1. i dati sono usati direttamente nella simulazione ( trace driver simulation ).

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "1. i dati sono usati direttamente nella simulazione ( trace driver simulation )."

Transcript

1 144 SIMULAZIONE 3.3 SCELTA DELLE DISTRIBUZIONI DI INPUT Per condurre una simulazione di un sistema che presenta elementi stocastici è necessario specificare le distribuzioni di probabilità che regolano i processi che caratterizzano il sistema. Ad esempio nei sistemi di code devono essere note le distribuzioni di probabilità degi tempi di interarrivo e dei tempi di servizio. Una volta stabilite tali distribuzioni la simulazione procede generando valori casuali da queste distribuzioni. Se è possibile raccogliere dati reali sulle variabili aleatorie di interesse, essi possono essere utilizzati per determinare una distribuzione secondo tre metodi: 1. i dati sono usati direttamente nella simulazione ( trace driver simulation ). 2. i dati sono raccolti per generare una distribuzione empirica, ovvero per definire una funzione di distribuzione empirica che verrà usata per produrre l input della simulazione; 3. i dati raccolti sono utilizzati per definire una distribuzione teorica. Vengono utilizzate tecniche statistiche per analizzare se una distribuzione teorica tra quelle note sia adatta a rappresentare i dati, effettuando i test di ipotesi per verificare la rappresentatività della distribuzione ipotizzata (problema del fitting ). Il primo approccio ha senso solamente quando si possono raccogliere grandi quantità di dati rappresentativi del funzionamento del sistema; ha l ovvio difetto di rappresentare il passato ed è usato raramente; può essere utile per effettuare una validazione del modello, ovvero per confrontare il modello con il sistema reale, ma non permette un analisi previsionale. Il secondo approccio elimina questo inconveniente poiché, almeno per distribuzioni continue, può essere ottenuto ogni valore compreso tra il minimo e il massimo osservati. Se si può determinare una distribuzione teorica che si adatta bene ai dati, il terzo approccio è quello preferibile. I motivi per cui una distribuzione teorica in genere è preferibile a una empirica sono i seguenti: le distribuzioni empiriche possono avere irregolarità (specialmente se i dati sono scarsi) mentre le distribuzioni teoriche sono più smooth, nel senso che tendono a regolarizzare i dati e rappresentano un comportamento generale; le distribuzioni empiriche non permettono di generare valori al di fuori del range di valori osservati, mentre le misure di prestazione possono, a volte, dipendere anche da eventi eccezionali che corrispondono a valori fuori da tale range;

2 SCELTA DELLE DISTRIBUZIONI DI INPUT 145 le distribuzioni teoriche sono un modo compatto di rappresentare un insieme di valori, mentre in una distribuzione empirica, se ci sono n dati disponibili, si ha bisogno di 2n valori per rappresentarla: il dato e le corrispondenti probabilità cumulative (si hanno quindi grandi quantità di dati da memorizzare); le distribuzioni teoriche si possono variare più facilmente. Ad esempio se la distribuzione esponenziale degli arrivi di un sistema di code ha media pari a 1/λ = 5, per effettuare una diminuzione del 20% sarà sufficiente considerare 1/λ = 4.9. Tuttavia esistono situazioni in cui nessuna distribuzione teorica si adatta ai dati osservati e allora in questo caso si deve usare una distribuzione empirica. Un difetto dell uso di distribuzioni teoriche sta nel fatto che esse possono generare anche valori molto grandi (anche se con probabilità molto piccole), quando nella pratica questi non vengono mai assunti realmente Distribuzioni empiriche Supponiamo di disporre di n osservazioni X 1,...,X n di una variabile aleatoria e di voler costruire, a partire da esse, una distribuzione continua. Supponiamo di aver ordinato le X i per valori crescenti e sia X (i) l i-esima osservazione in ordine crescente, ovvero risulti X (1) X (2)... X (n). Si può costruire la distribuzione empirica come una distribuzione continua lineare a tratti, così definita: 0 se x < X (1) F(x) = i 1 n 1 + x X (i) (n 1)(X (i+1) X (i) ) se X (i) x < X (i+1), i = 1,...,n 1 1 se X (n) x Si osservi che per ogni i vale F(X (i) ) = i 1 che è approssimativamente (per n n 1 grande) la proporzione delle X i che sono minori di X (i). Esempio Disponendo dei seguenti valori osservati: 1, 0.4, 4, 2, 2.5, 3.6, 3 costruire il grafico della distribuzione empirica. Dopo aver ordinato le osservazioni si ottiene il grafico della F(x) riportato nella Figura Come abbiamo già osservato, uno svantaggio nell utilizzare una distribuzione empirica è che le variabili aleatorie generate da essa durante un esecuzione di una simulazione non possono essere mai più piccole di X (1) o più grandi di X (n).

