Si sa che la via più breve tra due punti è la linea retta. Ma vi siete mai chiesti, Qual è la via più breve tra tre punti? o tra quattro punti?

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Si sa che la via più breve tra due punti è la linea retta. Ma vi siete mai chiesti, Qual è la via più breve tra tre punti? o tra quattro punti?"

Transcript

1 Dov'è Moriart? Cerchiamo la via più breve con Mathcad Potete determinare la distanza più breve da tre punti e trovare Moriart? Si sa che la via più breve tra due punti è la linea retta. Ma vi siete mai chiesti, Qual è la via più breve tra tre punti? o tra quattro punti? Per esempio, fate conto di essere Sherlock Holmes che si sta avvicinando al suo mortale nemico, Moriart. Dalle informazioni che avete in mano, sapete che Moriart ha stabilito basi operative in tre zone diverse della città. Sapete anche che a Moriart piace posizionarsi in un luogo che riduca al massimo le distanze che i suoi uomini devono percorrere per fare rapporto sui percorsi tra queste basi. Nelle pagine seguenti vi verrà chiesto di trovare la distanza più breve tra tre e tra quattro punti. Mentre sperimenterete soluzioni diverse, Mathcad traccerà le soluzioni su un piano coordinato e troverà la lunghezza totale della soluzione. Via più breve da tre punti Per cominciare, supponiamo che le basi operative di Moriart siano dislocate sui vertici di un triangolo equilatero con lati di lunghezza. I vertici A, B e C vengono definiti e tracciati sotto. Con Mathcad è più facile scrivere un punto come vettore con la coordinata sopra e la coordinata sotto. Per facilitare il disegno del grafico porremo i tre vertici in un dato ordine, ripetendo A alla fine, in modo che il triangolo possa essere disegnato completamente. Poiché vorremo disegnare tanti triangoli e dato che con Mathcad trovare funzioni è facile, definiremo una funzione che formi un triangolo con tre punti. A B C tri ABC,, A 1 A 2 B 1 B 2 C 1 C 2 A 1 A 2

2 T tri ABC,, i T 2i, T 1i, Ci sono molti modi per congiungere i tre punti. Sotto ci sono tre soluzioni possibili. D(domanda): Quale di queste soluzioni porta la distanza totale più breve tra i tre punti? D: Se tu fossi Moriart, dove saresti posizionato? Indovinare la Soluzione per un Triangolo Equilatero Nel diagramma sotto, il punto rappresenta il punto di intersezione delle linee blu. Provate a cambiare le coordinate e nella definizione a destra del grafo. Si vede che la lunghezza totale delle linee blu viene calcolata automaticamente e immediatamente. Trasformeremo anche il percorso in una funzione, così da poter riutilizzare la definizione. Tracciamo il grafico percorrendo il tratto tra il primo vertice la nostra intersezione, da qui al secondo vertice e ritorno e poi di nuovo verso il terzo e ultimo vertice. percorso ABC,,,, A 1 A 2 B 1 B 2 C 1 C 2

3 percorso1 percorso ABC,,,, c j Determineremo anche una funzione di lunghezza totale che sommi le lunghezze dei tre segmenti del percorso. Qui il valore assoluto sta ad indicare la distanza tra due punti usando la formula corrispondente. lunghezza_totale ABC,,,, A B C lunghezza1 lunghezza_totale ABC,,,, 2 T 2i, T 2c, 1 percorso1 2j, 1 2 T, T, percorso1, 1i, 1c, 1j, lunghezza1= D: Avrete la soluzione che vi aspettate se? Se? D: Quali valori interi delle coordinate di e vi daranno le distanze più brevi tra tre punti? Sapete trovare i valori esatti?

4 D: Quando troverete la distanza più breve, osservate gli angoli con il vertice nel punto di intersezione. Formulate una ipotesi generale sulla geometria della distanza più breve tra tre punti. Soluzioni per un triangolo qualsiasi Ampliando questo problema, supponiamo che le tre basi operative si trovino sui vertici di un triangolo rettangolo o scaleno qualsiasi. A destra vengono date le coordinate dei vertici di un triangolo rettangolo. Per prendere in considerazione un triangolo scaleno, provate a cambiare le coordinate alla destra della definizione di X Y (useremo le maiuscole per distinguere questo caso da quello equilatero). A2 B2 13 C2 17 T2 tri A2, B2, C2 percorso2 percorso X, Y, A2, B2, C2 lunghezza2 lunghezza_totale X, Y, A2, B2, C2

5 2 T2 2i, T2 2c, 1 percorso2 2j, Y 1 2 T2, T2, percorso2, X 1i, 1c, 1j, X Y 2 2 lunghezza2= D: Servendovi delle ipotesi che avete sviluppato sopra, trovate i valori interi delle coordinate della X posizione di Moriart. Y D: Per ogni gruppo di tre punti la soluzione è unica? In altre parole, per un dato triangolo, Moriart potrebbe trovarsi in più di un punto? D: Cosa succede se uno degli angoli è uguale o maggiore di 12? Calcolare la soluzione per un triangolo qualsiasi Usando un blocco soluzione, e la funzione Find, Mathcad trova il punto di intersezione in modo che la lunghezza totale venga minimizzata. Provate a cambiare la posizione di A3, B3 e C3. A3 B3 C

6 T3 tri A3, B3, C3 ipotesi iniziale per il punto di intersezione 7 Vogliamo che la lunghezza totale sia la più piccola possibile, e useremo dei calcoli sofisticati per trovare i valori migliori per e. Se conoscete un po' l'analisi matematica, potete capire cosa stiamo facendo: definiamo la lunghezza totale come funzione delle due coordinate del punto che stiamo cercando. Imponendo che la derivata di questa funzione, rispetto ad ogni variabile, sia uguale a, si pone una condizione che viene soddisfatta dal punto migliore. (Per gli appassionati di analisi matematica, queste sono derivate parziali). Dapprima si definisce la funzione lunghezza: f, lunghezza_totale,, A3, B3, C3 Il blocco risolutivo di Mathcad (basato anch'esso su concetti di analisi matematica) dà come soluzione per le coordinate: Given d d f, d d f, find, percorso3 percorso,, A3, B3, C3 Ecco la soluzione trovata da Mathcad:

7 Le coordinate del punto di intersezione: = La distanza più breve tra tre punti è: f, = Il problema per un quadrato Ora, supponiamo che ci siano quattro basi operative situate sui vertici di un quadrato di lato As Bs Cs Ds S As 1 As 2 Bs 1 Bs 2 Cs 1 Cs 2 Ds 1 Ds 2 As 1 As 2

8 La figura è ora un quadrilatero. Quattro soluzioni tipiche per collegare i vertici appaiono sotto D: Quale di queste soluzioni è la più breve? Notare che alcune di queste soluzioni presentano due punti di intersezione. Ciò significa che Moriart potrebbe trovarsi nell'uno o nell'altro! Nella pagina seguente vi verrà chiesto di trovare due punti di intersezione. Ricordatevi che due punti possono anche essere lo stesso punto. Ora provate l'esperimento con un quadrato. Nota: per questo lavoro non supporre che P sia alla destra di S. Poiché ora abbiamo più vertici, dovremo definire espressioni nuove per il percorso e la lunghezza, e alcune variabili di campo per il disegno. i c 1.. j percorso As 1 As 2 P 1 P 2 Bs 1 Bs 2 P 1 P 2 R 1 R 2 Cs 1 Cs 2 R 1 R 2 Ds 1 Ds 2 lunghezza_totale s As P Bs P P R Cs R Ds R Stabilite le coordinate di P e R e verificate quanto breve sia la lunghezza totale che riuscite ad ottenere

9 P 3 5 R 9 9 lunghezza_totale s = 5.75 D: Quando trovate la distanza più breve, osservate gli angoli che si formano nei punti di intersezione. formulate una ipotesi generale sulla geometria della distanza più breve tra quattro punti. Q(questione): La soluzione è unica? Ci sono altri punti dove potrebbe nascondersi Moriart? La soluzione per un quadrilatero qualsiasi Determinate i quattro vertici del quadrilatero da collegare nell'ordine Aq, Bq, Cq, Dq, Aq. Aq Bq Cq Dq Ecco il quadrilatero Q Aq 1 Aq 2 Bq 1 Bq 2 Cq 1 Cq 2 Dq 1 Dq 2 Aq 1 Aq 2 Poste le ipotesi iniziali per le coordinate e dei due punti di intersezione u e v. Cercate di scegliere valori che siano il più vicini possibile al risultato che vi aspettate. Ciò accelererà i calcoli sotto. Generalmente fissate v all'intersezione più in basso o più a sinistra.

10 u 1 5 u 2 2 v 1 v Ci sono due modi per fare le connessioni: collegare i due vertici più in basso o più a sinistra. La funzione di distanza sceglierà il percorso più breve e la funzione di percorso la disegnerà. Per rendere le nostre equazioni più ordinate cambieremo leggermente la notazione rispetto al quadrato e triangolo, ma le definizioni di funzione sono lo stesso lunghe e complicate. Riconoscerete la prima funzione come una prova di distanza per vedere quale schema di connessione risulterà nel percorso più breve. Successivamente la funzione dist si servirà di questa prova per calcolare la lunghezza complessiva del percorso, e la funzione percorso metterà in riga i corrispondenti vertici di percorso in una arra orizz Cq Bq Dq Aq Bq Aq Cq Dq dist UV, if orizz, Aq U Bq U U V..., Aq U Dq U U V + Cq V Dq V + Cq V Bq V... Aq 1 U 1 Bq 1 U 1 V 1 Cq 1 V 1 Dq 1 percorso UV, if orizz,, Aq 2 U 2 Bq 2 U 2 V 2 Cq 2 V 2 Dq 2 Aq 1 Aq 2 U 1 U 2 Dq 1 Dq 2 U 1 U 2 V 1 V 2 Cq 1 Cq 2 V 1 V 2 Bq 1 Bq 2 Questa volta useremo la funzione Minerr, che rende le equazioni nel solve bo il più possibile vere. Solo l'equazione che implica dist è importante. Le altre sono sempre vere; compaiono solo perché il solve bo vuole tante equazioni quante sono le variabili per cui sta risolvendo: nel nostro caso quattro. Given u 1 dist, u 2 v 1 v

11 Q: u 1 u 2 v 1 v 2 minerr u 1, u 2, v 1, v 2 u 1 p percorso, u 2 v 1 v 2 Ecco rappresentato il percorso più breve per il quadrilatero. Controllate gli angoli dove si incontrano i segmenti di percorso nei quadratini blu Le coordinate dei punti di intersezione per il percorso di collegamento più breve: u = u v = v Provate con diversi quadrilateri cambiando le definizioni evidenziate di Aq, Bq, Cq, e Dq sopra. Cosa succede quando il quadrilatero non è convesso? Man mano che aumenta il numero di punti n, la risposta alla domanda "Qual è la distanza più breve tra n punti?" diventa sempre più difficile da trovare. Vedete cosa c'è da scoprire nel caso successivo dove i punti che collegherete sono i vertici di un pentagono...

