Esercitazione 2 (B4 U6) Misure su circuiti RC. Modulo SISTEMI ELETTRONICI AA ESERCITAZIONI DI LABORATORIO - 2. Scopo dell esercitazione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercitazione 2 (B4 U6) Misure su circuiti RC. Modulo SISTEMI ELETTRONICI AA ESERCITAZIONI DI LABORATORIO - 2. Scopo dell esercitazione"

Transcript

1 Esercitazione 2 (B4 U6) Misure su circuiti RC Scopo dell esercitazione Questa esercitazione sperimentale ha due obiettivi principali: - richiamare le tecniche per l utilizzo della strumentazione base di laboratorio (oscilloscopio e generatore di segnali) - verificare il comportamento di celle RC di vario tipo, confrontando i risultati di calcoli e di simulazione con le misure. La relazione dell esercitazione è già predisposta e va solo completata nei campi che riportano i risultati delle misure e dati specifici di ciascun banco. L esercitazione richiede il preventivo svolgimento di homework (calcoli e simulazioni). Per completare l esercitazione e la relazione nei tempi previsti, tali attività devono essere completate PRIMA di iniziare il lavoro sperimentale in laboratorio. Moduli e strumenti da utilizzare I circuiti richiesti sono premontati; durante l esercitazione devono solo essere collegati gli strumenti (generatore di segnale all ingresso e oscilloscopio sui punti di misura). Viene utilizzato solo il modulo PASSIVI. Nota: Qualunque relazione di misure sperimentali deve contenere informazioni che permettano di ricosstrure la situazione in cui sono state eseguite le misure. E quindi necessario specificare le caratteristiche degli strumenti usati (marca, modello, serial number). Prima di avviare le misure deve essere verificata (almeno qualitativamente) la funzionalità degli strumenti e la rispondenza dei dati di targa a quanto richiesto per l esperimento. Nella bozza di relazione per questa prima esperienza alcuni di questi dati sono precompilati (dati minimi, validi per la maggior parte degli strumenti a disposizione). Predisposizione delle basette I circuiti su cui eseguire le misure sono premontati su piastre a circuito stampato realizzate appositamente per queste esercitazioni. In questa esercitazione viene usata una basetta in cui sono già predisposti i circuiti su cui eseguire le misure. Eventuali variazioni nel valore dei componenti o nella configurazione circuitale si ottengono tramite interruttori, come indicato nella descrizione di ciascuna esperienza. La posizione e il nome degli interruttori sono indicati da una serigrafia sul circuito stampato. A = Aperto, C = Chiuso. Per i collegamenti con l esterno sono predisposti connettori coassiali (ingresso segnali), boccole/morsetti (alimentazioni, quando richieste), e ancoraggi sui punti di misura (per collegare le sonde dell oscilloscopio o altri strumenti). Di norma non devono essere inseriti o cambiati componenti durante l esercitazione. Page 1 of 21

2 Homework Per alcune misure è previsto il confronto con risultati di calcoli e/o simulazioni. Calcoli e simulazioni vanno eseguiti prima dell esercitazione, con i dati numerici forniti nella guida. I dati numerici comprendono i valori nominali e le tolleranze dei componenti; calcolo e simulazione possono essere eseguiti usando solo i valori nominali, oppure cercando di determinare il campo di risultati possibili in base alle tolleranze. Il risultato della misura è a sua volta affetto da errori per l imprecisione degli strumenti e altre cause. E quindi ragionevole aspettarsi una discrepanza tra risultati di calcoli/simulazioni e misure (anzi, valori perfettamente identici inducono perplessità sulla corretta esecuzione delle misure). In altri termini, le fasce dovute a tolleranze ed errori devono avere campi di sovrapposizione. In queste esercitazioni non è espressamente richiesta una verifica quantitiva di questa corrispondenza, ma è utile esprimere sintetiche considerazioni qualitative. Esecuzione delle misure Per ciascuna misura viene utilizzato uno dei circuiti premontati sul modulo sperimentale, predisposto secondo la configurazione indicata. Salvo diverse indicazioni, il generatore di segnali va predisposto su tensioni di uscita di circa 1 Vpp (sinusoidale o a onda quadra, a seconda del tipo di misura). Nota: Quando si usa un generatore di segnali occorre sempre chiedersì a quale livello di uscita va impostato. Tensioni troppo basse rendono difficoltosa l esecuzione delle misure, e tensioni troppo alte potrebbero danneggiare alcuni componenti. I risultati delle misure eseguite vanno riportati nelle tabelle già predisposte per ciascuna misura. Le stesse tabelle sono raggruppate nella traccia di relazione, riportata in coda a questo documento. Deve essere consegnata la traccia completata con i dati richiesti. Documenti collegati Selabman manuale generale per le esercitazioni di laboratorio (AA 2001/2) Sex desrizione dei moduli premontati Page 2 of 21

3 Cella R-C passa-basso Predisposizione del modulo R1 Utilizzare il modulo passa basso, che contiene il circuito RC indicato a lato, con R1 = 1k, C1 = 10 nf. S 2 R1 >> R6, C1 >> C4, C2 >> C5 Vi >> J20 e morsetti IN, Vo >> morsetti OUT GND su J16 e J18 V I C1 C2 Homework: - Calcolare la posizione del polo e la curva di risposta Vo/Vi per questo circuito. - Calcolare e tracciare su diagramma tarato la risposta al gradino. - Eseguire una simulazione PSPICE del comportamento del circuito (risposta in frequenza). Esecuzione delle misure: a) Applicare all ingresso un segnale sinusoidale, con frequenza 800 Hz e ampiezza 2 Vpp, b) collegare ai due canali dell oscilloscopio ingresso e uscita del circuito, e misurare il rapporto G = Vo/Vi; calcolare G anche in db; Misura di G a 800 Hz G (rapporto) G (in db) c) ripetere le misure precedenti per frequenze da 100 Hz a 3 MHz, con due misure per decade (valori 1 e 3); riportare i risultati in tabella e nel grafico (notare che si tratta di un diagramma di Bode del modulo, con asse delle frequenze logaritmico e ampiezza in db). Misura di G in frequenza Frequenza (Hz) 300 1k 3k 10k 30k 100k 300k 1M G (rapporto) G (in db) Page 3 of 21

4 Diagramma di G /V I [db] 100 1k 10k 30k 100k 300k 1M f [Hz] Diagramma di /G /V I [rad] 100 1k 10k 30k 100k 300k 1M f [Hz] Nota: Il diagramma di Bode comprende il grafico del modulo e quello della fase. Nelle misure e nelle esercitazioni successive viene richiesto solo il diagramma del modulo, più significativo negli amplificatori. d) Ricavare dal grafico una stima della frequenza del polo e confrontarla con quella ottenuta con il calcolo e con la simulazione SPICE. Valori frequenza del polo calcolo Simulazione misura Page 4 of 21

5 e) Applicare all ingresso un onda quadra con frequenza 20 khz e ampiezza 1 Vpp. f) Riportare su diagramma tarato la forma d onda rilevata in uscita. Risposta a segnale di ingresso a onda quadra [V] t [ms] g) Ricavare graficamente la costate di tempo (come tempo impiegato per raggiungere il 63% del valore a regime, o con altri metodi). h) Confrontare con il risultato ottenuto tramite la misura in frequenza (punti precedenti). Valori della costante di tempo calcolo simulazione Misura 1 Misura 2 Motivare brevemente eventuali forti differenze tra calcoli, simulazioni e misure Page 5 of 21