3 146 SIMULAZIONE Fig Grafico della distribuzione empirica dell Esempio Analogamente si possono costruire distribuzioni empiriche per distribuzioni discrete; infatti, è sufficiente per ogni x definire p(x) come proporzione delle X i che sono uguali ad x Distribuzioni teoriche Distribuzioni Continue Le distribuzioni teoriche continue alle quali si può fare riferimento nella costruzione di un modello di simulazione sono molte. Quelle più comunemente utilizzate sono la distribuzione uniforme, la distribuzione esponenziale, la distribuzione gamma, la distribuzione normale, la distribuzione lognormale, la distribuzione di Weibull, la distribuzione beta, la distribuzione triangolare. In realtà spesso si tratta di famiglie di distribuzioni in quanto sono presenti uno o più parametri che possono essere classificati in: parametro di posizione: specifica un punto del range della distribuzione e una sua variazione provoca solamente una traslazione; parametro di scala: specifica l unità di misura dei valori,

4 SCELTA DELLE DISTRIBUZIONI DI INPUT 147 parametro di forma: specifica l andamento della distribuzione. Distribuzioni Discrete Le distribuzioni teoriche discrete che vengono di solito utilizzate come input di una simulazione sono: la distribuzione uniforme, la distribuzione di Bernoulli, la distribuzione binomiale, la distribuzione geometrica, la distribuzione di Poisson, la distribuzione binomiale negativa. Per una descrizione dettagliata di ogni singola distribuzione di probabilità e delle caratteristiche specifiche, si rimanda ad un qualsiasi testo di Calcolo delle Probabilità Scelta di una distribuzione teorica Determinare quale distribuzione teorica è adatta a rappresentare dei dati è un problema complesso. Un modo efficiente per effettuare questa scelta può essere così schematizzato: Dopo una preliminare verifica dell indipendenza delle osservazioni, si cerca di individuare una o più famiglie di distribuzioni candidate, stimando poi nella fase successiva i parametri di queste distribuzioni. A questo punto è necessario effettuare una verifica della rappresentatività dei dati reali da parte della distribuzioni

5 148 SIMULAZIONE scelta. Se tale verifica non ha successo, è necessario individuare una differente famiglia di distribuzioni ed eventualmente iterare il processo fino a che la verifica è soddisfatta. Indipendenza delle osservazioni Preliminarmente è necessario verificare l indipendenza delle osservazioni in quanto questa è un assunzione essenziale per l utilizzo di tecniche statistiche quali la stima della massima verosimiglianza o il test chi quadro. Un primo strumento di analisi è basato su una tecnica grafica. Siano X 1,...,X n le osservazioni elencate così come sono state osservate nel tempo; un modo possibile per avere un idea informale sull indipendenza consiste nel valutare la correlazione fra diverse osservazioni. Sia n j i=1 (X i X n )(X i+j X n ) ρ j = (n j)s 2 n la stima del coefficiente di correlazione ρ j di X i e X i+j, ovvero di due osservazioni distanti j. Se le osservazioni sono indipendenti allora il coefficiente di correlazione è nullo, cioè ρ j = 0 per ogni j = 1,...,n 1. Tuttavia poiché ρ j è una stima di ρ j, anche nel caso di osservazioni indipendenti ρ j potrebbe essere non nullo. Ci si aspetta, comunque che esso sia prossimo a zero, e quindi possiamo dire che se ρ j è diverso da zero in maniera significativa, allora le X i non sono indipendenti. Ci sono due modi grafici per verificare informalmente se le X i sono indipendenti: il grafico di ρ j al variare di j e il diagramma di dispersione delle osservazioni X 1,...,X n, ovvero le coppie (X i, X i+1 ) con i = 1, 2,...,n 1. In caso di osservazioni indipendenti i punti dovrebbero risultare distribuiti casualmente sul piano, altrimenti, in presenza di correlazioni, essi saranno concentrati intorno a rette. Individuazione di una famiglia di distribuzioni Una volta verificata l indipendenza delle osservazioni, il passo successivo è quello di individuare una distribuzione da scegliere come input della simulazione che sia rappresentativa della variabile aleatoria in ingresso alla simulazione. In una prima fase vorremmo individuare una famiglia generale senza occuparci, per ora, dei suoi parametri. In alcuni casi, quando esiste una conoscenza a priori del fenomeno che la variabile aleatoria rappresenta, essa può essere utilizzata per ottenere la distribuzione. Ciò è fatto su base teorica e non richiede osservazioni. Ad esempio, se supponiamo che dei clienti arrivano ad un sistema di servizio uno alla volta e che il numero dei clienti che arrivano in intervalli disgiunti è indipendente, allora ci sono motivi teorici per assumere che i tempi di interarrivo siano variabili aleatorie indipendenti identicamente distribuite secondo la distribuzione