SCHEDA M MOSAICI CLASSIFICARE CON LA SIMMETRIA

SCHEDA M MOSAICI CLASSIFICARE CON LA SIMMETRIA SCHEDA M MOSAICI CLASSIFICARE CON LA SIMMETRIA Qui sotto avete una griglia, che rappresenta una normale quadrettatura, come quella dei quaderni a quadretti; nelle attività che seguono dovrete immaginare

Dettagli

Acqua, sapone e superfici minime

Acqua, sapone e superfici minime SISSA PER LA SCUOLA Acqua, sapone e superfici minime Un gioco matematico per le scuole medie Titolo: Acqua, sapone e superfici minime Area: Matematica Tipo di attività: Gioco A chi è rivolta: Ragazzi delle

Dettagli

0. Piano cartesiano 1

0. Piano cartesiano 1 0. Piano cartesiano Per piano cartesiano si intende un piano dotato di due assi (che per ragioni pratiche possiamo scegliere ortogonali). Il punto in comune ai due assi è detto origine, e funziona da origine

Dettagli

Piano Lauree Scientifiche Progetto MATEMATICA e STATISTICA Sapienza Università di Roma a.a. 2010/11

Piano Lauree Scientifiche Progetto MATEMATICA e STATISTICA Sapienza Università di Roma a.a. 2010/11 Piano Lauree Scientifiche Progetto MATEMATICA e STATISTICA Sapienza Università di Roma a.a. 2010/11 Corso di formazione rivolto a insegnanti delle Superiori Giuseppe Accascina accascina@dmmm.uniroma1.it

Dettagli

Geogebra. Numero lati: Numero angoli: Numero diagonali:

Geogebra. Numero lati: Numero angoli: Numero diagonali: TRIANGOLI Geogebra IL TRIANGOLO 1. Fai clic sull icona Ic2 e nel menu a discesa scegli Nuovo punto : fai clic all interno della zona geometria e individua il punto A. Fai di nuovo clic per individuare

Dettagli

Scuola di Wrenn, Dipartimento di Matematica. Investigare cerchi. Questo pacchetto di fogli di lavoro vi fornisce alcune attività per aiutarvi

Scuola di Wrenn, Dipartimento di Matematica. Investigare cerchi. Questo pacchetto di fogli di lavoro vi fornisce alcune attività per aiutarvi Scuola di Wrenn, Dipartimento di Matematica Investigare cerchi Questo pacchetto di fogli di lavoro vi fornisce alcune attività per aiutarvi a scoprire alcune proprietà di cerchi usando The Geometer s Sketchpad.

Dettagli

ESERCIZI CINEMATICA IN UNA DIMENSIONE

ESERCIZI CINEMATICA IN UNA DIMENSIONE ESERCIZI CINEMATICA IN UNA DIMENSIONE ES. 1 - Due treni partono da due stazioni distanti 20 km dirigendosi uno verso l altro rispettivamente alla velocità costante di v! = 50,00 km/h e v 2 = 100,00 km

Dettagli

Studio di funzioni ( )

Studio di funzioni ( ) Studio di funzioni Effettuare uno studio qualitativo e tracciare un grafico approssimativo delle seguenti funzioni. Si studi in particolare anche la concavità delle funzioni e si indichino esplicitamente

Dettagli

Andrea Pagano, Laura Tedeschini Lalli

Andrea Pagano, Laura Tedeschini Lalli 3.5 Il toro 3.5.1 Modelli di toro Modelli di carta Esempio 3.5.1 Toro 1 Il modello di toro finito che ciascuno può costruire è ottenuto incollando a due a due i lati opposti di un foglio rettangolare.

Dettagli

LE FUNZIONI MATEMATICHE

LE FUNZIONI MATEMATICHE ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante

Dettagli

GEOGEBRA I OGGETTI GEOMETRICI

GEOGEBRA I OGGETTI GEOMETRICI GEOGEBRA I OGGETTI GEOMETRICI PROPRIETA : Finestra Proprietà (tasto destro mouse sull oggetto) Fondamentali: permette di assegnare o cambiare NOME, VALORE, di mostrare nascondere l oggetto, di mostrare

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

n L ambiente di lavoro

n L ambiente di lavoro n L ambiente di lavoro n Usare Cabri n Comprendere Cabri n L ambiente di lavoro 1 Che cosa è Cabri Il programma Cabri* è stato sviluppato da Jean-Marie Laborde e Franck Bellemain presso l Institut d Informatique

Dettagli

Corso di Laurea in Scienze della Formazione Primaria Università di Genova MATEMATICA Il

Corso di Laurea in Scienze della Formazione Primaria Università di Genova MATEMATICA Il Lezione 5:10 Marzo 2003 SPAZIO E GEOMETRIA VERBALE (a cura di Elisabetta Contardo e Elisabetta Pronsati) Esercitazione su F5.1 P: sarebbe ottimale a livello di scuola dell obbligo, fornire dei concetti

Dettagli

Rette e piani con le matrici e i determinanti

Rette e piani con le matrici e i determinanti CAPITOLO Rette e piani con le matrici e i determinanti Esercizio.. Stabilire se i punti A(, ), B(, ) e C(, ) sono allineati. Esercizio.. Stabilire se i punti A(,,), B(,,), C(,, ) e D(4,,0) sono complanari.

Dettagli

CORSO DI LAUREA IN INGEGNERIA.

