETTO/PROGRAMMAZIONE DIDATTICA 1 di 8 Anno scolastico: PIANO DI PROGETTO/PROGRAMMAZIONE DIDATTICA Materia: 2013/14 Fisica Data: Classe: 1A I Insegnante: Barbara Baiguini La presente programmazione fornisce linee guida generali. È suscettibile

Dettagli

Appunti sul galleggiamento a cura di E. Giordano e S. Rossi a.a 2015/2016. Galleggiare/affondare di un oggetto

Appunti sul galleggiamento a cura di E. Giordano e S. Rossi a.a 2015/2016. Galleggiare/affondare di un oggetto Appunti sul galleggiamento a cura di E. Giordano e S. Rossi a.a 2015/2016 Galleggiare/affondare di un oggetto Prima di tutto diamo una definizione condivisa del termine galleggiare : un corpo galleggia

Dettagli

Pressione. Esempio. Definizione di pressione. Legge di Stevino. Pressione nei fluidi EQUILIBRIO E CONSERVAZIONE DELL ENERGIA NEI FLUIDI

Pressione. Esempio. Definizione di pressione. Legge di Stevino. Pressione nei fluidi EQUILIBRIO E CONSERVAZIONE DELL ENERGIA NEI FLUIDI Pressione EQUILIBRIO E CONSERVAZIONE DELL ENERGIA NEI FLUIDI Cos è la pressione? La pressione è una grandezza che lega tra di loro l intensità della forza e l aerea della superficie su cui viene esercitata

Dettagli

Ogni primino sa che...

Ogni primino sa che... Ogni primino sa che... A cura della équipe di matematica 25 giugno 2015 Competenze in ingresso Tradizionalmente, nei primi giorni di scuola, gli studenti delle classi prime del Pascal sostengono una prova

Dettagli

Vincere a testa o croce

Vincere a testa o croce Vincere a testa o croce Liceo Scientifico Pascal Merano (BZ) Classe 2 Liceo Scientifico Tecnologico Insegnante di riferimento: Maria Elena Zecchinato Ricercatrice: Ester Dalvit Partecipanti: Jacopo Bottonelli,

Dettagli

Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva 2011, matematicamente.it

Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva 2011, matematicamente.it Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva, matematicamente.it PROBLEMA Data una semicirconferenza di diametro AB =, si prenda su di essa un punto P e sia M la proiezione di P

Dettagli

Questionario. figura il filo si rompe. Quale traiettoria segue la boccia?

Questionario. figura il filo si rompe. Quale traiettoria segue la boccia? Questionario 1) Due palline metalliche hanno le stesse dimensioni, ma una pesa il doppio dell altra. Le due palline vengono lasciate cadere contemporaneamente dal tetto di un edificio di due piani. Il

Dettagli

Università degli studi di Catania Corso di laurea in fisica

Università degli studi di Catania Corso di laurea in fisica Università degli studi di Catania Corso di laurea in fisica Esame di Laboratorio di Fisica II Tesina sulla prova pratica di laboratorio realizzata il 0/04/004 da Enrica Trovato matricola n. 665/000043

Dettagli

ATTIVITÀ L ACQUA ESERCITA UNA FORZA

ATTIVITÀ L ACQUA ESERCITA UNA FORZA ATTIVITÀ L ACQUA ESERCITA UNA FORZA Obiettivi Gli oggetti galleggiano perché l acqua esercita su di essi una spinta: la spinta di Archimede. Difficoltà Difficile Tempo di esecuzione 1 ora Elenco materiali

Dettagli

0. Piano cartesiano 1

0. Piano cartesiano 1 0. Piano cartesiano Per piano cartesiano si intende un piano dotato di due assi (che per ragioni pratiche possiamo scegliere ortogonali). Il punto in comune ai due assi è detto origine, e funziona da origine

Dettagli

Punti notevoli di un triangolo

Punti notevoli di un triangolo Punti notevoli dei triangoli (UbiLearning). - 1 Punti notevoli di un triangolo Particolarmente importanti in un triangolo sono i punti dove s intersecano specifici segmenti, rette o semirette (Encyclopedia

Dettagli

PROBLEMI DI MASSIMO E MINIMO ESEMPI INTRODUTTIVI ELEMENTARI. PROBLEMA 1: Tra i rettangoli di perimetro 20 cm, determina quello di area massima.