6 SCELTA DELLE DISTRIBUZIONI DI INPUT 149 esponenziale. Oppure, può anche accadere che la conoscenza a priori permetta solo di escludere alcune distribuzioni. Tuttavia, nella pratica spesso queste informazioni a priori non sono disponibili, o comunque non sufficienti. Quello che si fa più frequentemente è ricorrere a due strumenti di analisi statistica: le statistiche riassuntive delle osservazioni e i grafici dell andamento delle osservazioni. Statistiche riassuntive Dalle osservazioni è possibile ricavare stime di parametri dalle quali cercare di individuare una famiglia di distribuzioni che meglio realizza il fitting dei dati. I parametri che di solito vengono presi in considerazione sono i seguenti: l intervallo [X (1), X (n) ] che ha per estremi il più piccolo e il più grande valore osservati e che approssima il range della distribuzione; la stima della media µ data X n = 1 n X i ; n la stima della mediana data da { X(n+1)/2 se n è dispari [X (n/2) + X ((n/2)+1) ]/2 se n è pari; la stima della varianza σ 2 data da i=1 s 2 n = n (X i X n ) 2 i=1 ; n 1 stime di misure di variabilità: nel caso continuo, la stima del rapporto cv = σ 2 /µ (coefficiente di variazione) data da ĉv = s 2 n/ X n nel caso discreto, la stima del rapporto τ = σ 2 /µ data da τ = s 2 n/ X n la stima del grado di asimmetria ν = E[(X µ)3 ] (σ 2 ) 3/2 n [(X i X n ) 3 ]/n data da ν = i=1 (s 2 n) 3/2. Un confronto tra media e mediana può farci capire se considerare la distribuzione simmetrica o no; questo perché nel caso di distribuzioni continue simmetriche, media e mediana coincidono, come ad esempio nel caso della distribuzione normale (nel caso di distribuzioni discrete questo è vero solo se il numero dei valori distinti che possono essere assunti è pari, altrimenti

7 150 SIMULAZIONE sono solo approssimativamente uguali). È importante tener presente che si hanno solo le stime dei parametri, pertanto anche nel caso di distribuzioni continue simmetriche, stima di media e mediana possono non essere esattamente uguali. Per quanto riguarda la misura di variabilità data nel caso continuo dal rapporto cv, si ha che cv = 1 per la distribuzione esponenziale indipendentemente dal parametro; nel caso discreto si considera invece il rapporto τ e si ha che τ = 1 per la distribuzione di Poisson e τ < 1 per la distribuzione binomiale. Il grado di asimmetria ν vale zero per distribuzioni simmetriche mentre se ν > 0 la distribuzione ha asimmetria verso destra (ν = 2 per la distribuzione esponenziale); se ν < 0 la distribuzione ha asimmetria verso sinistra. Uso di grafici (tecnica dell istogramma) Per distribuzioni continue è molto utile costruire un istogramma di valori assunti dalla variabile aleatoria sulla base delle osservazioni che si hanno a disposizione. Un istogramma può essere considerato una stima grafica del grafico della densità di probabilità corrispondente alla distribuzione dei dati X 1,...,X n. Le funzioni densità di probabilità tipiche hanno forme che in molti casi sono ben riconoscibili e quindi un istogramma può fornire utili indicazioni. Ricordiamo che per costruire un istogramma si suddivide l intervallo formato dal minimo e dal massimo dei valori assunti dai dati, in k intervalli disgiunti adiacenti [b 0, b 1 ), [b 1, b 2 ),...,[b k 1, b k ) di uguale ampiezza b = b i b i 1. Per j = 1, 2,...,k si definisce h j il numero delle osservazioni che cadono nel j-esimo intervallo diviso il numero totale delle osservazioni, ovvero la proporzione delle X i contenute nel j- esimo intervallo [b j 1, b j ). Si definisce la funzione 0 se x < b 0 h(x) = h j se b j 1 x < b j, j = 1, 2,...,k 0 se x b k. Il grafico di h(x) è costante a tratti e può fornire una buona indicazione sul tipo di distribuzione che ha la variabile aleatoria in questione, confrontandolo con i grafici delle densità di probabilità ignorando, per il momento, posizione e scala, ma considerando solo la forma. Mostriamo ora le motivazioni che sono alla base del fatto che la forma di h(x) dovrebbe somigliare alla densità di probabilità f dei dati. A questo