CORSO DI LAUREA IN INGEGNERIA. CORSO DI LAUREA IN INGEGNERIA. FOGLIO DI ESERCIZI 4 GEOMETRIA E ALGEBRA LINEARE 2010/11 Esercizio 4.1 (2.2). Determinare l equazione parametrica e Cartesiana della retta dello spazio (a) Passante per i

Dettagli

Tutorial 3DRoom. 3DRoom

Tutorial 3DRoom. 3DRoom Il presente paragrafo tratta il rilievo di interni ed esterni eseguito con. L utilizzo del software è molto semplice ed immediato. Dopo aver fatto uno schizzo del vano si passa all inserimento delle diagonali

Dettagli

DA GIOCHI D AUTUNNO 2006 SOLUZIONI E COMMENTI

DA GIOCHI D AUTUNNO 2006 SOLUZIONI E COMMENTI DA GIOCHI D AUTUNNO 2006 SOLUZIONI E COMMENTI 1. GIOCO DI CUBI L altezza della piramide di Luca è 95 cm. = (14 + 13 + 12 + + 7 + 6 + 5) 2. LA PARTENZA Anna saluterà le amiche nel seguente ordine: S-I-G-C

Dettagli

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Angela è nata nel 1997,

Dettagli

FUNZIONI / ESERCIZI SVOLTI

FUNZIONI / ESERCIZI SVOLTI ANALISI MATEMATICA I - A.A. 0/0 FUNZIONI / ESERCIZI SVOLTI ESERCIZIO. Data la funzione f () = determinare l insieme f (( +)). Svolgimento. Poiché f (( +)) = { dom f : f () ( +)} = { dom f : f () > } si

Dettagli

Note di matematica per microeconomia

Note di matematica per microeconomia Note di matematica per microeconomia Luigi Balletta Funzioni di una variabile (richiami) Una funzione di variabile reale ha come insieme di partenza un sottoinsieme di R e come insieme di arrivo un sottoinsieme

Dettagli

INdAM QUESITI A RISPOSTA MULTIPLA

INdAM QUESITI A RISPOSTA MULTIPLA INdAM Prova scritta per il concorso a 40 borse di studio, 2 borse aggiuntive e a 40 premi per l iscrizione ai Corsi di Laurea in Matematica, anno accademico 2011/2012. Piano Lauree Scientifiche. La prova

Dettagli

Massimi e minimi vincolati di funzioni in due variabili

Massimi e minimi vincolati di funzioni in due variabili Massimi e minimi vincolati di funzioni in due variabili I risultati principali della teoria dell ottimizzazione, il Teorema di Fermat in due variabili e il Test dell hessiana, si applicano esclusivamente

Dettagli

LA GEOMETRIA NELLE PIASTRELLE

LA GEOMETRIA NELLE PIASTRELLE LA GEOMETRIA NELLE PIASTRELLE Supponiamo di dover pavimentare delle superfici molto estese e vogliamo evitare le classiche composizioni quadrate, rettangolari o a spina di pesce, per rendere meno banale

Dettagli

Il valore assoluto. F. Battelli Università Politecnica delle Marche, Ancona. Pesaro, Precorso di Analisi 1, 22-28 Settembre 2005 p.

Il valore assoluto. F. Battelli Università Politecnica delle Marche, Ancona. Pesaro, Precorso di Analisi 1, 22-28 Settembre 2005 p. Il valore assoluto F Battelli Università Politecnica delle Marche Ancona Pesaro Precorso di Analisi 1 22-28 Settembre 2005 p1/23 Il valore assoluto Si definisce il valore assoluto di un numero reale l

Dettagli

0 ) = lim. derivata destra di f in x 0. Analogamente, diremo che la funzione f è derivabile da sinistra in x 0 se esiste finito il limite

0 ) = lim. derivata destra di f in x 0. Analogamente, diremo che la funzione f è derivabile da sinistra in x 0 se esiste finito il limite Questo breve file è dedicato alle questioni di derivabilità di funzioni reali di variabile reale. Particolare attenzione viene posta alla classificazione dei punti di non derivabilità delle funzioni definite

Dettagli

GIOCHI A SQUADRE. 30 marzo 2012

GIOCHI A SQUADRE. 30 marzo 2012 Centro Pristem Università Bocconi GIOCHI A SQUADRE 30 marzo 2012 1. La campestre Carla, Milena, Anna, Fausta e Debora hanno partecipato alla corsa campestre della loro classe. Carla e Anna non hanno vinto.

Dettagli

Introduzione. Margine di ampiezza... 2 Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di Bode... 6

Introduzione. Margine di ampiezza... 2 Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di Bode... 6 ppunti di Controlli utomatici Capitolo 7 parte II Margini di stabilità Introduzione... Margine di ampiezza... Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di ode... 6 Introduzione

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secondaria di secondo grado UNITÀ CAMPIONE Edizioni del Quadrifoglio à t i n U 1 Sistemi di primo grado

Dettagli

1 Appunti a cura di prof.ssa MINA Maria Letizia integrati e pubblicati in data 12/10/10

1 Appunti a cura di prof.ssa MINA Maria Letizia integrati e pubblicati in data 12/10/10 FUNZIONE OMOGRAFICA ASINTOTO VERTICALE: ASINTOTO ORIZZONTALE: 1 abbiamo verificato che, applicando all iperbole equilatera base, la dilatazione verticale di coefficiente 7 e la traslazione di vettore di

Dettagli

15 febbraio 2010 - Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a. 2009-2010 COGNOME... NOME... N. MATRICOLA...

15 febbraio 2010 - Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a. 2009-2010 COGNOME... NOME... N. MATRICOLA... 15 febbraio 010 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 009-010 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura

Dettagli

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Sessione straordinaria - a.s. 9- ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Tema di: MATEMATICA a.s. 9- Svolgimento a cura di Nicola De Rosa Il candidato risolva uno

Dettagli

Osservazioni sulla prima prova intermedia

Osservazioni sulla prima prova intermedia Avviso Istituzioni di matematiche 2 Diego Noja (diego.noja@unimib.it) 28 aprile 2009 La seconda prova intermedia si svolgerà martedì 26 maggio 2008, dalle 16.30 alle 18.30 Cognomi dalla A alla L: aula

Dettagli

Capitolo 8. La massimizzazione del profitto e l offerta concorrenziale. F. Barigozzi Microeconomia CLEC 1

Capitolo 8. La massimizzazione del profitto e l offerta concorrenziale. F. Barigozzi Microeconomia CLEC 1 Capitolo 8 La massimizzazione del profitto e l offerta concorrenziale F. Barigozzi Microeconomia CLEC 1 Argomenti trattati nel capitolo I mercati in concorrenza perfetta La massimizzazione del profitto

