RMN elementi di base e sequenze

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "RMN elementi di base e sequenze"

Transcript

1 RMN elementi di base e sequenze Marco Serafini m.serafini@ausl.mo.it

2 Campo magnetico Campo magnetico terrestre valore medio: 0.05 mt (0.5 Gauss) Magneti permanenti intensità: mt ( ) Gauss)

3 Elettromagneti Resistivi: richiedono alimentazione esterna Superconduttivi: NON richiedono alimentazione esterna

4 Risonanza Magnetica Nucleare Nucleo: Protoni e Neutroni Elettroni Modello di atomo

5 Atomo di idrogeno Protone

6 Momento magnetico del Protone +

7 I nuclei con numero DISPARI di particelle hanno un MOMENTO MAGNETICO (cioè si comportano come piccoli magneti) Normalmente sono orientati a caso e quindi la magnetizzazione complessiva è nulla

8 In presenza di un campo magnetico esterno i nuclei si orientano

9 Protoni paralleli e antiparalleli Poiché la configurazione parallela è quella favorita energeticamente i nuclei saranno in maggioranza in questo stato. Nelle condizioni sperimentali normalmente presenti negli impianti RM (ed in particolare alla temperatura ambiente) la differenza tra i nuclei paralleli e quelli antiparalleli è però piccolissima, dell ordine di 1:100000

10 I nuclei con orientazione opposta tendono a cancellarsi perché i segnali di risonanza che emettono in certe condizioni si cancellano perché hanno fase opposta. Per questo motivo la RM è una tecnica intrinsecamente a BASSA SENSIBILITA Più elevato è il Campo Magnetico esterno maggiore è la differenza di energia tra gli stati parallelo e antiparallelo. Di conseguenza con magneti più potenti si ottiene un segnale maggiore.

11 L interazione del momento magnetico nucleare con il campo esterno B0 induce il movimento di precessione che è simile a quello di un giroscopio attorno alla direzione della forza di gravità.

12 Per le leggi della Fisica Quantistica solo alcune orientazioni sono possibili: nel caso dell Idrogeno (protoni spin ½) le orientazioni possibili sono solo 2: parallelo e antiparallelo.

13 L esperimento RM inizia con una perturbazione dell orientazione dei nuclei. Questa perturbazione viene ottenuta con un impulso a radiofrequenza. Dopo questa perturbazione i nuclei sono ruotati di un certo angolo (FLIP ANGLE) tanto maggiore quanto maggiore è l impulso RF

14 I nuclei eccitati ritornano all equilibrio con un moto di precessione. Durante questo moto i nuclei emettono Radio Frequenza alla stessa frequenza di precessione (Frequenza di risonanza) B RF La frequenza di precessione e quindi della RF è data dall equazione di Larmor: Dove: ν = Γ B ν = frequenza Γ = Costante giromagnetica B = Campo magnetico La costante giromagnetica è caratteristica di ogni nucleo: per l idrogeno vale circa 42 Mhz/T

15 Per motivi di sincronismo la frequenza dell impulso RF usato per eccitare i nuclei deve essere uguale alla frequenza di Larmor.

16 Costante di tempo di rilassamento in un moto armonico smorzato Esempio: pendolo reale (con attrito) Legge del moto: S(t)=S 0 sin(ωt) e -kt S 0 = max ampiezza iniziale ω = frequenza angolare K = costante di smorzamento t = tempo Rappresentazione grafica del moto

17 Costante di tempo di rilassamento in un moto armonico smorzato Se consideriamo solo l elongazione max abbiamo: Elong_max(t)=Elong_max_iniz e -kt si vede che la costante K deve avere le dimensioni dell inverso di un tempo: k=1 / T Elong_max(t)=Elong_max_iniz e -t/t Dopo un tempo t=t Elong_max si è ridotta del 63% t=2t 86% t=3t 95%

18 Costante di rilassamento T1 Il segnale emesso dai nuclei che ritornano all equilibrio si chiama FID (free induction decay) ed ha la stessa forma del moto armonico smorzato: S = S 0 SIN (ωt) e t/t1 La costante di tempo è: T1 = Costante di rilassamento della magnetizzazione longitudinale. La costante di tempo T1 è caratteristica dei vari tessuti e concorre alla creazione del contrasto. L origine fisica di questo smorzamento risiede nell interazione dei nuclei con il reticolo (interazione SPIN-LATTICE)

19 Quando si considera l effetto combinato di molti nuclei si osserva che il segnale decade più rapidamente. Questo fenomeno è dovuto alla perdita di FASE dei nuclei. Si parla in questo caso di perdita della magnetizzazione trasversale. il segnale complessivo è: Costante di rilassamento T2 S = S 0 SIN (ωt) e t/t1 e t/t2 T2 è la costante di rilassamento trasversale. Anche T2 è una caratteristica dei tessuti e contribuisce al contrasto. L origine fisica del T2 risiede nell interazione dei nuclei fra di loro. (interazione SPIN-SPIN)

20 La legge che descrive l andamento dell elongazione max ha ancora la forma: E_max(t)=E_max_iniz e -k2t Ponendo K2=1/T2 otteniamo la legge che tiene conto del fattore di smorzamento T2 : E_max(t)=E_max_iniz e -t/t2 Valori caratteristici di T1 nei tessuti possono variare da 500mS a 800mS Il T2 normalmente assume valori tra 50 e 100 ms. Nei liquidi sia T1 che T2 assumo valori più elevati.

21 Costante di rilassamento T2* A causa delle disomogeneità del Campo Magnetico e dei Gradienti vi è un ulteriore fattore di perdita della magnetizzazione trasversale (perdita di fase) che ha come conseguenza un ulteriore smorzamento del segnale. Come nei casi precedenti la legge del moto è: dove T2* < T2 E_max(t)=E_max_iniz e -t/t2* Questo ulteriore fattore di smorzamento del segnale è dovuto alle disomogeneità del campo principale B0 e ai gradienti (l effetto di questi ultimi è preponderante nelle tecniche di imaging)

22 T1 Longitudinale T2 Trasversale T2* (disomogeneità)

23 Echo con impulso RF 180 L effetto delle disomogeneità di campo e dei gradienti può essere annullato con la tecnica di ECHO: Questa rotazione attorno all asse y si ottiene con l impulso RF a 180 Nelle sequenze per IMAGING il 1 FID non è mai utilizzato per ragioni tecniche. Perciò le sequenze per IMAGING sono sempre sequenze SPIN-ECHO (o varianti di queste)

24 Sequenza Partial Saturation (dipendenza da T1) S=ρ e -TE/T2 (1-2e -(TR-TE)/T1 + e -TR/T1 ) Per avere solo dipendenza da T1 il termine: e -TE/T2 deve tendere ad un valore costante cioè TE/T2 0 ovvero TE << T2. Se si verifica anche la condizione TE<<TR allora la formula diventa: S=ρ (1-e -TR/T1 )