8 SCELTA DELLE DISTRIBUZIONI DI INPUT 151 scopo, sia X una variabile aleatoria con densità di probabilità data da f. Allora per ogni j fissato (j = 1, 2,...,k), applicando il teorema della media si ha P(b j 1 X b j ) = bj b j 1 f(x)dx = b f(y) per qualche y (b j 1, b j ). D altra parte h j approssima P(b j 1 X b j ) che è il valore di h(y) perché h(x) = h j per ogni x [b j i, b j ); si ha dunque: h(y) = h j bf(y). Quindi, h(y) è approssimativamente proporzionale a f(y), ovvero h e f hanno approssimativamente forma simile. Una difficoltà è data dall assenza di criteri generali per scegliere k. C è una regola detta regola di Sturges che suggerisce di scegliere k = 1 + log 2 n. Regola di Tale regola non è però utile in generale e si raccomanda piuttosto di provare Sturges differenti valori di b e scegliere il più piccolo che fornisce un istogramma smooth. La scelta di b è problematica in genere; infatti se si sceglie troppo piccolo, l istogramma sarà molto poco uniforme (frastagliato); se si sceglie troppo grande l istogramma può avere una forma a blocchi e il vero andamento della densità che stiamo cercando sarà mascherata in quanto i dati sono sovraggregati. Nel caso di variabili discrete si può ugualmente rappresentare la distribuzione di probabilità usando un istogramma; per ogni valore x j che può essere assunto dai dati, sia h j = n j /n dove n j è il numero delle occorrenze di tali valori, ovvero h j è la proporzione delle X i che sono uguali a x j. Si tracciano poi le barre verticali di altezza h j in corrispondenza di x j. Stima dei parametri Dopo aver individuato una o più famiglie di distribuzioni candidate a rappresentare i dati osservati, è necessario determinare i parametri di queste distribuzioni in modo che siano completamente definite e utilizzabili in ingresso ad una simulazione. Gli stessi dati utilizzati per individuare le famiglie di distribuzioni sono utilizzati per stimare i loro parametri. La stima dei parametri è stata trattata nel paragrafo dove, tra tutti i possibili metodi per la stima, è stato considerato lo stimatore di massima verosimiglianza (Maximum Likelihood Estimator) che è molto utilizzato in pratica.

9 152 SIMULAZIONE Verifica della rappresentatività della distribuzione di probabilità Dopo aver individuato una o più distribuzioni di probabilità candidate e i relativi parametri, si devono esaminare queste distribuzioni di probabilità per verificare se esse rappresentano bene i dati osservati. A tale scopo, si utilizzano di solito procedure euristiche basate su confronti grafici e test statistici. Procedure grafiche Per distribuzioni continue, si confronta l istogramma dei dati con il grafico della densità di probabilità della distribuzione di probabilità ipotizzata, oppure, per distribuzioni discrete, si confronta l istogramma con la funzione p(x) della distribuzione ipotizzata. Un altro possibile confronto è tra il grafico della distribuzione empirica e il grafico della funzione di distribuzione della distribuzione ipotizzata. Test statistici Come ampiamente discusso nel paragrafo 3.2.3, possono essere utilizzati i test delle ipotesi per verificare se le osservazioni X 1,...,X n sono un campione indipendente di una particolare distribuzione di probabilità con funzione di distribuzione F. I due test trattati (Chi quadro e Kolmogorov Smirnov) sono adatti al caso che stiamo esaminando anche se, come già visto, essi presentano le loro limitazioni intrinseche Scelta delle distribuzioni di input in assenza di dati In alcuni casi, nella pratica, può accadere che non sia possibile raccogliere dati sul funzionamente del sistema che si vuole studiare perchè esso è ancora in fase di progettazione e quindi non ancora esistente. In questi casi non sono quindi disponibili dati da utilizzare per selezionare una distribuzione di input ad una simulazione e quindi non sono applicabili le tecniche viste fino ad ora. Senza entra nei dettagli, osserviamo solamente che sarà necessario far ricorso a procedure euristiche che si basano sulla natura del sistema, sul ricorso a persone esperte di sistemi della tipologia di interesse, sulle limitazioni fisiche o convenzionali del processo in esame.