6 2.2 - Partitore compensato Utilizzare il modulo partitore compensato, configurato in modo da ottenere il circuito indicato a lato con R1 = 120 k, R2 = 8,2 k, C1 = 1 nf, C2 = 100 pf + variabile. C1 R1 R1 >> R10, R9 >> R2 C1 >> C7, C2 >> C8 + C9 Vi >> J27 e morsetti IN, Vo >> morsetti OUT GND su J28 e J30 V I R2 C2 Homework - Calcolare la posizione di poli e zeri. - Analizzare cosa capita se R1 C1 = R2 C2. - Eseguire una simulazione PSPICE del comportamento del circuito (risposta in frequenza e al gradino). Misure a) Applicare un segnale a onda quadra con frequenza di 250 Hz, e rilevare la forma d onda in uscita. Discutere il risultato, Segnale di uscita con ingresso a onda quadra [V] t [ms] Page 6 of 21

7 b) Ripetere la misura per C1 = 470 pf e C1 = 3,3 nf; Come cambia la Vu? - Discutere i risultati osservati. Valori RC originari Valori RC del punto b) c) ripetere le misure precedenti per frequenze da 10 Hz a 10 MHz, con una misura per decade; riportare i risultati in tabella e verificare che la risposta non dipende dalla frequenza. Misura di G in frequenza valori RC originari Frequenza (Hz) k 10k 100k 1M 10M G (rapporto) G (in db) d) Ripetere la misura per C1 = 470 pf e C1 = 3,3 nf; Misura di G in frequenza valori RC modificati Frequenza (Hz) k 10k 100k 1M 10M G (rapporto) G (in db) Esiste una combinazione di valori dei componenti che permette di ottenere una risposta in frequenza piatta (il circuito si comporta come un partitore resistivo)? Giustificare analiticamente questo risultato. Page 7 of 21

8 2.3 Sonde compensate per misure con oscilloscopio I collegamenti tra l oscilloscopio e il circuito in misura possono essere effettuati con cavi diretti o con le sonde. Le sonde contengono all interno un partitore compensato, che attenua il segnale (generalmente 1:10), ma presenta un carico minore sul punto di misura. L impedenza equivalente di ingresso dell oscilloscopio è solitamente di 1 Mohm con circa 10 pf in parallelo. Nel caso di collegamento diretto a questa capacità si aggiunge quella del cavo coassiale usato per il collegamento (circa 100 pf/metro). Usando la sonda la capacità del cavo diventa quella del ramo parallelo (C2); la capacità effettivamente collegata al punto di misura è la serie di C1 e C2. Per una attenuazione 1:10 C1 = 0,1 C2, e R1 = 10 R2. Rispetto al collegamento diretto la capacità di carico si riduce a 1/10 e la resistenza equivalente viene moltiplicata per 10. Una verifica degli effetti del carico capacitivo si può eseguire collegando all uscita del partitore compensato realizzato al punto 2.6 uno spezzone di cavo coassiale, di lunghezza circa 1,5 m (corrispondente alla lunghezza dei cavi delle sonde). La misura va fatta con una sonda. Applicando all ingresso un segnale a onda quadra si può verificare l effetto della presenza o meno dello spezzone di cavo. Risposta a onda quadra senza cavo (-----) e con cavo ( ) (sovrapporre i due diagrammi) [V] t [ms] Per operare correttamente le sonde devono essere compensate. Indicazioni su come eseguire una verifica sono riportate nella guida genrale di laboratorio. Page 8 of 21

9 2.4 - Celle R-L-C passa-basso con poli complessi Predisposizione del modulo Utilizzare il modulo Filtro RLC, configurato in modo da ottenere il circuito indicato a lato, con R1 = 47Ω, R2 = 47 Ω, L = 1 mh, C = 2,2 nf R1 >> R5, R2 >> R4, C1 >> C3 Vi >> J12 e morsetti IN, Vo >> morsetti OUT GND su J13 e J15 V I SW 1 R1 R2 L C1 Homework Determinare frequenza di risonanza e smorzamento. Eseguire la simulazione SPICE della risposta al gradino Misure Applicare un segnale Vi a onda quadra alla frequenza di 1 khz. Rilevare la risposta al gradino per i due diversi valori della resistenza serie. Page 9 of 21

10 2.5 - Cella R-C passa-alto Predisposizione del modulo Utilizzare il modulo passa alto, configurato in modo da ottenere il circuito indicato a lato, con R1 = 1kΩ e C1 = 10 nf. C1 R1 >> R1, C1 >> C1, Vi >> J3 e morsetti IN, Vo >> morsetti OUT GND su J4 e J5 V I R1 Homework Come per punto 2.2. Misure Ripetere alcune delle misure eseguite per il passa basso Posizione del polo Risposta al gradino Page 10 of 21

11 2.6- Cella R-R-C passa-alto con zero e polo Predisposizione del modulo Utilizzare il modulo coppia zero-polo, configurato in modo da ottenere il circuito indicato a lato, con C1 = 10 nf, R1 = 5,6 k, R2 = 5,6 k. C1 R1 R1 >> R3, R2 >> R2, C1 >> C2, Vi >> J8 e morsetti IN, Vo >> morsetti OUT GND su J9 e J10 V I R2 Homework Come per punto 2.2. Misure Rilevare qualitativamente il diagramma di Bode (valutare Vo/Vi per frequenze da 10 Hz a 10 MHz; individuare il comportamento asindotico e la posizione approssimativa di polo e zero Con misure specifiche determinare la posizione del polo Con misure specifiche determinare la posizione dello zero Applicare un segnale a onda quadra e rilevare la risposta al gradino Dalla risposta al gradino è possibile determinare la posizione del polo e/o dello zero?. Confrontare i risultati delle misure con quelli previsti tramite calcolo o simulazione. Applicare un segnale a onda quadra a frequenza di 1, 10, 100 khz, rilevare e giustificare le forme d onda in uscita. Page 11 of 21

12 2.7 - Cella R-R-C passa-basso con zero e polo Predisposizione del modulo Utilizzare il modulo coppia polo- zero, configurato in modo da ottenere il circuito indicato a lato, con C1 = 10 nf, R1 = 5,6 k, R2 = 5,6 k. R1 C1 V I R2 R1 >> R7, R2 >> R8, C1 >> C6, Vi >> J23 e morsetti IN, Vo >> morsetti OUT GND su J24 e J25 Homework Come per punto 2.2. Misure Come per il punto Altre celle R-R-C Altri circuiti con coppia zero polo su cui è possibil eseguire simili misure (non predisposte nelle basette di laboratorio) C1 R1 R1 V I R2 V I R2 C1 Page 12 of 21

13 Modulo per la relazione Esercitazione 2: Misure su celle RC Data: Composizione del Gruppo nome firma Strumenti utilizzati strumento Marca e modello caratteristiche Generatore di segnali: Generatore onda Q/T/Sin, fino a 2 MHz Oscilloscopio Circuito premontato Doppio canale, banda 60 MHz Basetta con vari circuiti passivi Descrizione sintetica degli obiettivi Scopo di questa esercitazione è verificare la risposta di alcune celle passive (RC, RRC e LRC) a segnali sinusoidali e al gradino. Verranno tracciati diagrammi di Bode e risposte nel tempo (con ingresso a gradino) Per ogni circuito vengono confrontati i risultati di calcoli, delle simulazion, e delle misure, discutendo i motivi di eventuali discrepanze Page 13 of 21

14 Risultati delle misure Cella R-C passa-basso Homework: Posizione del polo e la curva di risposta Vo/Vi per questo circuito. Polo per f = Hz Risposta al gradino. [V] t [ms] Simulazione PSPICE del comportamento del circuito (risposta in frequenza). Inserire fogli con i risultati della simulazione Page 14 of 21