PROBLEMI DI MASSIMO E MINIMO ESEMPI INTRODUTTIVI ELEMENTARI. PROBLEMA 1: Tra i rettangoli di perimetro 20 cm, determina quello di area massima. PROBLEMI DI MASSIMO E MINIMO ESEMPI INTRODUTTIVI ELEMENTARI Introduzione Vengono qui presentati alcuni semplici problemi di massimo e minimo. Leggi con attenzione e completa i passaggi mancanti. Prova

Dettagli

Assonometrie per l angolo di incidenza dei raggi disposizione del pian0 di proiezione

Assonometrie per l angolo di incidenza dei raggi disposizione del pian0 di proiezione Assonometria La proieione assonometrica (detta anche assonometria)è la proieione di una figura sopra un piano di rappresentaione (quadro) ottenuta colpendo l oggetto con un raggio di rette parallele (centro

Dettagli

Alla scoperta dell acqua intorno a noi Un possibile percorso 1. Alla scoperta dell acqua intorno a noi (I) Un possibile percorso 2

Alla scoperta dell acqua intorno a noi Un possibile percorso 1. Alla scoperta dell acqua intorno a noi (I) Un possibile percorso 2 I s t i t u t o T e c n i c o I n d u s t r i a l e S t a t a l e L i c e o S c i e n t i f i c o T e c n o l o g i c o E t t o r e M o l i n a r i Via Crescenzago, 110-20132 Milano - t e l. : ( 0 2 )

Dettagli

Test di autovalutazione

Test di autovalutazione Test di autovalutazione 0 0 0 0 0 0 0 70 80 90 00 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle alternative. n onfronta le tue risposte con le soluzioni. n olora,

Dettagli

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. Prerequisiti I radicali Risoluzione di sistemi di equazioni di primo e secondo grado. Classificazione e dominio delle funzioni algebriche Obiettivi minimi Saper

Dettagli

LA GRAFICA E LA GEOMETRIA OPERATIVA

LA GRAFICA E LA GEOMETRIA OPERATIVA LA GRAFICA E LA GEOMETRIA OPERATIVA La geometria operativa, contrariamente a quella descrittiva basata sulle regole per la rappresentazione delle forme geometriche, prende in considerazione lo spazio racchiuso

Dettagli

FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette:

FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette: FASCI DI RETTE DEFINIZIONE: Si chiama fascio di rette parallele o fascio improprio [erroneamente data la somiglianza effettiva con un fascio!] un insieme di rette che hanno tutte lo stesso coefficiente

Dettagli

Verifica sperimentale del carattere vettoriale delle forze

Verifica sperimentale del carattere vettoriale delle forze Classe 4^ AC a.s. 2013/2014 Verifica sperimentale del carattere vettoriale delle forze Obiettivo dell esperimento: dimostrare che la somma di due forze è ottenuta attraverso la regola del parallelogramma,

Dettagli

Parte Seconda. Geometria

Parte Seconda. Geometria Parte Seconda Geometria Geometria piana 99 CAPITOLO I GEOMETRIA PIANA Geometria: scienza che studia le proprietà delle figure geometriche piane e solide, cioè la forma, l estensione e la posizione dei

Dettagli

GAS. I gas si assomigliano tutti

GAS. I gas si assomigliano tutti I gas si assomigliano tutti Aeriforme liquido solido GAS Descrizione macroscopica e microscopica degli stati di aggregazione della materia Fornendo energia al sistema, le forze di attrazione tra le particelle

Dettagli

Liceo Scientifico Statale. Leonardo da Vinci. Fisica. Programma svolto durante l anno scolastico 2012/13 CLASSE I B. DOCENTE Elda Chirico