10 GENERAZIONE DI OSSERVAZIONI CASUALI GENERAZIONE DI OSSERVAZIONI CASUALI Una volta determinate le distribuzioni di input, la simulazione dovrà generare durante ogni esecuzione osservazioni casuali di variabili aleatorie distribuite secondo particolari distribuzioni di probabilità. Ad esempio, nel simulare un sistema di code M/M/1 si avrà bisogno di generare i tempi di interarrivo in accordo alla distribuzione esponenziale e così anche per i tempi di servizio. Un esempio banale di ciò è stato mostrato alla pagina 119, dove nell effettuare una semplice esemplificazione di una simulazione abbiamo avuto bisogno delle due liste di valori generati casualmente dalle distribuzioni corrispondenti. Ogni metodo per generare osservazioni casuali da distribuzioni fissate utilizza variabili indipendenti identicamente distribuite secondo la distribuzione uniforme in [0, 1) (che indichiamo con U(0, 1)), nel senso che costruisce le osservazioni casuali desiderate a partire da numeri casuali generati uniformemente in [0, 1) attraverso opportune trasformazioni. Quindi preliminarmente analizziamo brevemente nel prossimo paragrafo la generazione di numeri casuali con distribuzione uniforme e nel paragrafo successivo studieremo come generare osservazioni casuali secondo distribuzioni fissate a partire dalla distribuzione U(0, 1) Generazione di numeri pseudocasuali con distribuzione uniforme In generale, per generare successioni di numeri casuali si potrebbero utilizzare metodi quali il lancio dei dadi, l estrazione da urne, ma ovviamente questi metodi non sono utilizzabili nella simulazione dove è necessario generare lunghe successioni di numeri casuali in tempi molto brevi. Attualmente per generare successioni di numeri casuali si ricorre all uso del calcolatore e in realtà quello che si fa è la generazione deterministica di successioni di numeri aventi proprietà statistiche che approssimano molto bene quelle di successioni veramente casuali e che ad un analisi statistica risultano indistinguibili da successioni di numeri casuali. I Numeri numeri determinati con questa procedura si chiamano numeri pseudocasuali. pseudocasuali Per generare numeri pseudocasuali con distribuzione uniforme esistono diversi metodi; i più utilizzati sono i generatori congruenziali lineari. In questi metodi Generatori una successione di numeri interi Z i viene definita dalla seguente formula ricorsiva congruenziali lineari Z i+1 = az i + c ( mod m ) dove a si chiama moltiplicatore e c viene detto incremento 4. Il termine Z 0 si chiama seme. Il generatore si dice moltiplicativo se c = 0. Quindi vengono generati al più m numeri interi Z i distinti con 0 Z i m 1. Per ottenere numeri casuali U i in [0, 1) è sufficiente definire U i = Z i /m. 4 La notazione mod m indica la congruenza modulo m, ovvero il resto della divisione per m

11 154 SIMULAZIONE Esempio Vediamo un esempio di generatore moltiplicativo (c = 0). Prendiamo a = 3, Z 0 = 3 e m = 7. Si ottiene Z 1 = 9 ( mod 7 ) = 2 Z 2 = 6 ( mod 7 ) = 6 Z 3 = 18 ( mod 7 ) = 4 Z 4 = 12 ( mod 7 ) = 5 Z 5 = 15 ( mod 7 ) = 1 Z 6 = 3 ( mod 7 ) = 3 Z 7 = 9 ( mod 7 ) = 2 Periodo pieno Naturalmente la successione è periodica di periodo al più pari ad m. Se un generatore ha periodo pari ad m, ovvero il periodo massimo, si dice che il generatore ha periodo pieno e, in questo caso, ogni scelta del seme Z 0 porterà alla generazione dell intero ciclo di valori da 0 a m 1. Se invece un generatore non ha periodo pieno allora la lunghezza del ciclo può dipendere dal particolare valore del seme Z 0. È importante avere periodo lungo o, ancora meglio, periodo pieno in modo che vengono generati tutti gli interi tra 0 e m 1 ed inoltre essi appariranno esattamente una volta ogni ciclo e questo contribuisce all uniformità delle U i. Il teorema che segue riporta le condizioni che devono essere soddisfatte dai parametri m, a e c affinché il generatore abbia periodo pieno. Teorema Un generatore congruenziale lineare ha periodo pieno se e solo se sono soddisfatte le seguenti condizioni: i) m e c sono primi tra loro; ii) se q è un numero primo che divide m, allora q divide a 1; iii) se 4 divide m, allora 4 divide a 1. È obiezione comune a tutti i generatori pseudo random il fatto che le Z i non sono realmente casuali, ma ogni Z i è completamente determinata dai quattro parametri m, a, c e Z 0. Tuttavia, un attenta scelta di questi parametri induce le Z i ad assumere valori tali che le U i corrispondenti siano indipendenti identicamente distribuite secondo la distribuzione uniforme in [0, 1). Un altra obiezione riguarda il fatto che, ovviamente ogni numero reale nell intervallo [0, 1) dovrà avere la stessa probabilità di essere generato, mentre le U i assumono solamente valori razionali. A questo inconveniente si può ovviare scegliendo m molto grande (m 10 9 ) in modo che i numeri generati U i costituiscono un sottoinsieme denso dell intervallo [0, 1). Nei linguaggi di programmazione sono di solito disponibili generatori di numeri pseudocasuali ed esistono metodi statistici per valutarne la qualità.