25 Sequenza Partial Saturation (dipendenza da T1) S=ρ (1-e -TR/T1 ) Si osserva che la dipendenza da ρ non è eliminabile e che la massima sensibilità si ottiene per valori di TR dello stesso ordine di grandezza di T1 Sequenza Partial Saturation (dipendenza da ρ) Se alle condizioni precedenti si aggiunge anche TR>>T1 allora la formula diventa: S=ρ

26 Sequenza Spin-Echo (dipendenza da T2) S=ρ e -TE/T2 (1-2e -(TR-TE)/T1 + e -TR/T1 ) Per avere solo dipendenza da T2 devono annullarsi i termini: -2e -(TR-TE)/T1 e -TR/T1 Questo avviene per TR>>T1 e TR>>TE. Se inoltre TE T2 allora: S=ρ e -TE/T2 Si osserva ancora che la dipendenza da ρ non è eliminabile e che la massima sensibilità in T2 si ottiene per valori di TE dello stesso ordine di grandezza di T2

27 pesatura nelle sequenze partial-saturation / spin-echo Pesatura in T1: Pesatura in Densità protonica: Pesatura in T2: TE << T2 e TE<<TR e TR T1 TE << T2 e TR >> TE e TR>>T1 TR>>T1 e TR>>TE e TE T2 Inevitabilmente alcune delle condizioni di cui sopra saranno solo approssimate: Ad esempio: TR >> T1 : se T1 700 ms allora TR dovrebbe essere oltre i 5-10 secondi portando il tempo totale di scansione ad un valore inaccettabile. Esempio Pesatura in T1: Es. Pesatura in Densità protonica: Esempio Pesatura in T2: TE=20mS TR=600mS TE=20mS TR=2500mS TE=80mS TR=2500mS

28 Le sequenze reali sono frutto di compromessi sui parametri per cui la dipendenza da ρ, da T1 o da T2 sono comunque sempre presenti. Scegliendo opportunamente TE e TR si può fare in modo che il segnale sia dipendente (pesato) in modo maggiore da T1, T2 o dalla densità protonica. Sequenza SPIN-ECHO S=f(T2) Seq. Partial Saturation S=f(T1) Sequenza Reale Seq. Partial Saturation S=f(ρ) La scelta dei parametri (e i valori di T1 e T2) sarà decisiva nel determinare il tipo di contrasto.

29 Esempio sequenza multi-echo

30 Inversion Recovery impulso 180 Nella sequenza Inversion Recovery l inversione della magnetizzazione viene ottenuta con un impulso RF a 180

31 Inversion Recovery Diagramma per Inversion Recovery Diagramma per spin-echo

32 Mz T1=500 ms Spin-Echo Inversion Recovery T1=900 ms Secondi Mz 1 T1=500 ms Inversion Recovery TI T1=900 ms Secondi

33 Tempo di scansione Il tempo totale di scansione è dato da: T = TR * n * Nex Dove: TR=tempo di ripetizione n = dimensione della matrice (asse della fase) Nex = numero di eccitazioni Il TR è vincolato dal valore di T1, n è vincolato alla risoluzione (o al campo di vista) che si vuole ottenere, Nex è condizionato dal Segnale che si vuole ottenere.

34 Tempo di scansione Sono state inventate varie tecniche per ridurre il tempo di scansione: Uso di echi di gradiente al posto dell impulso 180 (TE più brevi) Uso di angoli di flip inferiori a 90 (TR più brevi) Riduzione delle matrici di acquisizione Uso di Nex frazionari Riempimento di più linee dello spazio K durante un TR

35 Sistema di gradienti

36 Perché si usano i campi gradienti Alla base di qualunque tecnica di imaging sta la possibilità di distinguere il segnale che proviene dai diversi volumetti elementari (voxel). Nella tecnica NMR il segnale è sotto forma di onde elettromagnetiche di frequenza 63 Mhz (magnete da 1.5 T) o 126 Mhz (magnete 3T). A questa frequenza corrisponde una lunghezza d onda di 4.76 m o di 2.38 m. A questa lunghezza d onda non è possibile distinguere il segnale che proviene da voxel vicini solo qualche millimetro o frazioni di millimetro. Perciò la radiofrequenza viene ricevuta (e trasmessa) sempre da TUTTO IL VOLUME interno al magnete. Ciò che differenzia i vari voxel (e quindi permette la formazione dell immagine) è il diverso campo magnetico in cui sono immersi che determinerà differenti frequenze di risonanza (υ=γb). I campi gradienti permettono di variare il campo magnetico lungo i tre assi spaziali in modo controllato e sono quindi indispensabili per ottenere delle immagini. Nelle sequenze per imaging, quindi, oltre agli impulsi a RF (90 e 180 ) si applicano anche i gradienti.

37 Nel volume interno del magnete, in condizioni di riposo, il campo magnetico B 0 è uniforme (omogeneo) cioè il campo è una funzione costante: B 0 = B 0 (x, y, z) = costante = 1.5 T All interno del magnete sono montati 3 circuiti con geometria ben calcolata che, quando percorsi da corrente, generano dei campi magnetici che si sommano al campo principale. Questi campi aggiuntivi agiscono su TUTTO il volume interno al magnete e sono tali da creare un GRADIENTE di campo lineare e proporzionale alla corrente ciascuno su un asse spaziale. Si parla perciò di bobine e campi gradienti lungo gli assi X, Y, Z.

38 Rappresentazioni grafiche dei campi gradienti Note: L intensità dei gradienti è di 23 mt/m (dipende dalla macchina) perciò i grafici NON sono in scala. Poiché il campo magnetico è funzione di 3 variabili spaziali (campo vettoriale) la sua rappresentazione richiede 3 grafici.

39 Gradient echo

40 Spin echo e gradient echo L uso dell echo di gradiente ha il vantaggio di avere TE più brevi perché manca l impulso a 180 Non compensa però per il T2* ed è perciò molto sensibile alle disomogeneità del campo B

41 Flip angle < 90 Con impulsi RF a 90 i tempi di recupero della magnetizzazione longitudinale sono comunque lunghi: dipendono da T1 Z Per abbreviare questo tempo è possibile utilizzare angoli di flip inferiori a 90 (a scapito però del segnale) Y X Mz 1 Flip angle Secondi

42 Contrasto nelle seq. Gradient echo 1. Pesato in T1 2. Segnale proporzionale a T2/T1 3. Pesato in densità protonica 4. Pesato in T2* 5. Pesato leggermente in T1

43 Trasformata di Fourier Spazio K

44 Spazio K Per avere un immagine è necessario completare la raccolta dati nella matrice dello spazio K. Si può ridurre questo tempo con varie tecniche: 1. riempire solo metà delle righe (FOV rettangolare o risoluzione asse fase ridotta). 2. Sfruttando le simmetrie intrinseche dei dati nello spazio K riempirlo solo parzialmente e ricopiare coi dati raccolti anche le linee rimaste vuote (tecnica del Nex frazionario) 3. Riempire più righe in un solo TR (fast spinecho, echo planare)