Liceo Scientifico Statale. Leonardo da Vinci. Fisica. Programma svolto durante l anno scolastico 2012/13 CLASSE I B. DOCENTE Elda Chirico Liceo Scientifico Statale Leonardo da Vinci Fisica Programma svolto durante l anno scolastico 2012/13 CLASSE I B DOCENTE Elda Chirico Le Grandezze. Introduzione alla fisica. Metodo sperimentale. Grandezze

Dettagli

Massimi e minimi vincolati di funzioni in due variabili

Massimi e minimi vincolati di funzioni in due variabili Massimi e minimi vincolati di funzioni in due variabili I risultati principali della teoria dell ottimizzazione, il Teorema di Fermat in due variabili e il Test dell hessiana, si applicano esclusivamente

Dettagli

Modulo didattico sulla misura di grandezze fisiche: la lunghezza

Modulo didattico sulla misura di grandezze fisiche: la lunghezza Modulo didattico sulla misura di grandezze fisiche: la lunghezza Lezione 1: Cosa significa confrontare due lunghezze? Attività n 1 DOMANDA N 1 : Nel vostro gruppo qual è la matita più lunga? DOMANDA N

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

Il numero di ferro. Introduzione

Il numero di ferro. Introduzione Il numero di ferro Introduzione Una competenza fondamentale che si dovrebbe acquisire attraverso lo studio della matematica è quella di costruire modelli che permettano di interpretare la realtà, cogliendo

Dettagli

LE FUNZIONI MATEMATICHE

LE FUNZIONI MATEMATICHE ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante

Dettagli

Test d ingresso di Matematica per la secondaria di secondo grado Test d ingresso di matematica per la secondaria di 2 grado

Test d ingresso di Matematica per la secondaria di secondo grado Test d ingresso di matematica per la secondaria di 2 grado Test d ingresso di matematica per la secondaria di 2 grado Cognome e nome: Classe Data. Tra i numeri naturali da a 20, quali sono quelli pari e multipli di tre? A.2, 4, 6, 8, 0, 2, 4, 6, 8, 20, 3, 6, 9,

Dettagli

GLI ANGOLI. Ricordiamo insieme: ogni volta che una linea spezzata, chiusa o aperta, cambia orientamento si forma un angolo.

GLI ANGOLI. Ricordiamo insieme: ogni volta che una linea spezzata, chiusa o aperta, cambia orientamento si forma un angolo. GLI ANGOLI Ricordiamo insieme: ogni volta che una linea spezzata, chiusa o aperta, cambia orientamento si forma un angolo. A. Osserva questa linea spezzata aperta e continua tu a colorare gli angoli, come

Dettagli

Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete.

Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete. I triangoli e i criteri di congruenza Diapositive riassemblate e rielaborate da prof. ntonio Manca da materiali offerti dalla rete. ontributi di: tlas editore, matematicamente, Prof.ssa. nnamaria Iuppa,

Dettagli

Lezione 6 (16/10/2014)

Lezione 6 (16/10/2014) Lezione 6 (16/10/2014) Esercizi svolti a lezione Esercizio 1. La funzione f : R R data da f(x) = 10x 5 x è crescente? Perché? Soluzione Se f fosse crescente avrebbe derivata prima (strettamente) positiva.

Dettagli

Statica e dinamica dei fluidi. A. Palano

Statica e dinamica dei fluidi. A. Palano Statica e dinamica dei fluidi A. Palano Fluidi perfetti Un fluido perfetto e incomprimibile e indilatabile e non possiede attrito interno. Forza di pressione come la somma di tutte le forze di interazione

Dettagli

Q4 Ripercorriamo dunque i casi fondamentali esaminati nei precedenti paragrafi relativi al calcolo analitico dei volumi.