15 Risultati delle misure in frequenza: Misura di G a 800 Hz G (rapporto) G (in db) Misura di G in frequenza Frequenza (Hz) 300 1k 2k 10k 30k 100k 300k 1M G (rapporto) G (in db) Diagramma di G /V I [db] 100 1k 10k 30k 100k 300k 1M f [Hz] Diagramma di /G /V I [rad] 100 1k 10k 30k 100k 300k 1M f [Hz] Confronto tra i valori della frequenza del polo calcolo Simulazione misura Page 15 of 21

16 Motivare brevemente le differenze tra calcoli, simulazioni e misure Page 16 of 21

17 Risultati delle misure nel dominio del tempo: Risposta a segnale di ingresso a onda quadra [V] t [ms] Valori della costante di tempo calcolo simulazione Misura 1 Misura 2 Motivare brevemente le differenze tra calcoli, simulazioni e misure Page 17 of 21

18 2.2 - Partitore compensato Homework: Posizione di poli e zeri Polo per Fp = Hz Zero per Fz = Hz Comportamento per R1 C1 = R2 C2 Effetti su risposta In frequenza Effetti su risposta nel tempo Risposta al gradino. /V I [db] 100 1k 10k 30k 100k 300k 1M f [Hz] Page 18 of 21

19 Risultati delle misure Segnale di uscita con ingresso a onda quadra [V] t [ms] Variazione dei risultati osservati per C1 = 470 pf e C1 = 3,3 nf; Valori RC originari Valori RC del punto b) Misura di G in frequenza valori RC originari Frequenza (Hz) k 10k 100k 1M 10M G (rapporto) G (in db) Misura di G in frequenza valori RC modificati Frequenza (Hz) k 10k 100k 1M 10M G (rapporto) G (in db) Page 19 of 21

20 Combinazione di valori dei componenti per risposta in frequenza piatta (il circuito si comporta come un partitore resistivo), e giustificazione analitica. Condizione per comportamento resistivo Giustificazione analitica 2.3 Sonde compensate per misure con oscilloscopio Verifica effetto del carico capacitivo Risposta a onda quadra senza cavo (-----) e con cavo ( ) [V] t [ms] Page 20 of 21

21 Storia del documento Rev 1 documento di partenza: guida alle esercitazioni per DU Rev DDC varianti per Sistemi Elettronici Rev DDC adattata a basette premontate e relazione predisposta Rev DDC inserita compensazione sonde Rev DDC chiarimenti iniziali su moduli e homework Page 21 of 21

Di norma non devono essere inseriti o cambiati componenti durante l esercitazione.

Di norma non devono essere inseriti o cambiati componenti durante l esercitazione. Esercitazione 1 Misure su circuiti RC 1. Introduzione Scopo dell esercitazione Questa esercitazione sperimentale ha due obiettivi principali: - fornire le tecniche per l utilizzo della strumentazione base

Dettagli

Misure e simulazioni su circuiti RC

Misure e simulazioni su circuiti RC Esercitazione 2 Misure e simulazioni su circuiti RC 1. Introduzione Scopo dell esercitazione Questa esercitazione sperimentale ha tre obiettivi principali: - fornire le tecniche di base per l utilizzo

Dettagli

Misure e simulazioni su circuiti RC

Misure e simulazioni su circuiti RC Esercitazione 2 Misure e simulazioni su circuiti RC 1. Introduzione Scopo dell esercitazione Questa esercitazione sperimentale ha tre obiettivi principali: - fornire le tecniche di base per l utilizzo

Dettagli

Esercitazione 1 Misure e simulazioni su circuiti RC e RLC

Esercitazione 1 Misure e simulazioni su circuiti RC e RLC Esercitazione 1 Misure e simulazioni su circuiti RC e RLC 1. Introduzione Scopo dell esercitazione Questa esercitazione sperimentale ha due obiettivi principali: - fornire le tecniche di base per l utilizzo

Dettagli

Esercitazione 3 (B7- U9) Misure su amplificatori. Modulo SISTEMI ELETTRONICI AA ESERCITAZIONI DI LABORATORIO - 3. Scopo dell esercitazione

Esercitazione 3 (B7- U9) Misure su amplificatori. Modulo SISTEMI ELETTRONICI AA ESERCITAZIONI DI LABORATORIO - 3. Scopo dell esercitazione Esercitazione 3 (B7- U9) Misure su amplificatori Scopo dell esercitazione Gli obiettivi di questa esercitazione sono: - Analizzare il comportamento e misurare i parametri di moduli amplificatori, - Verificare

Dettagli

Modulo SISTEMI ELETTRONICI ESERCITAZIONI DI LABORATORIO - 2

Modulo SISTEMI ELETTRONICI ESERCITAZIONI DI LABORATORIO - 2 Esercitazione 2 Misure su amplificatori 1. Introduzione Scopo dell esercitazione Gli obiettivi di questa esercitazione sono: - Analizzare il comportamento e misurare i parametri di moduli amplificatori,

Dettagli

Anche questa relazione è in parte già predisposta, ma rispetto alla precedente è più ampia la parte a compilazione libera.

Anche questa relazione è in parte già predisposta, ma rispetto alla precedente è più ampia la parte a compilazione libera. Esercitazione 5 (C7-U16) Amplificatori operazionali reali Scopo dell esercitazione Gli obiettivi di questa esercitazione sono: - Analizzare il comportamento di amplificatori operazionali reali - Misurare

Dettagli

ELETTRONICA APPLICATA I (DU) Guida alle esercitazioni di laboratorio - AA Circuiti con Amplificatori Operazionali

ELETTRONICA APPLICATA I (DU) Guida alle esercitazioni di laboratorio - AA Circuiti con Amplificatori Operazionali Guida alle esercitazioni di laboratorio AA 19992000 Esercitazione n. 4 Circuiti con Amplificatori Operazionali 4.1 Amplificatore AC Montare il circuito riportato nello schema a lato, con alimentazione

Dettagli

(E4-U18) Gli homework da preparare prima di iniziare la parte sperimentale sono calcoli e simulazioni dei circuiti su cui vengono eseguite le misure.

(E4-U18) Gli homework da preparare prima di iniziare la parte sperimentale sono calcoli e simulazioni dei circuiti su cui vengono eseguite le misure. Esercitazione 6 (E4-U8) Caratterizzazione e misure su circuiti digitali Scopo dell esercitazione Gli obiettivi di questa esercitazione sono: - Misurare i parametri elettrici di porte logiche, - Verificare

Dettagli

Esercitazione 3 Amplificatori operazionali con reazione

Esercitazione 3 Amplificatori operazionali con reazione Esercitazione 3 Amplificatori operazionali con reazione 1. Introduzione Scopo dell esercitazione Gli obiettivi di questa esercitazione sono: - Analizzare il comportamento di amplificatori operazionali

Dettagli

Interazione tra strumenti e sistemi in misura: effetto di carico

Interazione tra strumenti e sistemi in misura: effetto di carico Corso di Laurea a distanza in INGEGNERIA ELETTRONICA Sede di Torino - A.A. 2005/2006 Modulo: Misure Elettroniche II (05EKCcm) Esercitazioni di Laboratorio Alessio Carullo 27 luglio 2006 Interazione tra

Dettagli

GUIDA ALLE ESERCITAZIONI DI ELETTRONICA DI BASE

GUIDA ALLE ESERCITAZIONI DI ELETTRONICA DI BASE GUIDA ALLE ESERCITAZIONI DI ELETTRONICA DI BASE ELETTRONICA APPLICATA I (DU) Queste note contengono i testi di alcune esercitazioni di laboratorio proposte nei corsi di Elettronica Applicata I del Diploma