12 GENERAZIONE DI OSSERVAZIONI CASUALI 155 Tra tutti i generatori di numeri pseudocasuali basati su metodi congruenziali moltiplicativi, nel caso di computer a 32 bit, il più utilizzato è il generatore di Learmouth Lewis dato da c = 0, a = 7 5 e m = Generazione di osservazioni casuali da una distribuzione di probabilità Esaminiamo ora come, a partire da numeri casuali uniformemente distribuiti in [0, 1) sia possibile generare osservazioni da una fissata distribuzione di probabilità. Per questo scopo sono state introdotte molte tecniche. Ci limitiamo nel seguito a considerarne due tra le più utilizzate: il metodo della trasformazione inversa e il metodo dell accettazione reiezione. Metodo della trasformazione inversa È un metodo per generare osservazioni da una distribuzione di probabilità. Il metodo si basa sul seguente risultato teorico [Ross, 2003a] valido nel caso di distribuzioni continue: Proposizione Sia U una variabile aleatoria uniforme in [0, 1). Allora per ogni funzione di distribuzione continua F, la variabile aleatoria ha funzione di distribuzione F. X = F 1 (U) Dimostrazione: Sia F X la funzione di distribuzione della variabile aleatoria X. Quindi, per ogni y risulta ( ) F X (y) = P (X y) = P F 1 (U) y. Poiché F(x) è una funzione di distribuzione, essa è monotona crescente e quindi si ha che F 1 (U) y se e solo se U F(y). Quindi, poichè U ha distribuzione uniforme, si ha F X (y) = P (U F(y)) = F(y), ovvero F è la funzione di distribuzione della X. Quindi, sulla base di questo risultato, data una distribuzione di probabilità con funzione di distribuzione F, a partire dalla distribuzione uniforme in [0, 1) possiamo costruire una variabile aleatoria la cui funzione di distribuzione è F. Osservazione Nel caso in cui la funzione F non è strettamente monotona, non è possibile definire la sua invera; in questi casi, si può utilizzare la funzione

13 156 SIMULAZIONE pseudoinversa data da F 1 (x) = inf {y IR x F(y)}. Esempio Supponiamo di voler costruire una successione di numeri pseudocasuali come osservazioni dalla distribuzione esponenziale, ovvero con funzione di distribuzione F(x) = 1 e λx. Innanzitutto determiniamo F 1 : da u = F(x) = 1 e λx si ricava x = 1/λln(1 u), ovvero F 1 (u) = 1 ln(1 u). λ Quindi se U è una variabile aleatoria uniformemente distribuita in [0, 1), X = F 1 (U) = 1 ln(1 U) (3.4.1) λ è una variabile aleatoria con distribuzione esponenziale con media 1/λ. Quindi, data una successione di numeri pseudocasuali con distribuzione uniforme in [0, 1), dalla (3.4.1) possiamo ottenere una successione di numeri pseudocasuali con distribuzione esponenziale. Osservazione È importante osservare che se una variabile aleatoria U ha distribuzione uniforme in [0, 1), anche 1 U ha distribuzione uniforme in [0, 1) e quindi nella (3.4.1) si può sostituire nell argomento del logaritmo (1 U) con U. Tuttavia, come vedremo nel seguito nel paragrafo sulle tecniche per la riduzione della varianza, questo cambiamento potrebbe indurre un cambiamento nella correlazione delle variabili X generate. Esempio Utilizzando quanto ricavato nel precedente Esempio si può ottenere la generazione di osservazioni casuali dalla distribuzione di Erlang. Infatti sappiamo che la somma di k variabili aleatorie indipendenti identicamente distribuite secondo la distribuzione esponenziale, ciascuna con media 1/(kµ) ha distribuzione di Erlang di parametro k e media 1/µ. Quindi avendo una successione di numeri uniformemente distribuiti in [0, 1), u 1,..., u k, le osservazioni dalla distribuzione di Erlang possono essere ottenute da x = k i=1 ln(1 u i) kµ che è equivalente a [ k ] x = 1 kµ ln (1 u i). i=1 Il metodo della trasformazione inversa può essere esteso ed utilizzato anche nel caso di distribuzioni discrete, ovvero quando si assume che la variabile X sia una variabile aleatoria discreta. In questo caso, naturalmente si ha F(x) = P (X x) = p(x i ), x i x