Q4 Ripercorriamo dunque i casi fondamentali esaminati nei precedenti paragrafi relativi al calcolo analitico dei volumi. 4. Rappresentazione grafica dei volumi Il problema del calcolo dei volumi, oltre alla soluzione analitica proposta nei paragrafi 3 e 4, può essere anche sviluppato per via grafica con una semplice ed elegante

Dettagli

Verifica di Fisica- Energia A Alunno. II^

Verifica di Fisica- Energia A Alunno. II^ Verifica di Fisica- Energia A Alunno. II^!!!!!!!!!!!!!! NON SARANNO ACCETTATI PER NESSUN MOTIVO ESERCIZI SVOLTI SENZA L INDICAZIONE DELLE FORMULE E DELLE UNITA DI MISURA!!!!!!!!!! 1-Il 31 ottobre ti rechi

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie numeriche e serie di potenze Sommare un numero finito di numeri reali è senza dubbio un operazione che non può riservare molte sorprese Cosa succede però se ne sommiamo un numero infinito? Prima

Dettagli

Progetto costo I. O. I.A. A 5 9 4 B 8 15 9 C 4 3 3 D 9 7 1

Progetto costo I. O. I.A. A 5 9 4 B 8 15 9 C 4 3 3 D 9 7 1 Tecniche di Valutazione Economica Processo di aiuto alla decisione lezione 13.04.2005 Modello di valutazione Dobbiamo riuscire a mettere insieme valutazioni che sono espresse con dimensioni diverse. Abbiamo

Dettagli

Alcune nozioni preliminari di teoria elementare di insiemi e funzioni

Alcune nozioni preliminari di teoria elementare di insiemi e funzioni Alcune nozioni preliminari di teoria elementare di insiemi e funzioni Alberto Pinto Corso di Matematica - NUCT 1 Insiemi 1.1 Generalità Diamo la definizione di insieme secondo Georg Cantor, matematico

Dettagli

Misure di base su una carta. Calcoli di distanze

Misure di base su una carta. Calcoli di distanze Misure di base su una carta Calcoli di distanze Per calcolare la distanza tra due punti su una carta disegnata si opera nel modo seguente: 1. Occorre identificare la scala della carta o ricorrendo alle

Dettagli

Il galleggiamento. Attività n.1 Storie di pesci, bambini e zattere. Attività n.2 Il gioco del galleggia non galleggia

Il galleggiamento. Attività n.1 Storie di pesci, bambini e zattere. Attività n.2 Il gioco del galleggia non galleggia Il Approccio fenomenologico, prima parte Ipotesi di lavoro per il laboratorio di didattica della fisica nella formazione primaria 1 2 Attività n.1 Storie di pesci, bambini e zattere Richiamo di esperienze

Dettagli

Il punto di stazione. Corso di orientamento e Cenni di topografia Dario Tommasi IW0QNL

Il punto di stazione. Corso di orientamento e Cenni di topografia Dario Tommasi IW0QNL Il punto di stazione Abbiamo visto tanti modi per usare la bussola, abbiamo visto come trovare un punto sulla carta e come darne le coordinate, come seguire un percorso, ma la cosa più importante è sapere

Dettagli

1 2 3 4 5 6 7 8 9 ESERCIZI SULLA SPINTA DI ARCHIMEDE In corsivo quelli più semplici 1. Sei un ingegnere navale. Devi progettare una nave la cui massa, carico compreso, deve essere di 4000 tonnellate. Quanto

Dettagli

Insegnamento di Fondamenti di Infrastrutture viarie

Insegnamento di Fondamenti di Infrastrutture viarie Insegnamento di Fondamenti di Infrastrutture viarie Territorio ed infrastrutture di trasporto La meccanica della locomozione: questioni generali Il fenomeno dell aderenza e l equazione generale del moto

Dettagli

vari contenitori di capacità 1 l tarati un litro d acqua dentro una bacinella

vari contenitori di capacità 1 l tarati un litro d acqua dentro una bacinella di Beatrice MATERIALI: vari contenitori di capacità 1 l tarati un litro d acqua dentro una bacinella Verso l acqua della bacinella in vari contenitori. La travaso ogni volta. OSSERVAZIONI: L acqua nel