Dettagli

Moduli Analogici e Amplificatori Operazionali (parte B e C) -1

Moduli Analogici e Amplificatori Operazionali (parte B e C) -1 Moduli Analogici e Amplificatori Operazionali (parte B e ) -1 Esercizi (con risultati numerici) Esercizio 1-000719 a) alcolare Vu (V1, V2) per = 0, Ad = oo b) Tracciare il diagramma di Bode di Vu/V1, per

Dettagli

reazione Anche questa relazione è in parte già predisposta, ma rispetto alla precedente è più ampia la parte a compilazione libera.

reazione Anche questa relazione è in parte già predisposta, ma rispetto alla precedente è più ampia la parte a compilazione libera. Esercitazione 4 Amplificatori operazionali con reazione 1. Introduzione Scopo dell esercitazione Gli obiettivi di questa esercitazione sono: - Analizzare il comportamento di amplificatori operazionali

Dettagli

La sonda compensata. La sonda compensata

La sonda compensata. La sonda compensata 1/6 1 Introduzione La seguente esercitazione di laboratorio affronta il problema di realizzare una sonda compensata per un cavo di 50 m con capacità distribuita di circa 100 pf/m. 2 Tempo di salita di

Dettagli

Esercitazione 8 : LINEE DI TRASMISSIONE

Esercitazione 8 : LINEE DI TRASMISSIONE Esercitazione 8 : LINEE DI TRASMISSIONE Specifiche Scopo di questa esercitazione è verificare il comportamento di spezzoni di linea in diverse condizioni di pilotaggio e di terminazione. L'esecuzione delle

Dettagli

Modulo SISTEMI ELETTRONICI ESERCITAZIONI DI LABORATORIO - 3

Modulo SISTEMI ELETTRONICI ESERCITAZIONI DI LABORATORIO - 3 Esercitazione 3 Amplificatori operazionali con reazione 1. Introduzione Scopo dell esercitazione Gli obiettivi di questa esercitazione sono: - Analizzare il comportamento di amplificatori operazionali

Dettagli

Gli homework da preparare prima di iniziare la parte sperimentale sono calcoli e simulazioni dei circuiti su cui vengono eseguite le misure.

Gli homework da preparare prima di iniziare la parte sperimentale sono calcoli e simulazioni dei circuiti su cui vengono eseguite le misure. Esercitazione 4 Caratterizzazione e misure su circuiti digitali 1. Introduzione Scopo dell esercitazione Gli obiettivi di questa esercitazione sono: - Misurare i parametri elettrici di porte logiche, -

Dettagli

Modulo SISTEMI ELETTRONICI ESERCITAZIONI DI LABORATORIO - 4

Modulo SISTEMI ELETTRONICI ESERCITAZIONI DI LABORATORIO - 4 Esercitazione 4 Caratterizzazione e misure su circuiti digitali 1. Introduzione Scopo dell esercitazione Gli obiettivi di questa esercitazione sono: - Misurare i parametri elettrici di porte logiche, -

Dettagli

I Decibel (db) sono un modo per esprimere rapporti. Un rapporto K può essere espresso in decibel (G)

I Decibel (db) sono un modo per esprimere rapporti. Un rapporto K può essere espresso in decibel (G) Uso dei decibel I Decibel (db) sono un modo per esprimere rapporti Un rapporto K può essere espresso in decibel (G) G = K(dB) = 0 log 0 K Nel caso degli amplificatori i db sono utilizzabili per esprimere

Dettagli

Esercitazione 1 Filtro del I ordine Risposta ad un segnale sinusoidale Risposta ad un onda quadra

Esercitazione 1 Filtro del I ordine Risposta ad un segnale sinusoidale Risposta ad un onda quadra Esercitazione 1 Filtro del I ordine Risposta ad un segnale sinusoidale Risposta ad un onda quadra TABELLE DEI COLORI 4 ANELLI. 1 ANELLO 2 ANELLO 3 ANELLO 4 ANELLO Nero. 0 x 1 - Marrone 1 1 x 10 - Rosso

Dettagli

Misure su linee di trasmissione

Misure su linee di trasmissione Appendice A A-1 A-2 APPENDICE A. Misure su linee di trasmissione 1) Misurare, in trasmissione o in riflessione, la lunghezza elettrica TL della linea. 2) Dal valore di TL e dalla lunghezza geometrica calcolare

Dettagli

Esercitazione 6: Convertitori A/D Delta e Sigma-Delta

Esercitazione 6: Convertitori A/D Delta e Sigma-Delta Esercitazione 6: Convertitori A/D Delta e Sigma-Delta Scopo dell esercitazione Gli obiettivi di questa esercitazione sono: - Verificare il comportamento di un convertitore A/D differenziale - Determinare

Dettagli

ELETTRONICA APPLICATA E MISURE

ELETTRONICA APPLICATA E MISURE Ingegneria dell Informazione Come utilizzare gli esercizi ELETTRONICA APPLICATA E MISURE Dante DEL CORSO Be2 Esercizi parte B (2)» Generatore Q-T e Q» Monostabili» Laboratorio ELN-1 AA 2015-16 Esercizi

Dettagli

Fondamenti di Elettronica

Fondamenti di Elettronica N ELENCO: Politecnico di Milano Facoltà di Ingegneria dell Informazione Fondamenti di Elettronica Anno Accademico 2004/2005 Nome: Cognome: Matricola: Aula: Banco: Data: Docente del corso: Lezione di laboratorio:

Dettagli

ELETTRONICA APPLICATA E MISURE

ELETTRONICA APPLICATA E MISURE Ingegneria dell Informazione ELETTRONICA APPLICATA E MISURE Dante DEL CORSO Be2 Esercizi parte B (2)» Generatore Q-T e Q» Monostabili» Laboratorio ELN-1 AA 2014-15 23/09/2014-1 ElapBe2-2014 DDC Page 1

Dettagli

Modulo SISTEMI ELETTRONICI ESERCITAZIONI DI LABORATORIO - 4

Modulo SISTEMI ELETTRONICI ESERCITAZIONI DI LABORATORIO - 4 Esercitazione 4 Caratterizzazione e misure su circuiti digitali 1. Introduzione Scopo dell esercitazione Gli obiettivi di questa esercitazione sono: - Misurare i parametri elettrici di porte logiche, -

Dettagli

ELETTRONICA APPLICATA E MISURE

ELETTRONICA APPLICATA E MISURE Ingegneria dell Informazione ELETTRONICA APPLICATA E MISURE Dante DEL CORSO B8 Esercizi parte B (2)» Generatore Q-T e Q» Monostabili» Laboratorio ELN-1 22/10/2013-1 ElapB8-2013 DDC Page 1 2013 DDC 1 Come

Dettagli

Generatori di funzione e filtri RC

Generatori di funzione e filtri RC 1/12 Generatori di funzione e filtri RC 1 Introduzione La seguente esercitazione di laboratorio riguarda lo studio di un filtro RC (passa basso o passa alto) per mezzo sia di uno stimolo sinusoidale che

Dettagli

Generatori di funzione e filtri RC

Generatori di funzione e filtri RC 1/12 Generatori di funzione e filtri RC 1 Introduzione La seguente esercitazione di laboratorio riguarda lo studio di un filtro RC di tipopassabassopermezzosiadiunostimolosinusoidalechediunaformad onda