45 Nella sequenza spin-echo tradizionale a multi echi ogni echo genera un immagine. Per completare le matrici dello spazio k è perciò necessario ripetere la sequenza n volte (n=dimensione della matrice) Spin-echo e fast spin-echo

46 fast spin-echo Nella sequenza fast spin-echo ad ogni echo viene variato il gradiente di fase e quindi i dati raccolti vanno a riempire righe diverse nello spazio k. In questo esempio vengono raccolte 4 righe per TR, riducendo così il tempo di scansione ad 1/4

47 fast spin-echo alte frequenze spaziali Basse frequenze spaziali alte frequenze spaziali Poiché diverse righe nello spazio k vengono riempite con diversi echi, anche il tipo di contrasto verrà alterato. Si dedica il primo echo (segnale maggiore) alla parte centrale dello spazio k, dove sono rappresentate le strutture principali (basse frequenze spaziali). Per gli effetti sul tipo di contrasto si parla di TE equivalente

48 Echo planare Nell echo planare si ottengono molti echi con la tecnica dell echo di gradiente. Nella fast spin-echo si usano invece impulsi a 180 Il vantaggio è dato dal minor tempo necessario a creare un echo col gradiente (e quindi si possono collezionare più echi in unico TR). Lo svantaggio è dato dalla maggior sensibilità alle disomogeneità di campo.

49 Echo planare La sequenza echo-planare può iniziare come sequenza spinecho (spin echo EPI) oppure come echo di gradiente (gradient echo EPI) In questo modo è possibile giocare sui parametri e sulle sequenze per avere il contrasto desiderato.

50 Echo planare Riempimento spazio k in una sequenza convenzionale Riempimento spazio k in una sequenza EPI

51 Maggiore è il valore di ETL e maggiore è la distorsione dovuta alle disomogeneità di campo. Per ridurre il valore di ETL è necessario utilizzare gradienti molto intensi. Echo planare ETL (echo train lenght) In alternativa si può scegliere di raccogliere meno echi e quindi di completare lo spazio K in più TR (sequenze EPI multi shot)

52 Echo planare L EPI richiede un sistema di gradienti molto potente: Per ridurre l ETL deve essere ridotto il tempo per un singolo echo (Echo Spacing: ESP). I gradienti oltre ad essere molto intensi devono avere tempi di salita (slew rate) molto brevi.

RMN elementi di base

RMN elementi di base RMN elementi di base Carpi 3 aprile 2009 Marco Serafini m.serafini@ausl.mo.it Campo magnetico Campo magnetico terrestre valore medio: 0.05 mt (0.5 Gauss) Magneti permanenti intensità: 5-300 mt (50-3000)

Dettagli

RM Formazione dell immagine

RM Formazione dell immagine RM Formazione dell immagine Marco Serafini m.serafini@ausl.mo.it FUNZIONE, VARIABILE e DOMINIO Funzione: y = f(x) y = variabile dipendente x = variabile indipendente Esempio: Rappresentazione grafica:

Dettagli

Risonanza magnetica nucleare

Risonanza magnetica nucleare Risonanza magnetica nucleare Università di Firenze Corso di Tecnologie Biomediche Lezione del 31 ottobre 2003 Leonardo Bocchi Principi fisici Premessa Modello classico Visualizzazione semplificata Equazione

Dettagli

Imaging Anatomico Mediante Risonanza Magnetica (MRI)

Imaging Anatomico Mediante Risonanza Magnetica (MRI) Imaging Anatomico Mediante Risonanza Magnetica (MRI) Renzo Campanella Dipartimento di Fisica Università di Perugia Sezione di Roma I Risonanza Magnetica Nucleare (NMR) Condizione: numero di spin (nucleare)

Dettagli

Risonanza magnetica: Codifica spaziale del segnale.

Risonanza magnetica: Codifica spaziale del segnale. Risonanza magnetica: Codifica spaziale del segnale Introduzione La tomografia a Risonanza magnetica si basa sulla rappresentazione in immagini digitali di alcune caratteristiche fisico-chimiche di tessuti

Dettagli

RM: PRINCIPI FISICI E IMAGING MORFOLOGICO

RM: PRINCIPI FISICI E IMAGING MORFOLOGICO RM: PRINCIPI FISICI E IMAGING MORFOLOGICO TERNI 2/4/2008 Dr. Massimo Principi Dipartimento di Diagnostica per Immagini Azienda Ospedaliera S. Maria - Terni LE VARIE FASI DI ESECUZIONE DI UN ESAME RM I.

Dettagli

La Risonanza Magnetica Funzionale

La Risonanza Magnetica Funzionale La Risonanza Magnetica Funzionale Facoltà di Farmacia Corso di Laurea in Chimica e Tecnologie Farmaceutiche Attività a scelta dello studente AA 2004-2005 Cosimo Del Gratta Dipartimento di Scienze Cliniche

Dettagli

Tecniche di esplorazione funzionale in vivo del cervello

Tecniche di esplorazione funzionale in vivo del cervello Tecniche di esplorazione funzionale in vivo del cervello Ing. Lorenzo Sani E-mail: lorenzo.sani@bioclinica.unipi.it Facoltà di Medicina, Università di Pisa Laboratorio di Biochimica Clinica e Biologia

Dettagli

RM - riepilogo. Ricostruzione di immagini - Ricostruzione immagini in RM

RM - riepilogo. Ricostruzione di immagini - Ricostruzione immagini in RM Leonardo Bocchi Ricostruzione immagini in RM Retroproiezione - metodo di Fourier RM - riepilogo Consideriamo degli atomi di idrogeno Applichiamo un campo magnetico statico B 0 Si genera un vettore di magnetizzazione

Dettagli

Si osserva il comportamento dei protoni La proteina è in soluzione

Si osserva il comportamento dei protoni La proteina è in soluzione Risonanza magnetica nucleare Si osserva il comportamento dei protoni La proteina è in soluzione Risonanza magnetica nucleare Si osserva il comportamento dei protoni La proteina è in soluzione Si assegnano

Dettagli

1Se sottoposti ad un forte campo magnetico esterno stazionario (B0), l asse dei protoni si orienterà

1Se sottoposti ad un forte campo magnetico esterno stazionario (B0), l asse dei protoni si orienterà Risonanza Magnetica (RM) (RM Nucleare RMN; Tomografia a Risonanza Magnetica TRM) E una tecnica che sfruttando le capacità magnetiche ed elettriche degli atomi permette di studiare e riprodurre immagini