Dettagli

Terremoti a cura di Francesco Speciale

Terremoti a cura di Francesco Speciale Terremoti a cura di Francesco Speciale Il terremoto o sisma viene definito come una rapido e violento scuotimento del suolo dovuto a improvvise lacerazioni che si manifestano a grandi profondità nelle

Dettagli

LA FUNZIONE DI TRASFERIMENTO

LA FUNZIONE DI TRASFERIMENTO LA FUNZIONE DI TRASFERIMENTO Può essere espressa sia nel dominio della s che nel dominio della j Definizione nel dominio della s. è riferita ai soli sistemi con un ingresso ed un uscita 2. ha per oggetto

Dettagli

Studio di funzioni ( )

Studio di funzioni ( ) Studio di funzioni Effettuare uno studio qualitativo e tracciare un grafico approssimativo delle seguenti funzioni. Si studi in particolare anche la concavità delle funzioni e si indichino esplicitamente

Dettagli

Come costruire una distribuzione di frequenze per caratteri quantitativi continui

Come costruire una distribuzione di frequenze per caratteri quantitativi continui Come costruire una distribuzione di frequenze per caratteri quantitativi continui Consideriamo i dati contenuti nel primo foglio di lavoro (quello denominato dati) del file esempio2.xls. I dati si riferiscono

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

Procedi lentamente ed evita movimenti improvvisi. Presta attenzione allo stretching

Procedi lentamente ed evita movimenti improvvisi. Presta attenzione allo stretching Consigli generali Procedi lentamente ed evita movimenti improvvisi. Presta attenzione allo stretching muscolare. Quando l hai eseguito quanto più comodamente possibile, rimani così per 5-10 secondi e poi

Dettagli

INTRODUZIONE. Nei nostri esperimenti abbiamo verificato la legge di Lenz ma non ne abbiamo sentito gli effetti.

INTRODUZIONE. Nei nostri esperimenti abbiamo verificato la legge di Lenz ma non ne abbiamo sentito gli effetti. INTRODUZIONE Il nostro lavoro muove dallo studio del superamento della visione meccanicistica avvenuta nel contesto dello studio delle interazioni elettriche e magnetiche fra la fine del 7 e l inizio dell

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso

Dettagli

LICEO SCIENTIFICO STATALE AUGUSTO RIGHI BOLOGNA

LICEO SCIENTIFICO STATALE AUGUSTO RIGHI BOLOGNA MINISTERO DELLA PUBBLICA ISTRUZIONE UFFICIO SCOLASTICO REGIONALE PER L'EMILIA ROMAGNA LICEO SCIENTIFICO STATALE AUGUSTO RIGHI BOLOGNA SOSPENSIONE del giudizio anno scolastico 2012/13: INDICAZIONI LAVORO

Dettagli

RELAZIONE INTERVENTO CROCE ROSSA ITALIANA

RELAZIONE INTERVENTO CROCE ROSSA ITALIANA Giulia Poggi 1 A RELAZIONE INTERVENTO CROCE ROSSA ITALIANA La Croce Rossa è un associazione internazionale fondata a Ginevra (Svizzera) nel 1864 da Henry Dunant. Nel 1859 durante la battaglia di Solferino

Dettagli

VERIFICA DI MATEMATICA. CLASSI TERZE (3AS, 3BS, 3CS, 3DS, 3ES) 2 settembre 2013 COGNOME E NOME.. CLASSE.

VERIFICA DI MATEMATICA. CLASSI TERZE (3AS, 3BS, 3CS, 3DS, 3ES) 2 settembre 2013 COGNOME E NOME.. CLASSE. VERIFIC DI MTEMTIC CLSSI TERZE (S, BS, CS, DS, ES) settembre COGNOME E NOME.. CLSSE. Esercizio In un piano cartesiano ortogonale determinare: a) l equazione della parabola con asse parallelo all asse,

Dettagli