Dettagli

II.3.1 Inverter a componenti discreti

II.3.1 Inverter a componenti discreti Esercitazione II.3 Caratteristiche elettriche dei circuiti logici II.3.1 Inverter a componenti discreti Costruire il circuito dell invertitore in logica DTL e verificarne il funzionamento. a) Posizionando

Dettagli

POLITECNICO DI TORINO TERZA ESERCITAZIONE ATTENZIONE

POLITECNICO DI TORINO TERZA ESERCITAZIONE ATTENZIONE POLITECNICO DI TORINO Laboratorio di Elettrotecnica Data: Gruppo: Allievi: TERZA ESERCITAZIONE Strumenti utilizzati Materiale necessario Generatore di funzioni da banco Oscilloscopio da banco Bread-board

Dettagli

Esercitazione 4: Sintetizzatore di frequenza con PLL

Esercitazione 4: Sintetizzatore di frequenza con PLL Esercitazione 4: Sintetizzatore di frequenza con PLL 1. Informazioni generali 1.1 Scopo dell esercitazione Gli obiettivi di questa esercitazione sono: - Verificare il comportamento di un PLL - Determinare

Dettagli

PROGETTO DI UN FILTRO PASSA BASSO

PROGETTO DI UN FILTRO PASSA BASSO orso di elettronica per telecomunicazioni - esercitazione POGETTO DI UN FILTO PASSA BASSO Docente del corso: prof. Giovanni Busatto Galletti iccardo Matr. 65 relazione elettronica per telecomunicazioni

Dettagli

Modulo SISTEMI ELETTRONICI ESERCITAZIONI DI LABORATORIO - 4

Modulo SISTEMI ELETTRONICI ESERCITAZIONI DI LABORATORIO - 4 Esercitazione 4 Caratterizzazione e misure su circuiti digitali 1. Introduzione Scopo dell esercitazione Gli obiettivi di questa esercitazione sono: - Misurare i parametri elettrici di porte logiche, -

Dettagli

3.1 Verifica qualitativa del funzionamento di un FET

3.1 Verifica qualitativa del funzionamento di un FET Esercitazione n. 3 Circuiti con Transistori Rilevamento delle curve caratteristiche Questa esercitazione prevede il rilevamento di caratteristiche V(I) o V2(V1). In entrambi i casi conviene eseguire la

Dettagli

3) Terminare la linea con una resistenza variabile ( Ω); dalla condizione di riflessione nulla verificare l impedenza caratteristica.

3) Terminare la linea con una resistenza variabile ( Ω); dalla condizione di riflessione nulla verificare l impedenza caratteristica. Appendice C 233 1) Misurare la lunghezza elettrica T L della linea. 2) Dal valore di T L e dalla lunghezza geometrica calcolare la velocità di propagazione dei segnali lungo la linea e la costante dielettrica

Dettagli

Tipi di amplificatori e loro parametri

Tipi di amplificatori e loro parametri Amplificatori e doppi bipoli Amplificatori e doppi bipoli Introduzione e richiami Simulatore PSPICE Amplificatori Operazionali e reazione negativa Amplificatori AC e differenziali Amplificatori Operazionali

Dettagli

Interconnessioni e Linee di Trasmissione

Interconnessioni e Linee di Trasmissione Queste istruzioni sono scaricabili dal Portale (pagina dell insegnamento, sezione Materiale ), o da http://areeweb.polito.it/didattica/corsiddc/03moa. La versione più aggiornata è normalmente quella su

Dettagli

LINEE DI TRASMISSIONE

LINEE DI TRASMISSIONE LINEE DI TRASMISSIONE Scopo dell esercitazione Scopo di questa esercitazione è verificare il comportamento di spezzoni di linea in diverse condizioni di pilotaggio e di terminazione. Strumenti e componenti

Dettagli

F I L T R I. filtri PASSIVI passa alto passa basso passa banda. filtri ATTIVI passa alto passa basso passa banda

F I L T R I. filtri PASSIVI passa alto passa basso passa banda. filtri ATTIVI passa alto passa basso passa banda F I L T R I Un filtro è un dispositivo che elabora il segnale posto al suo ingresso; tipicamente elimina (o attenua) determinate (bande di) frequenze mentre lascia passare tutte le altre (eventualmente

Dettagli

Capacità parassita. Quindi ci si aspetta che la funzione di trasferimento dipenda dalla frequenza

Capacità parassita. Quindi ci si aspetta che la funzione di trasferimento dipenda dalla frequenza Esperienza n. 10 Partitore resistivo e sua compensazione in c.a. Partitore resistivo-capacitivo Partitore resistivo: abbiamo visto che in regime di corrente continua il rapporto di partizione è costante:

Dettagli

SisElnB5 12/19/ Dec SisElnB DDC V G. 19-Dec SisElnB DDC. Diagramma di Bode. Risposta al transitorio.

SisElnB5 12/19/ Dec SisElnB DDC V G. 19-Dec SisElnB DDC. Diagramma di Bode. Risposta al transitorio. SisElnB5 12/19/1 Ingegneria dell Informazione Obiettivi del gruppo di lezioni Modulo SISTEMI ELETTRONICI B - AMPLIFICATORI E DOPPI BIPOLI B.5 - Catene di moduli» Applicazione dei metodi di analisi visti

Dettagli

Generatore di Funzioni

Generatore di Funzioni Generatore di Funzioni Tipo di onda Come impostare una certa frequenza? Hz, khz, MHz. Oscilloscopio CH1 nel tempo CH2 nel tempo XY (CH1 vs. CH2) DUAL entrambi Lettura: Valore/DIVISIONE Ogni quadrato corrisponde

Dettagli

ESERCITAZIONE DI LABORATORIO SUL TEOREMA DI THEVENIN

ESERCITAZIONE DI LABORATORIO SUL TEOREMA DI THEVENIN ESECITAZIONE DI LABOATOIO SUL TEOEMA DI THEVENIN Simone Fiori Dipartimento di Ingegneria Industriale Facoltà di Ingegneria - Università di Perugia (fiori@unipg.it) IL TEOEMA DI SOSTITUZIONE DI THEVENIN

Dettagli

Elettronica I - Prima Esercitazione - RISPOSTA IN FREQUENZA DI CIRCUITI CON AMPLIFICATORI OPERAZIONALI OpAmp

Elettronica I - Prima Esercitazione - RISPOSTA IN FREQUENZA DI CIRCUITI CON AMPLIFICATORI OPERAZIONALI OpAmp Elettronica I - Prima Esercitazione - RISPOSTA IN FREQUENZA DI CIRCUITI CON AMPLIFICATORI OPERAZIONALI OpAmp 1 Configurazione Invertente Circuito ATTIVO: l OpAmp va alimentato 2 OpAmp Ideale 3 Configurazione

Dettagli

Misura della banda passante di un filtro RC-CR

Misura della banda passante di un filtro RC-CR Elettronica Applicata a.a. 05/06 Esercitazione N Misura della banda passante di un filtro RC-CR Prof. Ing. Elena Biagi Sig. Marco Calzolai Sig. Andrea Giombetti Piergentili Ing. Simona Granchi Ing. Enrico

Dettagli

Materiale didattico > Uso delle basette per montaggi senza saldature

Materiale didattico > Uso delle basette per montaggi senza saldature Esercitazione 3 Convertitore D/A e A/D con rete di peso Scopo dell esercitazione Gli obiettivi di questa esercitazione sono: - Verificare il funzionamento di un convertitore D/A a 4 bit, - Individuare