Dettagli

FISICA APPLICATA 2 DIPOLI ELETTRICI E MAGNETICI

FISICA APPLICATA 2 DIPOLI ELETTRICI E MAGNETICI FISICA APPLICATA 2 DIPOLI ELETTRICI E MAGNETICI DOWNLOAD Il pdf di questa lezione (ele2.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/tsrm/ 26/11/2012 DIPOLO ELETTRICO La configurazione costituita

Dettagli

Tecniche Convenzionali di Risonanza Magnetica nello studio dell encefalo

Tecniche Convenzionali di Risonanza Magnetica nello studio dell encefalo Tecniche Convenzionali di Risonanza Magnetica nello studio dell encefalo Arturo Brunetti Diagnostica per Immagini - Neuroradiologia Dipartimento di Scienze Biomorfologiche e Funzionali Università di Napoli

Dettagli

La Risonanza Magnetica Nucleare

La Risonanza Magnetica Nucleare La Risonanza Magnetica Nucleare Storia della risonanza magnetica Principi fisici MRI Apparecchiature RMN Aspetti di sicurezza per impianti RMN La Risonanza Magnetica Nucleare La risonanza magnetica nucleare

Dettagli

La strumentazione NMR. ed alcuni dettagli sul metodo a Trasformata di Fourier

La strumentazione NMR. ed alcuni dettagli sul metodo a Trasformata di Fourier La strumentazione NMR ed alcuni dettagli sul metodo a Trasformata di Fourier 1 Lo Spettrometro NMR 2 Il magnete: genera il campo B 0, intenso, stabile ed omogeneo 600MHz 15 T 900 MHz 22 T 60MHz 1.5 T 3

Dettagli

MITIGAZIONE DELLE ONDE EM GENERATE DA UN TOMOGRAFO RM E VALUTAZIONE DELL'EFFICIENZA DI SCHERMATURE PER RADIOFREQUENZE

MITIGAZIONE DELLE ONDE EM GENERATE DA UN TOMOGRAFO RM E VALUTAZIONE DELL'EFFICIENZA DI SCHERMATURE PER RADIOFREQUENZE UNIVERSITA DEGLI STUDI DI PADOVA FACOLTA DI INGEGNERIA CORSO DI LAUREA MAGISTRALE IN INGEGNERIA ELETTRICA TESI DI LAUREA MAGISTRALE MITIGAZIONE DELLE ONDE EM GENERATE DA UN TOMOGRAFO RM E VALUTAZIONE DELL'EFFICIENZA

Dettagli

Principi Fisici della Risonanza Magnetica

Principi Fisici della Risonanza Magnetica Principi Fisici della Risonanza Magnetica Felice Vitulo Responsabile Servizio di Fisica Sanitaria 1 Corso di Formazione Per Tecnici Sanitari di Radiologia Medica TRM Tecnica di imaging che utilizza potenti

Dettagli

USO DIAGNOSTICO E DI COMPLESSI METALLICI

USO DIAGNOSTICO E DI COMPLESSI METALLICI USO DIAGNOSTICO E DI COMPLESSI METALLICI Uso diagnostico di complessi di gadolinio La Risonanza Magnetica e un fenomeno che accade quando i nuclei di alcuni atomi immersi in un campo magnetico statico

Dettagli

GLI ORBITALI ATOMICI

GLI ORBITALI ATOMICI GLI ORBITALI ATOMICI Orbitali atomici e loro rappresentazione Le funzioni d onda Ψ n che derivano dalla risoluzione dell equazione d onda e descrivono il moto degli elettroni nell atomo si dicono orbitali

Dettagli

Particelle Subatomiche

Particelle Subatomiche GLI ATOMI Particelle Subatomiche ELEMENTI I diversi atomi sono caratterizzati da un diverso numero di protoni e neutroni; il numero di elettroni è sempre uguale al numero dei protoni (negli atomi neutri)

Dettagli

Corsi residenziali di Risonanza Magnetica encefalo-midollare. Le sequenze in RM

Corsi residenziali di Risonanza Magnetica encefalo-midollare. Le sequenze in RM Corsi residenziali di Risonanza Magnetica encefalo-midollare Le sequenze in RM Dott. TSRM Luigi Imperiale Dipartimento di Scienze Radiologiche Ospedali Riuniti di Ancona In risonanza magnetica vengono

Dettagli

Effetto Zeeman anomalo

Effetto Zeeman anomalo Effetto Zeeman anomalo Direzione del campo B esempio: : j=3/2 Direzione del campo B j=1+1/2 = 3/2 s m j =+3/2 m j =+1/2 l m j =-1/2 m j =-3/2 La separazione tra i livelli é diversa l e µ l antiparalleli

Dettagli

Spettrometria di Risonanza Magnetica Nucleare

Spettrometria di Risonanza Magnetica Nucleare Spettrometria di Risonanza Magnetica Nucleare Tipo di spettroscopia Intervallo di lunghezza d onda Intervallo di numeri d onda (cm -1 ) Tipo di transizione quantica Emissione raggi γ 0.005-1.4Å - nucleare

Dettagli

Richiami sulle oscillazioni smorzate

Richiami sulle oscillazioni smorzate Richiami sulle oscillazioni smorzate Il moto armonico è il moto descritto da un oscillatore armonico, cioè un sistema meccanico che, quando perturbato dalla sua posizione di equilibrio, è soggetto ad una

Dettagli

Applicazioni delle leggi della meccanica: moto armnico

Applicazioni delle leggi della meccanica: moto armnico Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di

Dettagli

5.4 Larghezza naturale di una riga

5.4 Larghezza naturale di una riga 5.4 Larghezza naturale di una riga Un modello classico più soddisfacente del processo di emissione è il seguente. Si considera una carica elettrica puntiforme in moto armonico di pulsazione ω 0 ; la carica,

Dettagli

Le sequenze di impulsi

Le sequenze di impulsi Principi fisici- applicazioni cliniche e sicurezza in RM 3-6 APRILE, 2001 Villa Olmo - Como Le sequenze di impulsi Renzo Campanella Dipartimento di Fisica - Università di Perugia La madre di tutte le sequenze

Dettagli

NUCLEI NMR ATTIVI E SPIN

NUCLEI NMR ATTIVI E SPIN NUCLEI NMR ATTIVI E SPIN I diversi nuclei risuonano a campi magnetici (e frequenze) molto diversi La frequenza caratteristica a cui risuonano i nuclei dello standard è Ξ Per un nucleo specifico, le variazioni

Dettagli

Sistemi vibranti ad 1 gdl

Sistemi vibranti ad 1 gdl Università degli Studi di Bergamo Dipartimento di Ingegneria Sistemi vibranti ad 1 gdl - vibrazioni forzate - rev. 1. Le vibrazioni forzate di un sistema ad 1 gdl sono descritte dall equazione: mẍ + cẋ