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t)

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t) CONTINUITÀ E DERIVABILITÀ Esercizi proposti 1. Determinare lim M(sin) (M(t) denota la mantissa di t) kπ/ al variare di k in Z. Ove tale limite non esista, discutere l esistenza dei limiti laterali. Identificare

Dettagli

Applicazioni del calcolo differenziale allo studio delle funzioni

Applicazioni del calcolo differenziale allo studio delle funzioni Capitolo 9 9.1 Crescenza e decrescenza in piccolo; massimi e minimi relativi Sia y = f(x) una funzione definita nell intervallo A; su di essa non facciamo, per ora, alcuna particolare ipotesi (né di continuità,

Dettagli

Con carta e forbici alla scoperta del paese Geometria

Con carta e forbici alla scoperta del paese Geometria Con carta e forbici alla scoperta del paese Geometria Anna Asti Enrica Ventura La parola non serve a nulla, il disegno non basta, è necessaria l azione perché il bambino giunga a combinare delle operazioni

Dettagli

Microsoft Word -II Lezione

Microsoft Word -II Lezione Microsoft Word -II Lezione Approfondiamo alcuni aspetti di Word e in particolare: Disegno e modifica di oggetti come forme, linee, frecce etc. Gestione delle tabelle Impostazione e cura dell estetica di

Dettagli

Trasformazioni geometriche nel piano cartesiano

Trasformazioni geometriche nel piano cartesiano Trasformazioni geometriche nel piano cartesiano Francesco Biccari 18 marzo 2013 Una trasformazione geometrica del piano è una legge (corrispondenza biunivoca) che consente di associare a un determinato

Dettagli

Programmazione lineare

Programmazione lineare Programmazione lineare Un modello matematico per un problema di programmazione lineare Problema 1. Un reparto di un azienda di elettrodomestici può produrre giornalmente non più di 6 lavatrici, delle quali

Dettagli

Piega, ripiega e... spiega. Laboratori sulla matematica con il foglio di carta

Piega, ripiega e... spiega. Laboratori sulla matematica con il foglio di carta Piega, ripiega e... spiega Laboratori sulla matematica con il foglio di carta Tutto comincia con un... Tutto comincia con un quadrato! Tutto comincia con un quadrato! Osserviamo: Trovate delle linee? I

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

4.1.1.1 APRIRE UN PROGRAMMA DI FOGLIO ELETTRONICO

4.1.1.1 APRIRE UN PROGRAMMA DI FOGLIO ELETTRONICO 4.1 PER INIZIARE 4.1.1 PRIMI PASSI COL FOGLIO ELETTRONICO 4.1.1.1 APRIRE UN PROGRAMMA DI FOGLIO ELETTRONICO L icona del vostro programma Excel può trovarsi sul desktop come in figura. In questo caso basta

Dettagli

/H]LRQH,OFRQIURQWRGHOOHVXSHUILFL,O SUREOHPD GHO FRQIURQWR GL VXSHUILFL H OD WUDVIRUPD]LRQH GL SROLJRQLHTXLYDOHQWL

/H]LRQH,OFRQIURQWRGHOOHVXSHUILFL,O SUREOHPD GHO FRQIURQWR GL VXSHUILFL H OD WUDVIRUPD]LRQH GL SROLJRQLHTXLYDOHQWL /H]LRQH,OFRQIURQWRGHOOHVXSHUILFL,O SUREOHPD GHO FRQIURQWR GL VXSHUILFL H OD WUDVIRUPD]LRQH GL SROLJRQLHTXLYDOHQWL Il confronto della lunghezza tra due segmenti è un problema molto semplice. Infatti tutti

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

30 o. 60 o. assocubo.ggb. Disegno tecnico + costruzione cartellina. a cura di Manuela Menzaghi 1

30 o. 60 o. assocubo.ggb. Disegno tecnico + costruzione cartellina. a cura di Manuela Menzaghi 1 assocubo.ggb Assonometria monometrica del cubo con gli strumenti geometrici di NOTEBOOK Z Y 60 o 60 o 30 o X L.T. Assonometria monometrica con squadra e righello interattivo a cura di Manuela Menzaghi

Dettagli

Traduzione dell articolo ACHIEVING THE BEST ANGLE di Ed Kolano tratto dalla rivista Sport Aviation di dicembre 2000.

Traduzione dell articolo ACHIEVING THE BEST ANGLE di Ed Kolano tratto dalla rivista Sport Aviation di dicembre 2000. Traduzione dell articolo ACHIEVING THE BEST ANGLE di Ed Kolano tratto dalla rivista Sport Aviation di dicembre 2000. Otteniamo il miglior angolo di salita. Riduzione dei dati di prestazione in salita,

Dettagli

CURRICOLO MATEMATICA ABILITA COMPETENZE

CURRICOLO MATEMATICA ABILITA COMPETENZE CURRICOLO MATEMATICA 1) Operare con i numeri nel calcolo aritmetico e algebrico, scritto e mentale, anche con riferimento a contesti reali. Per riconoscere e risolvere problemi di vario genere, individuando

Dettagli

ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA. A. Concetti e proprietà di base del sistema dei numeri della matematica ( ) + 64 7 10 :5

ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA. A. Concetti e proprietà di base del sistema dei numeri della matematica ( ) + 64 7 10 :5 ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA PER IL CORSO DI LAUREA IN SCIENZE DELLA FORMAZIONE PRIMARIA Ana Millán Gasca Luigi Regoliosi La lettura e lo studio del libro Pensare in matematica da parte degli