Dettagli

SisElnB5 12/19/01. B - AMPLIFICATORI E DOPPI BIPOLI B.5 - Catene di moduli

SisElnB5 12/19/01. B - AMPLIFICATORI E DOPPI BIPOLI B.5 - Catene di moduli Ingegneria dell Informazione Modulo SISTEMI ELETTRONICI B - AMPLIFICATORI E DOPPI BIPOLI B.5 - Catene di moduli» Applicazione dei metodi di analisi visti nelle lezioni precedenti» Passaggio da reti con

Dettagli

1. Convertire il numero esadecimale 4BE7 in binario su 16 bit. 2. Il risultato della conversione precedente, letto in complemento a due, è un numero:

1. Convertire il numero esadecimale 4BE7 in binario su 16 bit. 2. Il risultato della conversione precedente, letto in complemento a due, è un numero: TEST INIZIALE (in alcuni casi, oltre a crocettare la risposta corretta, si deve anche fare un disegno o scrivere qualche valore) 1. Convertire il numero esadecimale 4BE7 in binario su 16 bit. 0100 1011

Dettagli

FILTRI in lavorazione. 1

FILTRI in lavorazione. 1 FILTRI 1 in lavorazione. Introduzione Cosa sono i filtri? C o II filtri sono dei quadripoli particolari, che presentano attenuazione differenziata in funzione della frequenza del segnale applicato in ingresso.

Dettagli

ELETTRONICA APPLICATA E MISURE

ELETTRONICA APPLICATA E MISURE Ingegneria dell Informazione Ce1: Esercizi su interconnessioni ELETTRONICA APPLICATA E MISURE Dante DEL CORSO Ce1 Esercizi: interconnessioni» Ritardi e skew con modello RC» Linee di trasmissione, riflessioni»

Dettagli

Relazione di Laboratorio Elettronica

Relazione di Laboratorio Elettronica Relazione di Laboratorio Elettronica OGGETTO: Funzionamento di un circuito derivatore con amplificatore operazionale DATI INIZIALI: Vcc = ±15V f 1 = 400Hz f 2 = 1KHz f 3 = 30KHz RIFERIMENTI TEORICI: Derivatore

Dettagli

1 = 0. 1 è la frequenza di taglio inferiore 2 = 2 è la frequenza di taglio superiore. Elettronica II Prof. Paolo Colantonio 2 14

1 = 0. 1 è la frequenza di taglio inferiore 2 = 2 è la frequenza di taglio superiore. Elettronica II Prof. Paolo Colantonio 2 14 Filtri Passivi Filtri elettrici ideali: sono quadrupoli che trasmettono un segnale di ingresso in un certo intervallo di frequenze ovvero esiste una banda di pulsazioni tale che la funzione di trasferimento:

Dettagli

Elettronica per le telecomunicazioni

Elettronica per le telecomunicazioni POLITENIO DI TOINO Elettronica per le telecomunicazioni Homework Gruppo: A08 Antona Maria Gabriella Matricola: 482 Degno Angela ita Matricola: 4855 Fiandrino laudio Matricola: 38436 Miggiano Marco Antonio

Dettagli

Esercitazioni di laboratorio e stesura delle relazioni

Esercitazioni di laboratorio e stesura delle relazioni Elettronica per le Telecomunicazioni - Esercitazioni di laboratorio e stesura delle relazioni Questo documento descrive come svolgere le esercitazioni sperimentali descritte in coda a ciascun capitolo,

Dettagli

SisElnB1 23/02/ /02/ SisElnB DDC. 23/02/ SisElnB DDC MICROP. DSP, MEM MODULATORE PWR. 23/02/ SisElnB DDC

SisElnB1 23/02/ /02/ SisElnB DDC. 23/02/ SisElnB DDC MICROP. DSP, MEM MODULATORE PWR. 23/02/ SisElnB DDC Ingegneria dell Informazione Obiettivi del gruppo di lezioni B SISTEMI ELETTRONICI B - AMPLIFICATORI E DOPPI BIPOLI B. - Descrizione funzionale di amplificatori» Parametri di un amplificatore» Modelli

Dettagli

Fondamenti di Elettronica Ing. AUTOMATICA e INFORMATICA - AA 2010/ Appello 09 Febbraio 2012

Fondamenti di Elettronica Ing. AUTOMATICA e INFORMATICA - AA 2010/ Appello 09 Febbraio 2012 Fondamenti di Elettronica Ing. AUTOMATICA e INFORMATICA - AA 2010/2011 3 Appello 09 Febbraio 2012 Indicare chiaramente la domanda a cui si sta rispondendo. Ad esempio 1a) Esercizio 1. R 1 = 20 kω, R 2

Dettagli

Page 1. SisElnB1 12/4/ DDC 1 SISTEMI ELETTRONICI. Ingegneria dell Informazione. Obiettivi del gruppo di lezioni B

Page 1. SisElnB1 12/4/ DDC 1 SISTEMI ELETTRONICI. Ingegneria dell Informazione. Obiettivi del gruppo di lezioni B Ingegneria dell Informazione SISTEMI ELETTRONICI B - AMPLIFICATORI E DOPPI BIPOLI B. - Descrizione funzionale di amplificatori» Parametri di un amplificatore» Modelli di amplificatore» Amplificatori come

Dettagli

Elettronica I - Lab. Did. Elettronica Circuitale - BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA

Elettronica I - Lab. Did. Elettronica Circuitale - BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA Elettronica I - Lab. Did. Elettronica Circuitale - BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA Generatore di Funzioni T T i - TG2000 Generatore di Funzioni T T i - TG2000 Genera i segnali di

Dettagli

ELETTRONICA APPLICATA E MISURE

ELETTRONICA APPLICATA E MISURE Ingegneria dell Informazione ELETTRONICA APPLICATA E MISURE Dante DEL CORSO De3 ESERCIZI PARTI B e D» Esempi di esercizi da scritti di esame AA 2015-16 01/12/2015-1 ElapDe2-2014 DDC Page 1 2014 DDC 1 De3:

Dettagli

Esercitazione Multimetro analogico e digitale

Esercitazione Multimetro analogico e digitale Esercitazione Multimetro analogico e digitale - 1 Esercitazione Multimetro analogico e digitale 1 - Oggetto Confronto tra multimetro analogico (OM) e digitale (DMM). Misure di tensioni alternate sinusoidali

Dettagli

Svolgimento delle esercitazioni di laboratorio e stesura delle relazioni

Svolgimento delle esercitazioni di laboratorio e stesura delle relazioni Svolgimento delle esercitazioni di laboratorio e stesura delle relazioni Questo documento descrive come svolgere le esercitazioni sperimentali e come stendere le relative relazioni per il modulo Sistemi

Dettagli

SisElnB2 12/4/2002. B - AMPLIFICATORI E DOPPI BIPOLI B.2 - Tipologie di amplificatori

SisElnB2 12/4/2002. B - AMPLIFICATORI E DOPPI BIPOLI B.2 - Tipologie di amplificatori Ingegneria dell Informazione Modulo SISTEMI ELETTRONICI B - AMPLIFICATORI E DOPPI BIPOLI B.2 - Tipologie di amplificatori» Comportamento dinamico di amplificatori» Risposta in frequenza e al transitorio»

Dettagli

SisElnB2 12/4/2002. B - AMPLIFICATORI E DOPPI BIPOLI B.2 - Tipologie di amplificatori

SisElnB2 12/4/2002. B - AMPLIFICATORI E DOPPI BIPOLI B.2 - Tipologie di amplificatori Ingegneria dell Informazione Modulo SISTEMI ELETTRONICI B - AMPLIFICATORI E DOPPI BIPOLI B.2 - Tipologie di amplificatori» Comportamento dinamico di amplificatori» Risposta in frequenza e al transitorio»

Dettagli

RELAZIONE DI LABORATORIO

RELAZIONE DI LABORATORIO RELAZIONE DI LABORATORIO Esercitazione di laboratorio di Elettrotecnica N 4 Svolta in data 11/01/2011 Corso di laurea in Ingegneria Aerospaziale Docente del corso ZICH RICCARDO Squadra (A,B,C) B Tavolo

Dettagli

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA AC2. Circuiti in corrente alternata

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA AC2. Circuiti in corrente alternata Scopo dell'esperienza: Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA AC2 Circuiti in corrente alternata. Uso di un generatore di funzioni (onda quadra e sinusoidale); 2.