Dettagli

Fisica per scienze ed ingegneria

Fisica per scienze ed ingegneria Serway, Jewett Fisica per scienze ed ingegneria Capitolo 15 Blocchetto legato ad una molla in moto su un piano orizzontale privo di attrito. Forza elastica di richiamo: F x =-Kx (Legge di Hooke). Per x>0,

Dettagli

Struttura Elettronica degli Atomi Meccanica quantistica

Struttura Elettronica degli Atomi Meccanica quantistica Prof. A. Martinelli Struttura Elettronica degli Atomi Meccanica quantistica Dipartimento di Farmacia 1 Il comportamento ondulatorio della materia 2 1 Il comportamento ondulatorio della materia La diffrazione

Dettagli

Risonanza Magnetica Arturo Brunetti

Risonanza Magnetica Arturo Brunetti Risonanza Magnetica Arturo Brunetti Il fenomeno Nuclear Magnetic Resonance (NMR) Magnetic Resonance Imaging (MRI) La tecnica 1 Nuclear Magnetic Resonance The Nobel Prize in Physics Historical remarks 1952

Dettagli

Consideriamo un sistema composto da due particelle identiche. Due particelle sono identiche se hanno le stesse proprietà intrinseche (massa, carica,

Consideriamo un sistema composto da due particelle identiche. Due particelle sono identiche se hanno le stesse proprietà intrinseche (massa, carica, Consideriamo un sistema composto da due particelle identiche. Due particelle sono identiche se hanno le stesse proprietà intrinseche (massa, carica, spin, ). Esempi: due elettroni, due protoni, due neutroni,

Dettagli

Capitolo 12. Moto oscillatorio

Capitolo 12. Moto oscillatorio Moto oscillatorio INTRODUZIONE Quando la forza che agisce su un corpo è proporzionale al suo spostamento dalla posizione di equilibrio ne risulta un particolare tipo di moto. Se la forza agisce sempre

Dettagli

Fisica Quantistica III Esercizi Natale 2009

Fisica Quantistica III Esercizi Natale 2009 Fisica Quantistica III Esercizi Natale 009 Philip G. Ratcliffe (philip.ratcliffe@uninsubria.it) Dipartimento di Fisica e Matematica Università degli Studi dell Insubria in Como via Valleggio 11, 100 Como

Dettagli

OSCILLAZIONI SMORZATE E FORZATE

OSCILLAZIONI SMORZATE E FORZATE OSCILLAZIONI SMORZATE E FORZATE Questo esperimento permette di studiare le oscillazioni armoniche di un pendolo e le oscillazioni smorzate e smorzate-forzate. Studiando il variare dell ampiezza dell oscillazione

Dettagli

GLI ORBITALI ATOMICI

GLI ORBITALI ATOMICI GLI ORBITALI ATOMICI I numeri quantici Le funzioni d onda Ψ n, soluzioni dell equazione d onda, sono caratterizzate da certe combinazioni di numeri quantici: n, l, m l, m s n = numero quantico principale,

Dettagli

Risonanza magnetica di spin: ESR (o EPR) nucleare: RMN/NMR

Risonanza magnetica di spin: ESR (o EPR) nucleare: RMN/NMR Risonanza magnetica di spin: ESR (o EPR) nucleare: RMN/NMR 1944-prima osservazione della ESR 1938-prima osservazione della NMR Tecniche spettroscopiche oggi standard Applicazioni di caratterizzazione e

Dettagli

Spettroscopia. Spettroscopia

Spettroscopia. Spettroscopia Spettroscopia Spettroscopia IR Spettroscopia NMR Spettrometria di massa 1 Spettroscopia E un insieme di tecniche che permettono di ottenere informazioni sulla struttura di una molecola attraverso l interazione

Dettagli

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,

Dettagli

Fondamenti di fisica

Fondamenti di fisica Fondamenti di fisica Elettromagnetismo: 6-7 Circuiti in corrente alternata Tensioni e correnti alternate Vettori di fase, valori quadratici medi Potenza media Sicurezza nei circuiti domestici Circuiti

Dettagli

Risonanza Magnetica Nucleare /05/2005

Risonanza Magnetica Nucleare /05/2005 Risonanza Magnetica Nucleare - 2 23/05/2005 Riassunto della lezione precedente Riprendiamo il discorso sulla strumentazione per risonanza magnetica. Abbiamo già visto i fenomeni fisici utilizzati per ricavare

Dettagli

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue 1.1 Una sfera conduttrice di raggio R 1 = 10 cm ha una carica Q = 10-6 C ed è circondata da uno strato sferico di dielettrico di raggio (esterno) R 2 = 20 cm e costante dielettrica relativa. Determinare

Dettagli

La teoria atomica moderna: il modello planetario L ELETTRONE SI MUOVE LUNGO UN ORBITA INTORNO AL NUCLEO

La teoria atomica moderna: il modello planetario L ELETTRONE SI MUOVE LUNGO UN ORBITA INTORNO AL NUCLEO La teoria atomica moderna: il modello planetario L ELETTRONE SI MUOVE LUNGO UN ORBITA INTORNO AL NUCLEO La luce La LUCE è una forma di energia detta radiazione elettromagnetica che si propaga nello spazio

Dettagli

OSCILLATORE ARMONICO SEMPLICE

OSCILLATORE ARMONICO SEMPLICE OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato

Dettagli

Introduzione alla risonanza magnetica per immagini (MRI) Fabio Tedoldi Bracco Imaging Spa fabio.tedoldi@bracco.com

Introduzione alla risonanza magnetica per immagini (MRI) Fabio Tedoldi Bracco Imaging Spa fabio.tedoldi@bracco.com Introduzione alla risonanza magnetica per immagini (MRI) Fabio Tedoldi Bracco Imaging Spa fabio.tedoldi@bracco.com Overview B 0 E MR-Imaging E 0 E = Risonanza/Spettroscopia + T 1, T 2, T 2 *, D, v,, Contrasto

Dettagli

Le onde. Definizione e classificazione

Le onde. Definizione e classificazione Le onde Definizione e classificazione Onda: perturbazione che si propaga nello spazio, trasportando energia e quantità di moto, ma senza trasporto di materia Onde trasversali La vibrazione avviene perpendicolarmente

Dettagli

1 - PRINCIPI FISICI DELL IMAGING CON RISONANZA MAGNETICA

1 - PRINCIPI FISICI DELL IMAGING CON RISONANZA MAGNETICA 1 - PRINCIPI FISICI DELL IMAGING CON RISONANZA MAGNETICA Introduzione Il fenomeno della Risonanza Magnetica (RM) coinvolge campi magnetici e onde elettromagnetiche a radiofrequenza (RF). È stato scoperto

Dettagli

Struttura dell atomo atomo particelle sub-atomiche - protoni positiva - neutroni } nucleoni - elettroni negativa elemento