14 GENERAZIONE DI OSSERVAZIONI CASUALI 157 dove p(x i ) = P (X = x i ). Supponiamo quindi che X assuma i valori x 1, x 2,... e supponiamo che essi siano ordinati, ovvero x 1 < x 2 <. Data una variabile U uniformemente distribuita in [0, 1) si definisce la variabile X nel seguente modo: si determina il più piccolo intero positivo k tale che U F(x k) e si pone X = x k. Dobbiamo ora dimostrare che effettivamente la X così generata è quella desiderata, ovvero che risulta P (X = x i ) = p(x i ) per ogni i. Infatti si ha: per i = 1 risulta X = x 1 se e solo se U F(x 1 ), ma F(x 1 ) = p(x 1 ) perché le x i sono ordinate. Ora, poiché la U è uniformemente distribuita in [0, 1), si ha P (X = x 1 ) = P (U F(x 1 )) = F(x 1 ) = p(x 1 ) per i 2 risulta X = x i se e solo se F(x i 1 ) < U F(x i ) per come è scelto i. Inoltre, poché la U è uniformemente distribuita in [0, 1) si ha P (X = x i ) = P (F(x i 1 ) < U F(x i )) = F(x i ) F(x i 1 ) = p(x i ) Il metodo della trasformazione inversa nel caso discreto ha una giustificazione molto intuitiva: si divide l intervallo [0, 1) in sottointervalli contigui di ampiezza p(x 1 ), p(x 2 ),... e si assegna X a seconda del fatto che questi intervalli contengano la U che è stata generata. Metodo dell accettazione reiezione Il metodo della trasformazione inversa è basato sul cacolo della trasformazione inversa F 1 che non sempre può essere calcolata o comunque non in maniera efficiente. Per questa ragione sono stati sviluppati altri metodi fra i quali il metodo che esaminiamo in questo paragrafo detto acceptance rejection o anche metodo del rigetto. Consideriamo il caso continuo e supponiamo di voler generare osservazioni casuali da una distribuzione di probabilità avente funzione di distribuzione F e densità di probabilità f (il caso discreto si tratta in maniera del tutto analoga). Supponiamo di disporre di un metodo per generare osservazioni casuali da una variabile aleatoria Y avente per densità di probabilità una funzione g(x). Il metodo accettazione reiezione utilizza queste osservazioni per generare osservazioni casuali dalla distribuzione di probabilità avente per densità di probabilità la funzione f(x). In particolare, si generano osservazioni casuali della variabile aleatoria Y e poi si accettano o si rifiutano queste osservazioni come osservazioni casuali delle distribuzione con densità data dalla f con una probabilità proporzionale al rapporto f(y )/g(y ). Più in dettaglio, sia c una costante tale che f(y) g(y) c, per ogni y. Il metodo si può schematizzare nel seguente modo:

15 158 SIMULAZIONE Passo 1: si genera un osservazione casuale della variabile aleatoria Y e si genera un numero casuale U dalla distribuzione uniforme in [0, 1); Passo 2: se U f(y ) allora si pone X = Y e STOP cg(y ) altrimenti si torna al Passo 1. Le generazione viene quindi effettuata mediante un algoritmo iterativo che ad ogni passo genera un coppia di osservazioni casuali (Y, U) e si arresta quando è soddisfatta la diseguaglianza U f(y ), accettando il valore di Y come osservazione casuale della cg(y ) X. Si può dimostrare [Ross, 2003a] che la variabile aleatoria X le cui osservazioni casuali sono generate con il metodo accettazione reiezione ha la densità di probabilità voluta, ovvero vale la seguente proposizione. Proposizione La variabile aleatoria X generata con il metodo accettazione reiezione ha densità di probabilità f. Esempio Applichiamo il metodo dell accettazione reiezione per generare osservazioni casuali da una variabile aleatoria avente densità di probabilità f(x) = 20x(1 x) 3, 0 < x < 1 (si tratta della distribuzione beta con parametri 2 e 4). Innanzitutto dobbiamo scegliere la funzione g(x): in questo una scelta di una funzione molto semplice è g(x) = 1, 0 < x < 1, ovvero si sceglie la distribuzione uniforme. Ora si deve determinare una costante c tale che risultif(x)/g(x) c per ogni x. Naturalmente, in questo caso si può determinare facilmente c massimizzando la funzione f(x)/g(x); poiché la derivata prima di f(x)/g(x) si annulla in x = 1/4 e la derivata seconda in questo punto è negativa, il punto x è un punto di massimo per la funzione f(x)/g(x) e risulta f(x) g(x) = c, e quindi il test diventa U 256/27x(1 x) 3. Quindi il metodo in questo caso può essere così realizzato: Passo 1: si generano osservazioni casuali U 1 e U 2 dalla distribuzione uniforme in [0, 1); Passo 2: se U U1(1 U1)3 allora si pone X = U 1 e STOP, altrimenti si torna al Passo 1.