Dettagli

Le sonde Pagina in. - figura

Le sonde Pagina in. - figura Le sonde Paga 04 LE ONDE L impedenza di gresso,, di un oscilloscopio è modellabile dal parallelo tra una resistenza e una capacità C, i cui valori tipici sono rispettivamente MΩ e 0 0pF. Il loro valore

Dettagli

SisElnCE1 12/12/2002. C - AMPLIFICATORI OPERAZIONALI CE1 - Esercizi riepilogativi parte B e C

SisElnCE1 12/12/2002. C - AMPLIFICATORI OPERAZIONALI CE1 - Esercizi riepilogativi parte B e C Ingegneria dell Informazione Modulo SISTEMI ELETTRONICI C - AMPLIFICATORI OPERAZIONALI CE1 - Esercizi riepilogativi parte B e C» Risoluzione di reti RLC» Diagrammi di Bode e risposta la gradino» Risoluzione

Dettagli

SisElnCE1 12/12/2002. C - AMPLIFICATORI OPERAZIONALI CE1 - Esercizi riepilogativi parte B e C

SisElnCE1 12/12/2002. C - AMPLIFICATORI OPERAZIONALI CE1 - Esercizi riepilogativi parte B e C Ingegneria dell Informazione Modulo SISTEMI ELETTRONICI C - AMPLIFICATORI OPERAZIONALI CE1 - Esercizi riepilogativi parte B e C» Risoluzione di reti RLC» Diagrammi di Bode e risposta la gradino» Risoluzione

Dettagli

Laboratorio di Elettronica A.A. 2001/2002. Calendario delle Esperienze. 04/03 Inizio dei corsi salta - 22/04 RECUPERO delle lezioni precedenti -

Laboratorio di Elettronica A.A. 2001/2002. Calendario delle Esperienze. 04/03 Inizio dei corsi salta - 22/04 RECUPERO delle lezioni precedenti - Laboratorio di Elettronica A.A. 2/22 Calendario delle Esperienze Data Info File /3 Inizio dei corsi salta /3 Descrizione strumentazione prova su breadboard E_ 8/3 Amplificatore a opamp. Banda passante

Dettagli

I.I.S.S. G. GALILEI A. SANI -ELETTRONICA Classe:5 - A\EN Data : 19\09\15 Elettronica - Gruppo n 4 : Salzillo_Pinna- Luogo: IISS GalileiSani -LT

I.I.S.S. G. GALILEI A. SANI -ELETTRONICA Classe:5 - A\EN Data : 19\09\15 Elettronica - Gruppo n 4 : Salzillo_Pinna- Luogo: IISS GalileiSani -LT NOME: Marco COGNOME: Salzillo TITOLO: AMPLIFICATORE OPERAZIONALE NON INVERTENTE OBBIETTIVO: REALIZZARE UN CIRCUITO OPERAZIONALE NON INVERTENTE CHE AMPLIFICA DI 11,7dB CIRCUITO TEORICO: CIRCUITO APPLICATIVO:

Dettagli

Laboratorio di Telecomunicazioni

Laboratorio di Telecomunicazioni I.I.S. Perlasca sez. ITIS Vobarno (BS) Data 16/10/15 Laboratorio di Telecomunicazioni Castellini Fabio Cognome e Nome Relazione n 2 Classe Gruppo 4 Titolo: I filtri attivi Obiettivo L esperienza, suddivisa

Dettagli

Esercitazione 5: DECODIFICATORE DI TONO CON C.I. NE567

Esercitazione 5: DECODIFICATORE DI TONO CON C.I. NE567 Esercitazione 5: DECODIFICATORE DI TONO CON C.I. NE567 Obiettivo Verificare il funzionamento di un PLL per demodulazione AM coerente, con misure del comportamento come tone decoder, e dei campi di cattura

Dettagli

Esercitazioni e relazioni di laboratorio

Esercitazioni e relazioni di laboratorio Esercitazioni e relazioni di laboratorio Questo documento descrive come svolgere le esercitazioni sperimentali di Elettronica e come stendere le relative relazioni per il modulo Elettronica Applicata e

Dettagli

Il campo di cattura deve coprire le possibili frequenze di portante, quindi da 50 a 55 MHz.

Il campo di cattura deve coprire le possibili frequenze di portante, quindi da 50 a 55 MHz. Prova scritta del 10/07/01 ver A tempo: 2 ore Esercizio 1) Un segnale modulato in ampiezza è formato da una portante con frequenza compresa tra 50 e 55 MHz, con segnale modulante che occupa la banda tra

Dettagli

Capitolo 8 Misura di Potenza in Trifase

Capitolo 8 Misura di Potenza in Trifase Capitolo 8 di in Trifase Si vuole effettuare una misura di potenza utilizzando un metodo di carico trifase fittizio. Vengono impiegati in un primo momento tre wattmetri numerici sulle tre fasi ed in seguito

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2016/2017

ISTITUTO ISTRUZIONE SUPERIORE L. EINAUDI ALBA ANNO SCOLASTICO 2016/2017 ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2016/2017 CLASSE 4 I Disciplina: Elettrotecnica ed Elettronica PROGETTAZIONE DIDATTICA ANNUALE Elaborata dai docenti: Linguanti Vincenzo,

Dettagli

Amplificatore differenziale con stadio di uscita emitter follower a simmetria complementare

Amplificatore differenziale con stadio di uscita emitter follower a simmetria complementare Amplificatore differenziale con stadio di uscita emitter follower a simmetria complementare 15 V R3 22 k 2 in+ R2 10 k R1 10 k tp1 tp2 1 5 T1 T2 R5 56 IM 1.33 ma 11 T4 10 R4 4.7 k 9 12 3 VC2 8.0 V 4 R6

Dettagli

Moduli logici. Interfacciamento di dispositivi logici. Parametri statici e dinamici. Circuiti logici combinatori Circuiti logici sequenziali

Moduli logici. Interfacciamento di dispositivi logici. Parametri statici e dinamici. Circuiti logici combinatori Circuiti logici sequenziali Moduli logici Moduli logici Interfacciamento di dispositivi logici Parametri statici e dinamici Circuiti logici combinatori Circuiti logici sequenziali Registri, contatori e circuiti sequenziali Esempi

Dettagli

SisElnB1 12/4/2002. B - AMPLIFICATORI E DOPPI BIPOLI B.1 - Descrizione funzionale di amplificatori

SisElnB1 12/4/2002. B - AMPLIFICATORI E DOPPI BIPOLI B.1 - Descrizione funzionale di amplificatori Ingegneria dell Informazione SISTEMI ELETTRONICI B - AMPLIFICATORI E DOPPI BIPOLI B. - Descrizione funzionale di amplificatori» Parametri di un amplificatore» Modelli di amplificatore» Amplificatori come

Dettagli

4 - Visualizzazione di forme d onda in funzione del tempo

4 - Visualizzazione di forme d onda in funzione del tempo Esercitazione Oscilloscopio - 1 Esercitazione Oscilloscopio 1 - Oggetto Uso dell oscilloscopio. Rilievo della caratteristica tensione-corrente di un diodo. Misure di capacità mediante misure di sfasamento.