Struttura dell atomo atomo particelle sub-atomiche - protoni positiva - neutroni } nucleoni - elettroni negativa elemento Struttura dell atomo L atomo è la più piccola parte dell elemento che conserva le proprietà dell elemento Negli atomi ci sono tre diverse particelle sub-atomiche: - protoni (con carica positiva unitaria)

Dettagli

Misura del rapporto carica massa dell elettrone

Misura del rapporto carica massa dell elettrone Relazione di: Pietro Ghiglio, Tommaso Lorenzon Laboratorio di fisica del Liceo Scientifico L. da Vinci - Gallarate Misura del rapporto carica massa dell elettrone Lezioni di maggio 2015 Lo scopo dell esperienza

Dettagli

p e c = ev Å

p e c = ev Å Corso di Introduzione alla Fisica Quantistica (f) Soluzioni Esercizi: Giugno 006 * Quale la lunghezza d onda di de Broglie di un elettrone che ha energia cinetica E 1 = KeV e massa a riposo m 0 = 9.11

Dettagli

laboratorio di fisica moderna magnetismo e nanostrutture

laboratorio di fisica moderna magnetismo e nanostrutture laboratorio di fisica moderna magnetismo e nanostrutture il comportamento magnetico dei materiali La materia contiene elettroni, che hanno la caratteristica di possedere un momento magnetico: ogni elettrone

Dettagli

LA RISONANZA MAGNETICA I PRINCIPI FISICI DELLA RM

LA RISONANZA MAGNETICA I PRINCIPI FISICI DELLA RM LA RISONANZA MAGNETICA I PRINCIPI FISICI DELLA RM Principi di Risonanza Magnetica La Risonanza Magnetica consta di quell insieme di tecniche che, sfruttando le capacità magnetiche ed elettriche dell elettrone,

Dettagli

Problemi di Fisica. Elettromagnetismo. La Carica Elettrica e la Legge di Coulomb

Problemi di Fisica. Elettromagnetismo. La Carica Elettrica e la Legge di Coulomb Problemi di isica Elettromagnetismo La arica Elettrica e la Legge di oulomb Data la distribuzione di carica rappresentata in figura, calcolare la forza totale che agisce sulla carica Q posta nell origine

Dettagli

Inserimento dei nuclei nel campo magnetico statico: orientamento e precessione nucleare

Inserimento dei nuclei nel campo magnetico statico: orientamento e precessione nucleare INDICE PARTE GENERALE capitolo 1 Tecniche di studio Stefano Colagrande Genesi del segnale Nuclei e spin Forze magnetiche ed elettromagnetiche Fenomeno della risonanza Inserimento dei nuclei nel campo magnetico

Dettagli

FISICA E LABORATORIO INDIRIZZO C.A.T. CLASSE PRIMA. OBIETTIVI U. D. n 1.2: La rappresentazione di dati e fenomeni

FISICA E LABORATORIO INDIRIZZO C.A.T. CLASSE PRIMA. OBIETTIVI U. D. n 1.2: La rappresentazione di dati e fenomeni FISICA E LABORATORIO INDIRIZZO C.A.T. CLASSE PRIMA Le competenze di base a conclusione dell obbligo di istruzione sono le seguenti: Osservare, descrivere ed analizzare fenomeni appartenenti alla realtà

Dettagli

Campi Elettrici e Magnetici. ELETTROSTATICA Cariche Elettriche e Forze Elettriche

Campi Elettrici e Magnetici. ELETTROSTATICA Cariche Elettriche e Forze Elettriche Campi Elettrici e Magnetici ELETTROSTATICA Cariche Elettriche e Forze Elettriche Esperienza ==> Forza tra cariche SI INTRODUCE UNA NUOVA GRANDEZZA FONDAMENTALE: LA CARICA ELETTRICA UNITÀ DI MISURA NEL

Dettagli

Diffrazione di Raggi-X da Monocristalli A.A Marco Nardini Dipartimento di Scienze Biomolecolari e Biotecnologie Università di Milano

Diffrazione di Raggi-X da Monocristalli A.A Marco Nardini Dipartimento di Scienze Biomolecolari e Biotecnologie Università di Milano Diffrazione di Raggi-X da Monocristalli A.A. 2009-2010 Marco Nardini Dipartimento di Scienze Biomolecolari e Biotecnologie Università di Milano Raccolta Dati di Diffrazione: Diffrazione di Raggi X Raccolta

Dettagli

Meccanica quantistica (5)

Meccanica quantistica (5) Meccanica quantistica (5) 0/7/14 1-MQ-5.doc 0 Oscillatore armonico Se una massa è sottoposta ad una forza di richiamo proporzionale allo spostamento da un posizione di equilibrio F = kx il potenziale (

Dettagli

Cavo Carbonio. Sergio Rubio Carles Paul Albert Monte

Cavo Carbonio. Sergio Rubio Carles Paul Albert Monte Cavo o Sergio Rubio Carles Paul Albert Monte o, Rame e Manganina PROPRIETÀ FISICHE PROPRIETÀ DEL CARBONIO Proprietà fisiche del o o Coefficiente di Temperatura α o -0,0005 ºC -1 o Densità D o 2260 kg/m

Dettagli

Capitolo 8 La struttura dell atomo

Capitolo 8 La struttura dell atomo Capitolo 8 La struttura dell atomo 1. La doppia natura della luce 2. La «luce» degli atomi 3. L atomo di Bohr 4. La doppia natura dell elettrone 5. L elettrone e la meccanica quantistica 6. L equazione

Dettagli

Tecniche di esplorazione funzionale in vivo del cervello

Tecniche di esplorazione funzionale in vivo del cervello Tecniche di esplorazione funzionale in vivo del cervello Ing. Lorenzo Sani E-mail: lorenzo.sani@bioclinica.unipi.it Laboratorio di Biochimica Clinica e Biologia Molecolare Clinica Facoltà di Medicina,

Dettagli

Risonanza magnetica nucleare. Sequenze di eccitazione

Risonanza magnetica nucleare. Sequenze di eccitazione Risonanza magnetica nucleare Sequenze di eccitazione Riepilogo RM Consideriamo degli atomi di idrogeno Applichiamo un campo magnetico statico B 0 Si genera un vettore di magnetizzazione M z I nuclei precedono

Dettagli

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D. Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A. 2006-07 - 1 Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.Trevese) Modalità: - Prova scritta di Elettricità e Magnetismo:

Dettagli

RM MASSICCIO FACCIALE

RM MASSICCIO FACCIALE RM MASSICCIO FACCIALE L'esame RM del massiccio facciale è un esame di secondo livello, orientato allo studio dei seni paranasali, delle strutture muscolari e articolari. Lo studio delle strutture ossee

Dettagli

Lezione 5 Moti di particelle in un campo magnetico

Lezione 5 Moti di particelle in un campo magnetico Lezione 5 Moti di particelle in un campo magnetico G. Bosia Universita di Torino G. Bosia - Fisica del plasma confinato Lezione 5 1 Moto di una particella carica in un campo magnetico Il confinamento del