Dettagli

Modulo didattico sulla misura di grandezze fisiche: la lunghezza

Modulo didattico sulla misura di grandezze fisiche: la lunghezza Modulo didattico sulla misura di grandezze fisiche: la lunghezza Lezione 1: Cosa significa confrontare due lunghezze? Attività n 1 DOMANDA N 1 : Nel vostro gruppo qual è la matita più lunga? DOMANDA N

Dettagli

Programmazione Annuale di Matematica della Scuola Secondaria di Primo Grado Caccia

Programmazione Annuale di Matematica della Scuola Secondaria di Primo Grado Caccia Programmazione Annuale di Matematica della Scuola Secondaria di Primo Grado Caccia L'educazione matematica ha il compito di avviare l'alunno verso una maggiore consapevolezza e padronanza del pensiero

Dettagli

Kangourou Italia Gara del 20 marzo 2003 Categoria Cadet Per studenti di terza media o prima superiore

Kangourou Italia Gara del 20 marzo 2003 Categoria Cadet Per studenti di terza media o prima superiore 15-20-.qxd 29/03/2003 8.22 Pagina 16 Kangourou Italia Gara del 20 marzo 2003 Categoria Per studenti di terza media o prima superiore I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Quale dei seguenti

Dettagli

Categoria Student Per studenti degli ultimi due anni della scuola secondaria di secondo grado

Categoria Student Per studenti degli ultimi due anni della scuola secondaria di secondo grado Categoria Student Per studenti degli ultimi due anni della scuola secondaria di secondo grado. Risposta A). Il triangolo ABC ha la stessa altezza del triangolo AOB ma base di lunghezza doppia (il diametro

Dettagli

LEZIONE 23 CORSO DI COMPUTER PER SOCI CURIOSI LEZIONE 23. Sommario VENTITREESIMA LEZIONE... 2 MS-PAINT... 2 INTRODUZIONE... 2 ELENCO COMANDI...

LEZIONE 23 CORSO DI COMPUTER PER SOCI CURIOSI LEZIONE 23. Sommario VENTITREESIMA LEZIONE... 2 MS-PAINT... 2 INTRODUZIONE... 2 ELENCO COMANDI... 1 LEZIONE 23 Sommario VENTITREESIMA LEZIONE... 2 MS-PAINT... 2 INTRODUZIONE... 2 ELENCO COMANDI... 3 2 VENTITREESIMA LEZIONE MS-PAINT INTRODUZIONE Esiste un piccolo programma nel Sistema Operativo che

Dettagli

Raccomandazione del Parlamento europeo 18/12/2006 CLASSE PRIMA COMPETENZE ABILITÀ CONOSCENZE. Operare con i numeri

Raccomandazione del Parlamento europeo 18/12/2006 CLASSE PRIMA COMPETENZE ABILITÀ CONOSCENZE. Operare con i numeri COMPETENZA CHIAVE MATEMATICA Fonte di legittimazione Raccomandazione del Parlamento europeo 18/12/2006 CLASSE PRIMA COMPETENZE ABILITÀ CONOSCENZE L alunno utilizza il calcolo scritto e mentale con i numeri

Dettagli

09 - Funzioni reali di due variabili reali

09 - Funzioni reali di due variabili reali Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 09 - Funzioni reali di due variabili reali Anno Accademico 2013/2014

Dettagli

MATEMATICA SCUOLE DELL INFANZIA

MATEMATICA SCUOLE DELL INFANZIA MATEMATICA SCUOLE DELL INFANZIA CAMPO DI ESPERIENZA: LA CONOSCENZA DEL MONDO (ordine, misura, spazio, tempo, natura) È l'ambito relativo all'esplorazione, scoperta e prima sistematizzazione delle conoscenze

Dettagli

La Minimizzazione dei costi

La Minimizzazione dei costi La Minimizzazione dei costi Il nostro obiettivo è lo studio del comportamento di un impresa che massimizza il profitto sia in mercati concorrenziali che non concorrenziali. Ora vedremo la fase della minimizzazione

Dettagli

Alcune nozioni preliminari di teoria elementare di insiemi e funzioni

Alcune nozioni preliminari di teoria elementare di insiemi e funzioni Alcune nozioni preliminari di teoria elementare di insiemi e funzioni Alberto Pinto Corso di Matematica - NUCT 1 Insiemi 1.1 Generalità Diamo la definizione di insieme secondo Georg Cantor, matematico

Dettagli

CURRICOLO di MATEMATICA Scuola Primaria

CURRICOLO di MATEMATICA Scuola Primaria CURRICOLO di MATEMATICA Scuola Primaria MATEMATICA CLASSE I Indicatori Competenze Contenuti e processi NUMERI Contare oggetti o eventi con la voce in senso progressivo e regressivo Riconoscere e utilizzare

Dettagli

PRIMAVERA IN BICOCCA

PRIMAVERA IN BICOCCA PRIMAVERA IN BICOCCA 1. Numeri primi e fattorizzazione Una delle applicazioni più rilevanti della Teoria dei Numeri si ha nel campo della crittografia. In queste note vogliamo delineare, in particolare,

Dettagli

Esempi di funzione. Scheda Tre

Esempi di funzione. Scheda Tre Scheda Tre Funzioni Consideriamo una legge f che associa ad un elemento di un insieme X al più un elemento di un insieme Y; diciamo che f è una funzione, X è l insieme di partenza e X l insieme di arrivo.