Dettagli

Elettronica Applicata a.a. 2015/2016 Esercitazione N 1 STRUMENTAZIONE

Elettronica Applicata a.a. 2015/2016 Esercitazione N 1 STRUMENTAZIONE Elettronica Applicata a.a. 2015/2016 Esercitazione N 1 STRUMENTAZIONE Prof. Ing. Elena Biagi Sig. Marco Calzolai Sig. Andrea Giombetti Piergentili Ing. Simona Granchi Ing. Enrico Vannacci www.uscndlab.dinfo.unifi.it

Dettagli

CMRR e tolleranza delle resistenze

CMRR e tolleranza delle resistenze CMRR e tolleranza delle resistenze Si consideri l amplificatore differenziale rappresentato in Fig.1. Si supponga che l operazionale abbia un comportamento ideale, e che le resistenze abbiano i seguenti

Dettagli

Amplificatore monotransistore

Amplificatore monotransistore Elettronica delle Telecomunicazioni Esercitazione 1 Amplificatore monotransistore Rev 1 980305 DDC Rev 3 000328 DDC Specifiche Progettare un amplificatore con un transistore secondo le seguenti specifiche:

Dettagli

ESERCITAZIONE DI ELETTRONICA I L Alimentatore Stabilizzato (Realizzazione Circuitale e Prova Sperimentale)

ESERCITAZIONE DI ELETTRONICA I L Alimentatore Stabilizzato (Realizzazione Circuitale e Prova Sperimentale) ESERCITAZIONE DI ELETTRONICA I L Alimentatore Stabilizzato (Realizzazione Circuitale e Prova Sperimentale) Obiettivo dell'esercitazione: realizzazione ed analisi di un circuito regolatore di tensione facente

Dettagli

Elettronica I - Laboratorio Didattico - BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA

Elettronica I - Laboratorio Didattico - BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA Elettronica I - Laboratorio Didattico - BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA Generatore di Funzioni Tektronix CFG280 Generatore di Funzioni Tektronix CFG280 Genera i segnali di tensione

Dettagli

Alimentatore Tektronix PS283. Silvia Roncelli Lab. Did. di Elettronica Circuitale 1

Alimentatore Tektronix PS283. Silvia Roncelli Lab. Did. di Elettronica Circuitale 1 Alimentatore Tektronix PS283 Silvia Roncelli Lab. Did. di Elettronica Circuitale 1 Generatore di Tensione Silvia Roncelli Lab. Did. di Elettronica Circuitale 2 Regolazione Tensione e Limite di Corrente

Dettagli

Politecnico di Torino - Facoltà di ingegnera dell Informazione Sistemi Elettronici Risoluzione prova scritta del 28/04/2012

Politecnico di Torino - Facoltà di ingegnera dell Informazione Sistemi Elettronici Risoluzione prova scritta del 28/04/2012 Esercizio 1 1 47 k 5 12 k 2 22 k 6 15 k 3 100 k 7 150 k 4 47 k 8 24 k 9 100 k C1 = 390 nf; C2 = 18 nf A1 e A2: Voff = 6mV, Ioff = 200 na V1 V2 2 1 C 2 C 1 A1 5 7 4 3 9 A2 6 VU 8 a) Calcolare Vu(V1,V2)

Dettagli

Amplificatore operazionale passabanda

Amplificatore operazionale passabanda CORSO DI LABORATORIO DI OTTICA ED ELETTRONICA Amplificatore operazionale passabanda Scopo dell esperienza è l analisi della risposta in frequenza di un filtro attivo passabanda realizzato con un amplificatore

Dettagli

Appendice A. A.1 Amplificatore con transistor bjt

Appendice A. A.1 Amplificatore con transistor bjt Appendice A A.1 Amplificatore con transistor bjt Il circuito in fig. A.1 è un esempio di amplificatore a più stadi. Si utilizza una coppia differenziale di ingresso (T 1, T 2 ) con un circuito current

Dettagli

SISTEMI ELETTRONICI. Ingegneria dell Informazione. Modulo. Page 1. SisElnC4 12/12/2002

SISTEMI ELETTRONICI. Ingegneria dell Informazione. Modulo. Page 1. SisElnC4 12/12/2002 Ingegneria dell Informazione Modulo SISTEMI ELETTRONICI C - AMPLIFICATORI OPERAZIONALI C.4 - Progetto di moduli con A. O.» Comportamento dinamico A.O.» Progetto di amplificatori» Come limitare gli errori»

Dettagli

Laboratorio di Telecomunicazioni

Laboratorio di Telecomunicazioni I.I.S. Perlasca sez. ITIS Vobarno (BS) Data 02 /10/15 Laboratorio di Telecomunicazioni Castellini Fabio Cognome e Nome Relazione n 1 Classe Gruppo 4 Obiettivo L esperienza, suddivisa in 2 parti distinte,

Dettagli

CIRCUITI 2. determinazione della risposta in frequenza del multimetro misura di impedenze

CIRCUITI 2. determinazione della risposta in frequenza del multimetro misura di impedenze CIRCUITI 2 determinazione della risposta in frequenza del multimetro misura di impedenze Laboratorio di Fisica Dipartimento di Fisica G.Occhialini Università di Milano Bicocca PARTE PRIMA: Determinazione

Dettagli

ELETTRONICA I - Ingegneria MEDICA. Caratteristiche e criteri di Sintesi (progetto) di FILTRI analogici attivi e passivi

ELETTRONICA I - Ingegneria MEDICA. Caratteristiche e criteri di Sintesi (progetto) di FILTRI analogici attivi e passivi ELETTRONICA I - Ingegneria MEDICA Caratteristiche e criteri di Sintesi (progetto) di FILTRI analogici attivi e passivi FILTRI Caratterizzazione Caratterizzazione nel dominio del tempo e della frequenza

Dettagli

Esercitazione Oscilloscopio

Esercitazione Oscilloscopio Esercitazione Oscilloscopio - 1 Esercitazione Oscilloscopio 1 - Oggetto Uso dell oscilloscopio. Rilievo della caratteristica tensione-corrente di un diodo. Misure di capacità mediante misure di sfasamento.

Dettagli

Laboratorio di Elettronica II. Esperienza 1. Misura delle NON idealità dell Op-Amp UA741

Laboratorio di Elettronica II. Esperienza 1. Misura delle NON idealità dell Op-Amp UA741 Laboratorio di Elettronica II Esperienza 1 Misura delle NON idealità dell Op-Amp UA741 Attività Misura delle principali non idealità di un Op-Amp commerciale Parte I: non-idealità statiche: - tensione

Dettagli

Campi Elettromagnetici e Circuiti I Risposta in frequenza

Campi Elettromagnetici e Circuiti I Risposta in frequenza Facoltà di Ingegneria Università degli studi di Pavia Corso di aurea Triennale in Ingegneria Elettronica e Informatica Campi Elettromagnetici e Circuiti I isposta in frequenza Campi Elettromagnetici e

Dettagli

RELAZIONE DI LABORATORIO

RELAZIONE DI LABORATORIO RELAZIONE DI LABORATORIO Esercitazione di laboratorio di Elettrotecnica N 3 Svolta in data 30/11/2010 Corso di laurea in Ingegneria Aerospaziale Docente del corso ZICH RICCARDO Squadra (A,B,C) B Tavolo

Dettagli