Dettagli

APPUNTI DI RISONANZA MAGNETICA NUCLEARE Dr. Claudio Santi. CAPITOLO 1 NMR Risonanza Magnetica Nucleare

APPUNTI DI RISONANZA MAGNETICA NUCLEARE Dr. Claudio Santi. CAPITOLO 1 NMR Risonanza Magnetica Nucleare APPUNTI DI RISONANZA MAGNETICA NUCLEARE Dr. Claudio Santi CAPITOLO 1 NMR Risonanza Magnetica Nucleare INTRODUZIONE Nel 1946 due ricercatori, F. Block ed E.M.Purcell, hanno indipendentemente osservato per

Dettagli

ELEMENTI DI FISICA E TECNICA DI IMMAGINE

ELEMENTI DI FISICA E TECNICA DI IMMAGINE ELEMENTI DI FISICA E TECNICA DI IMMAGINE Architettura Chiusa Sistemi TB ad alto campo (1.5T) Tecnologia: magneti superconduttivi I sistemi da 1,5T sono lo standard clinico e rappresentano circa il 60%

Dettagli

La teoria del corpo nero

La teoria del corpo nero La teoria del corpo nero Max Planck Primo Levi 2014 Roberto Bedogni INAF Osservatorio Astronomico di Bologna via Ranzani, 1 40127 - Bologna - Italia Tel, 051-2095721 Fax, 051-2095700 http://www.bo.astro.it/~bedogni/primolevi

Dettagli

Theory Italiano (Italy)

Theory Italiano (Italy) Q3-1 Large Hadron Collider (10 punti) Prima di iniziare questo problema, leggi le istruzioni generali nella busta a parte. In questo problema è discussa la fisica dell acceleratore di particelle del CERN

Dettagli

L ATOMO SECONDO LA MECCANICA ONDULATORIA IL DUALISMO ONDA-PARTICELLA. (Plank Einstein)

L ATOMO SECONDO LA MECCANICA ONDULATORIA IL DUALISMO ONDA-PARTICELLA. (Plank Einstein) L ATOMO SECONDO LA MECCANICA ONDULATORIA IL DUALISMO ONDA-PARTICELLA POSTULATO DI DE BROGLIÈ Se alla luce, che è un fenomeno ondulatorio, sono associate anche le caratteristiche corpuscolari della materia

Dettagli

Teoria Atomica di Dalton

Teoria Atomica di Dalton Teoria Atomica di Dalton Il concetto moderno della materia si origina nel 1806 con la teoria atomica di John Dalton: Ogni elementoè composto di atomi. Gli atomi di un dato elemento sono uguali. Gli atomi

Dettagli

Radioattività. 1. Massa dei nuclei. 2. Decadimenti nucleari. 3. Legge del decadimento XVI - 0. A. Contin - Fisica Generale Avanzata

Radioattività. 1. Massa dei nuclei. 2. Decadimenti nucleari. 3. Legge del decadimento XVI - 0. A. Contin - Fisica Generale Avanzata Radioattività 1. Massa dei nuclei 2. Decadimenti nucleari 3. Legge del decadimento XVI - 0 Nucleoni Protoni e neutroni sono chiamati, indifferentemente, nucleoni. Il numero di protoni (e quindi di elettroni

Dettagli

Campo magnetico e forza di Lorentz (II)

Campo magnetico e forza di Lorentz (II) Campo magnetico e forza di Lorentz (II) Moto di particelle cariche in un campo magnetico Seconda legge elementare di Laplace Principio di equivalenza di Ampere Effetto Hall Galvanometro Moto di una particella

Dettagli

Si arrivò a dimostrare l esistenza di una forma elementare della materia (atomo) solo nel 1803 (John Dalton)

Si arrivò a dimostrare l esistenza di una forma elementare della materia (atomo) solo nel 1803 (John Dalton) Atomi 16 Si arrivò a dimostrare l esistenza di una forma elementare della materia (atomo) solo nel 1803 (John Dalton) 17 Teoria atomica di Dalton Si basa sui seguenti postulati: 1. La materia è formata

Dettagli

Tecniche di imaging di diffusione molecolare con risonanza magnetica (diffusion MRI)

Tecniche di imaging di diffusione molecolare con risonanza magnetica (diffusion MRI) Tecniche di imaging di diffusione molecolare con risonanza magnetica (diffusion MRI) Ing. Lorenzo Sani E-mail: lorenzo.sani@bioclinica.unipi.it Laboratorio di Biochimica Clinica e Biologia Molecolare Clinica

Dettagli

Conoscenze FISICA LES CLASSE TERZA SAPERI MINIMI

Conoscenze FISICA LES CLASSE TERZA SAPERI MINIMI FISICA LES SAPERI MINIMI CLASSE TERZA LE GRANDEZZE FISICHE E LA LORO MISURA Nuovi principi per indagare la natura. Il concetto di grandezza fisica. Misurare una grandezza fisica. L impossibilità di ottenere

Dettagli

Misura del coefficiente di assorbimento di vari materiali in funzione dell'energia del fascio dei fotoni incidenti

Misura del coefficiente di assorbimento di vari materiali in funzione dell'energia del fascio dei fotoni incidenti materiali in funzione dell'energia del fascio dei fotoni Esperto Qualificato LNF - INFN Interazioni delle particelle indirettamente ionizzanti con la materia Le particelle indirettamente ionizzanti, principalmente

Dettagli

INVILUPPO DI VOLO VELOCITÀ MASSIMA IN VOLO ORIZZONTALE RETTILINEO UNIFORME

INVILUPPO DI VOLO VELOCITÀ MASSIMA IN VOLO ORIZZONTALE RETTILINEO UNIFORME INILUPPO DI OLO Una volta diagrammate le curve delle potenze disponibili e necessarie, dobbiamo ora usarle per determinare le prestazioni fondamentali del velivolo: tali prestazioni andranno a generare

Dettagli

Produzione di un fascio di raggi x

Produzione di un fascio di raggi x Produzione di un fascio di raggi x WWW.SLIDETUBE.IT Un fascio di elettroni penetra nella materia, dando origine a: produzione di elettroni secondari (raggi delta) emissione X caratteristica bremsstrahlung

Dettagli

Campo magnetico terrestre (III) Corso di Elementi di Geofisica. Gaetano Festa

Campo magnetico terrestre (III) Corso di Elementi di Geofisica. Gaetano Festa Campo magnetico terrestre (III) Corso di Elementi di Geofisica Gaetano Festa Energia dei modi Contributo profondo Contributo superficiale Rappresentazione HF Magnetismo della materia Gli elettroni, protoni

Dettagli

Indice. Fisica: una introduzione. Il moto in due dimensioni. Moto rettilineo. Le leggi del moto di Newton