Dettagli

Guida rapida - versione Web e Tablet

Guida rapida - versione Web e Tablet Guida rapida - versione Web e Tablet Cos è GeoGebra? Un pacchetto completo di software di matematica dinamica Dedicato all apprendimento e all insegnamento a qualsiasi livello scolastico Gestisce interattivamente

Dettagli

4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI

4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI 119 4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI Indice degli Argomenti: TEMA N. 1 : INSIEMI NUMERICI E CALCOLO

Dettagli

Le derivate versione 4

Le derivate versione 4 Le derivate versione 4 Roberto Boggiani 2 luglio 2003 Riciami di geometria analitica Dalla geometria analitica sulla retta sappiamo ce dati due punti del piano A(x, y ) e B(x 2, y 2 ) con x x 2 la retta

Dettagli

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Corso di Scienza Economica (Economia Politica) prof. G. Di Bartolomeo Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Facoltà di Scienze della Comunicazione Università di Teramo Scelta

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

Prova di ammissione alla SSIS - Indirizzo Matematico - Scientifico PROVA 011 - Comune

Prova di ammissione alla SSIS - Indirizzo Matematico - Scientifico PROVA 011 - Comune Prova di ammissione alla SSIS - Indirizzo Matematico - Scientifico PROVA 011 - Comune 1. Qual è la negazione della frase Se 1000001 è primo, allora 2 1000001 1 è primo? A) Se 1000001 non è primo, allora

Dettagli

Derivate Limiti e funzioni continue

Derivate Limiti e funzioni continue Derivate Limiti e funzioni continue Se il valore di una funzione f() si avvicina al valore l quando si avvicina ad 0 diciamo che f() ha come ite l per tendente ad 0. Noi per rappresentare questo fatto

Dettagli

Ultr@ VNC: Guida (parte 1)

Ultr@ VNC: Guida (parte 1) Ultr@ VNC: Guida (parte 1) Vi presento la guida in italiano per l installazione e l utilizzo di Ultra VNC :http://ultravnc.sourceforge.net. Le potenzialità del programma ve le abbiamo già presentate :http://www.femetal.it/9/ultravncrecensione,

Dettagli

geometriche. Parte Sesta Trasformazioni isometriche

geometriche. Parte Sesta Trasformazioni isometriche Parte Sesta Trasformazioni isometriche In questa sezione di programma di matematica parliamo della geometria delle trasformazioni che studia le figure geometriche soggette a movimenti. Tali movimenti,

Dettagli

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. Prerequisiti I radicali Risoluzione di sistemi di equazioni di primo e secondo grado. Classificazione e dominio delle funzioni algebriche Obiettivi minimi Saper

Dettagli

L influenza della corrente sulla barca si manifesta in due effetti principali: uno sul vento e uno sulla rotta percorsa.

L influenza della corrente sulla barca si manifesta in due effetti principali: uno sul vento e uno sulla rotta percorsa. CORRENTI e DIAGRAMMI POLARI Come la corrente trasforma le polari di una barca Durante una discussione nel corso di una crociera, è stata manifestata la curiosità di sapere come possano essere utilizzate

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Introduzione. 001_007_pagine_iniziali.indd 7 22/01/14 11.21

Introduzione. 001_007_pagine_iniziali.indd 7 22/01/14 11.21 7 Introduzione Questo volume si propone di riorganizzare i percorsi di aritmetica e di geometria del corso principale adattandoli a studenti con esigenze specifiche. Il progetto grafico originale del corso

Dettagli

PROVA INVALSI Scuola Secondaria di I grado Classe Prima

PROVA INVALSI Scuola Secondaria di I grado Classe Prima SNV 2010-2011; SNV 2011-2012; SNV 2012-2013 SPAZIO E FIGURE SNV 2011 10 quesiti su 29 (12 item di cui 6 a risposta aperta) SNV 2012 11 quesiti su 30 (13 item di cui 2 a risposta aperta) SNV 2013 9 quesiti

Dettagli

LA RETTA. b) se l equazione si presente y=mx+q (dove q è un qualsiasi numero reale) si ha una retta generica del piano.

LA RETTA. b) se l equazione si presente y=mx+q (dove q è un qualsiasi numero reale) si ha una retta generica del piano. LA RETTA DESCRIZIONE GENERALE Nella GEOMETRIA ANALITICA si fa sempre un riferimento rispetto al piano cartesiano Oxy; questa riguarda lo studio della retta, delle trasformazioni lineari piane e delle coniche.

Dettagli

IGiochidiArchimede--Soluzionibiennio

IGiochidiArchimede--Soluzionibiennio PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE IGiochidiArchimede--Soluzionibiennio 17 novembre 2010 Griglia delle risposte

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso

Dettagli

Come costruire una distribuzione di frequenze per caratteri quantitativi continui

Come costruire una distribuzione di frequenze per caratteri quantitativi continui Come costruire una distribuzione di frequenze per caratteri quantitativi continui Consideriamo i dati contenuti nel primo foglio di lavoro (quello denominato dati) del file esempio2.xls. I dati si riferiscono

Dettagli

FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette:

FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette: FASCI DI RETTE DEFINIZIONE: Si chiama fascio di rette parallele o fascio improprio [erroneamente data la somiglianza effettiva con un fascio!] un insieme di rette che hanno tutte lo stesso coefficiente

Dettagli

Liceo Scientifico F. Lussana Bergamo Programma di MATEMATICA A.S. 2014/2015 Classe 3 A C Prof. Matteo Bonetti. Equazioni e Disequazioni

Liceo Scientifico F. Lussana Bergamo Programma di MATEMATICA A.S. 2014/2015 Classe 3 A C Prof. Matteo Bonetti. Equazioni e Disequazioni Liceo Scientifico F. Lussana Bergamo Programma di MATEMATICA A.S. 2014/2015 Classe 3 A C Prof. Matteo Bonetti Equazioni e Disequazioni Ripasso generale relativo alla risoluzione di equazioni, disequazioni,

Dettagli

2. Un teorema geniale e divertente anche per la scuola elementare

2. Un teorema geniale e divertente anche per la scuola elementare 051-056 BDM 56 Maurizi imp 21.5.2008 11:49 Pagina 51 II. Didattica 2. Un teorema geniale e divertente anche per la scuola elementare Lorella Maurizi 1 51 Ho proposto ai bambini di una classe quinta della