Indice. Fisica: una introduzione. Il moto in due dimensioni. Moto rettilineo. Le leggi del moto di Newton Indice 1 Fisica: una introduzione 1.1 Parlare il linguaggio della fisica 2 1.2 Grandezze fisiche e unità di misura 3 1.3 Prefissi per le potenze di dieci e conversioni 7 1.4 Cifre significative 10 1.5

Dettagli

Transistore bipolare a giunzione (BJT)

Transistore bipolare a giunzione (BJT) ransistore bipolare a giunzione (J) Parte 1 www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 22-5-2012) ransistore bipolare a giunzione (J) l transistore bipolare a giunzione è un dispositivo

Dettagli

CAMPO MAGNETICO E FORZA DI LORENTZ

CAMPO MAGNETICO E FORZA DI LORENTZ QUESITI 1 CAMPO MAGNETICO E FORZA DI LORENTZ 1. (Da Medicina e Odontoiatria 2013) Un cavo percorso da corrente in un campo magnetico può subire una forza dovuta al campo. Perché tale forza non sia nulla

Dettagli

VALUTAZIONI FISICHE E CLINICHE IN RISONANZA MAGNETICA MULTIPARAMETRICA NELLO STUDIO DEL CARCINOMA PROSTATICO

VALUTAZIONI FISICHE E CLINICHE IN RISONANZA MAGNETICA MULTIPARAMETRICA NELLO STUDIO DEL CARCINOMA PROSTATICO UNIVERSITÀ DEGLI STUDI DI CATANIA DIPARTIMENTO DI SCIENZE MEDICHE CHIRURGICHE E TECNOLOGIE AVANZATE G.F. INGRASSIA DIPARTIMENTO DI FISICA E ASTRONOMIA Scuola di Specializzazione in Fisica Medica Direttore:

Dettagli

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G.

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G. L INDUZIONE ELETTROMAGNETICA V Scientifico Prof.ssa Delfino M. G. INDUZIONE E ONDE ELETTROMAGNETICHE 1. Il flusso del vettore B 2. La legge di Faraday-Neumann-Lenz 3. Induttanza e autoinduzione 4. I circuiti

Dettagli

TEORIA DEI SISTEMI SISTEMI LINEARI

TEORIA DEI SISTEMI SISTEMI LINEARI TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI SISTEMI LINEARI Ing. Cristian Secchi Tel.

Dettagli

Risonanza magnetica nucleare Principi e applicazioni

Risonanza magnetica nucleare Principi e applicazioni Valentina Domenici, Carlo Alberto Veracini Risonanza magnetica nucleare Principi e applicazioni Edizioni ETS www.edizioniets.com Copyright 2011 EDIZIONI ETS Piazza Carrara, 16-19, I-56126 Pisa info@edizioniets.com

Dettagli

Problemi di Fisica per l ammissione alla Scuola Galileiana Problema 1

Problemi di Fisica per l ammissione alla Scuola Galileiana Problema 1 Problemi di Fisica per l ammissione alla Scuola Galileiana 2015-2016 Problema 1 Un secchio cilindrico di raggio R contiene un fluido di densità uniforme ρ, entrambi ruotanti intorno al loro comune asse

Dettagli

IBRIDAZIONE e GEOMETRIA MOLECOLARE

IBRIDAZIONE e GEOMETRIA MOLECOLARE IBRIDAZIONE e GEOMETRIA MOLECOLARE Esempio: struttura della molecola del metano CH 4 1s 2s 2p Configurazione elettronica del C Per esempio il carbonio può utilizzare la configurazione in cui un elettrone

Dettagli

Quanto bene conosciamo i Segnali Sismici?

Quanto bene conosciamo i Segnali Sismici? Quanto bene conosciamo i Segnali Sismici? In generale, quello registrato non è esattamente il moto del suolo ma la risposta dell apparato strumentale a questo movimento In pratica, lo strumento provoca

Dettagli

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf.

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf. ESERCIZI 1) Due sfere conduttrici di raggio R 1 = 10 3 m e R 2 = 2 10 3 m sono distanti r >> R 1, R 2 e contengono rispettivamente cariche Q 1 = 10 8 C e Q 2 = 3 10 8 C. Le sfere vengono quindi poste in

Dettagli

Interazione luce- atomo

Interazione luce- atomo Interazione luce- atomo Descrizione semiclassica L interazione predominante è quella tra il campo elettrico e le cariche ASSORBIMENTO: Elettrone e protone formano un dipolo che viene messo in oscillazione

Dettagli

Dalla struttura fine delle transizioni atomiche allo spin dell elettrone

Dalla struttura fine delle transizioni atomiche allo spin dell elettrone Dalla struttura fine delle transizioni atomiche allo spin dell elettrone Evidenze sperimentali Struttura fine delle transizioni atomiche (doppietto( del sodio) Esperimento di Stern-Gerlach Effetto Zeeman

Dettagli

Telerilevamento: una panoramica sui sistemi

Telerilevamento: una panoramica sui sistemi Telerilevamento: una panoramica sui sistemi Il telerilevamento: cos è? Il telerilevamento è la scienza (o l arte) di ottenere informazioni riguardanti un oggetto, un area o un fenomeno utilizzando dati

Dettagli

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Lavoro ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Cos è il lavoro? Il lavoro è la grandezza fisica che mette in relazione spostamento e forza. Il lavoro dipende sia dalla direzione della forza sia dalla

Dettagli

1. Tre fili conduttori rettilinei, paralleli e giacenti sullo stesso piano, A, B e C, sono percorsi da correnti di intensità ia = 2 A,

1. Tre fili conduttori rettilinei, paralleli e giacenti sullo stesso piano, A, B e C, sono percorsi da correnti di intensità ia = 2 A, ebbraio 1. L intensità di corrente elettrica che attraversa un circuito in cui è presente una resistenza R è di 4 A. Se nel circuito si inserisce una ulteriore resistenza di 2 Ω la corrente diventa di

Dettagli

Corso di CHIMICA LEZIONE 2

Corso di CHIMICA LEZIONE 2 Corso di CHIMICA LEZIONE 2 MODELLO ATOMICO DI THOMSON 1904 L atomo è formato da una sfera carica positivamente in cui gli elettroni con carica negativa, distribuiti uniformemente all interno, neutralizzano

Dettagli

Simulazioni e Metodi Montecarlo Cercano gli stati fondamentali di sistemi complessi non risolubili analiticamente e le loro proprietà analoghi per

Simulazioni e Metodi Montecarlo Cercano gli stati fondamentali di sistemi complessi non risolubili analiticamente e le loro proprietà analoghi per Simulazioni e Metodi Montecarlo Cercano gli stati fondamentali di sistemi complessi non risolubili analiticamente e le loro proprietà analoghi per molti versi al problema del commesso viaggiatore lasciano

Dettagli