Dettagli

A.S. 2012-1013 CLASSE PRIMA SCUOLA PRIMARIA D ISTITUTO COMPETENZA CHIAVE EUROPEA DISCIPLINA

A.S. 2012-1013 CLASSE PRIMA SCUOLA PRIMARIA D ISTITUTO COMPETENZA CHIAVE EUROPEA DISCIPLINA ISTITUTO COMPRENSIVO STATALE di Scuola dell Infanzia, Scuola Primaria e Scuola Secondaria di 1 grado San Giovanni Teatino (CH) CURRICOLO A.S. 2012-1013 CLASSE PRIMA SCUOLA PRIMARIA OBIETTIVI DI Sviluppa

Dettagli

risulta (x) = 1 se x < 0.

risulta (x) = 1 se x < 0. Questo file si pone come obiettivo quello di mostrarvi come lo studio di una funzione reale di una variabile reale, nella cui espressione compare un qualche valore assoluto, possa essere svolto senza necessariamente

Dettagli

11) convenzioni sulla rappresentazione grafica delle soluzioni

11) convenzioni sulla rappresentazione grafica delle soluzioni 2 PARAGRAFI TRATTATI 1)La funzione esponenziale 2) grafici della funzione esponenziale 3) proprietá delle potenze 4) i logaritmi 5) grafici della funzione logaritmica 6) principali proprietá dei logaritmi

Dettagli

Logica e geometria con il linguaggio Logo

Logica e geometria con il linguaggio Logo Logica e geometria con il linguaggio Logo Classe: III, IV e V primaria Argomento: geometria e logica Autori: Guido Gottardi e Alberto Battaini Introduzione: senza la pretesa di redigere un trattato sul

Dettagli

Seconda media A Istituto Elvetico Lugano 2014 2015 prof. Mazzetti Roberto

Seconda media A Istituto Elvetico Lugano 2014 2015 prof. Mazzetti Roberto Seconda media A Istituto Elvetico Lugano 2014 2015 prof. Mazzetti Roberto Carissimi, eccovi gli argomenti trattati in quest anno scolastico. Ti servono quale ripasso!!!se qualcosa non fosse chiaro batti

Dettagli

UNO STUDIO DI FUNZIONE CON DERIVE a cura del prof. Guida. 4 x

UNO STUDIO DI FUNZIONE CON DERIVE a cura del prof. Guida. 4 x UNO STUDIO DI FUNZIONE CON DERIVE a cura del prof. Guida Con questa guida si vuol proporre un esempio di studio di funzione con Derive. La versione che ho utilizzato per questo studio è la 6.0. Consideriamo

Dettagli

Microeconomia A-K, Prof Giorgio Rampa a.a. 2011-2012. Svolgimento della prova scritta di Microeconomia AK del 19 settembre 2012

Microeconomia A-K, Prof Giorgio Rampa a.a. 2011-2012. Svolgimento della prova scritta di Microeconomia AK del 19 settembre 2012 Svolgimento della prova scritta di Microeconomia AK del 19 settembre 2012 A DEFINIZIONI - Si definiscano sinteticamente i termini anche con l ausilio, qualora necessario, di formule e grafici. 1. Beni

Dettagli

Che tipo di linee riconosci in questi quadri? Ripassale con una matita colorata e, con la stessa tinta, colora il pallino corrispondente.

Che tipo di linee riconosci in questi quadri? Ripassale con una matita colorata e, con la stessa tinta, colora il pallino corrispondente. Linee Che tipo di linee riconosci in questi quadri? Ripassale con una matita colorata e, con la stessa tinta, colora il pallino corrispondente. a. curva spezzata retta mista aperta chiusa b. curva spezzata

Dettagli

Vademecum studio funzione

Vademecum studio funzione Vademecum studio funzione Campo di Esistenza di una funzione o dominio: Studiare una funzione significa determinare gli elementi caratteristici che ci permettono di disegnarne il grafico, a partire dalla

Dettagli

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI Le disequazioni fratte Le disequazioni di secondo grado I sistemi di disequazioni Alessandro Bocconi Indice 1 Le disequazioni non lineari 2 1.1 Introduzione.........................................

Dettagli

Misure di base su una carta. Calcoli di distanze

Misure di base su una carta. Calcoli di distanze Misure di base su una carta Calcoli di distanze Per calcolare la distanza tra due punti su una carta disegnata si opera nel modo seguente: 1. Occorre identificare la scala della carta o ricorrendo alle

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Esercizi di Analisi Matematica CAPITOLO 1 LE FUNZIONI Exercise 1.0.1. Risolvere le seguenti disuguaglianze: (1) x 1 < 3 () x + 1 > (3) x + 1 < 1 (4) x 1 < x + 1 x 1 < 3 x + 1 < 3 x < 4 Caso: (a): x 1

Dettagli

Definizione DEFINIZIONE

Definizione DEFINIZIONE Definizione Funzione reale di due variabili reali Indichiamo con R 2 l insieme di tutti i vettori bidimensionali. Dato un sottoinsiemed R 2, una funzione f: D R è una legge che assegna a ogni punto (x,

Dettagli

Scheda I. 3 La non possibilità di duplicare il cubo con riga e compasso.

Scheda I. 3 La non possibilità di duplicare il cubo con riga e compasso. Scheda I. La non possibilità di duplicare il cubo con riga e compasso. Dopo Menecmo, Archita, Eratostene molti altri, sfidando gli dei hanno trovato interessante dedicare il loro tempo per trovare una

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

1. Limite finito di una funzione in un punto

1. Limite finito di una funzione in un punto . Limite finito di una funzione in un punto Consideriamo la funzione: f ( ) = il cui dominio risulta essere R {}, e quindi il valore di f ( ) non è calcolabile in =. Quest affermazione tuttavia non esaurisce

Dettagli