2.3.1 Generazione di numeri pseudocasuali con distribuzione uniforme

2.3.1 Generazione di numeri pseudocasuali con distribuzione uniforme GENERAZIONE DI OSSERVAZIONI CASUALI 145 2.3 GENERAZIONE DI OSSERVAZIONI CASUALI Una volta determinate le distribuzioni di input, la simulazione dovrà generare durante ogni esecuzione osservazioni casuali

Dettagli

5. Analisi dei dati di input

5. Analisi dei dati di input Anno accademico 2007/08 Analisi e scelta dei dati di input Per l esecuzione di una simulazione è necessario disporre di dati di input che siano una adeguata rappresentazione di ciò che accadrà in realtà

Dettagli

l ipotesi specificata è corretta e la differenza riscontrata è puramente casuale;

l ipotesi specificata è corretta e la differenza riscontrata è puramente casuale; ELEMENTI DI STATISTICA INFERENZIALE 145 2.2.3 Test delle ipotesi Nel cercare di costruire un legame tra dati osservati e ipotesi teoriche sulle caratteristiche dell intera popolazione si deve, in genere,

Dettagli

Generazione di numeri random. Distribuzioni uniformi

Generazione di numeri random. Distribuzioni uniformi Generazione di numeri random Distribuzioni uniformi I numeri random Per numero random (o numero casuale) si intende una variabile aleatoria distribuita in modo uniforme tra 0 e 1. Le proprietà statistiche

Dettagli

Analisi e scelta dei dati di input

Analisi e scelta dei dati di input Capitolo 4 Analisi e scelta dei dati di input 4.1 Introduzione Per l esecuzione di una simulazione è necessario disporre di dati di input che siano una adeguata rappresentazione di ciò che accadrà in realtà

Dettagli

Analisi e scelta dei dati di input

Analisi e scelta dei dati di input Capitolo 4 Analisi e scelta dei dati di input 4.1 Introduzione Per l esecuzione di una simulazione è necessario disporre di dati di input che siano una adeguata rappresentazione di ciò che accadrà in realtà

Dettagli

rappresentare sistemi reali anche complessi tenendo conto anche delle sorgenti di incertezza;

rappresentare sistemi reali anche complessi tenendo conto anche delle sorgenti di incertezza; 2 Simulazione Con il termine simulazione si intende la riproduzione del comportamento di un sistema. In generale, si parla di simulazione sia nel caso in cui viene utilizzato un modello concreto, sia nel

Dettagli

Simulazione. rappresentare sistemi reali anche complessi tenendo conto anche delle sorgenti di incertezza;

Simulazione. rappresentare sistemi reali anche complessi tenendo conto anche delle sorgenti di incertezza; Simulazione Con il termine simulazione si intende la riproduzione del comportamento di un sistema. In generale, si parla di simulazione sia nel caso in cui viene utilizzato un modello concreto, sia nel

Dettagli

Analisi e scelta dei dati di input

Analisi e scelta dei dati di input Analisi e scelta dei dati di input Corso di Tecniche di Simulazione, a.a. 2005/2006 Francesca Mazzia Dipartimento di Matematica Università di Bari 24 Aprile 2006 Francesca Mazzia (Univ. Bari) Analisi e

Dettagli

rappresentare sistemi reali anche complessi tenendo conto anche delle sorgenti di incertezza;

rappresentare sistemi reali anche complessi tenendo conto anche delle sorgenti di incertezza; 2 Simulazione Con il termine simulazione si intende la riproduzione del comportamento di un sistema. In generale, si parla di simulazione sia nel caso in cui viene utilizzato un modello concreto, sia nel

Dettagli

rappresentare sistemi reali anche complessi tenendo conto anche delle sorgenti di incertezza;

rappresentare sistemi reali anche complessi tenendo conto anche delle sorgenti di incertezza; 2 Simulazione Con il termine simulazione si intende la riproduzione del comportamento di un sistema. In generale, si parla di simulazione sia nel caso in cui viene utilizzato un modello concreto, sia nel

Dettagli

TECNICHE DI SIMULAZIONE

TECNICHE DI SIMULAZIONE TECNICHE DI SIMULAZIONE Analisi e scelta dei dati di input Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Dati di input Per l esecuzione di una

Dettagli

rappresentare sistemi reali anche complessi tenendo conto anche delle sorgenti di incertezza;

rappresentare sistemi reali anche complessi tenendo conto anche delle sorgenti di incertezza; 2 Simulazione Con il termine simulazione si intende la riproduzione del comportamento di un sistema. In generale, si parla di simulazione sia nel caso in cui viene utilizzato un modello concreto, sia nel

Dettagli

GENERAZIONE DI NUMERI PSEUDOCASUALI

GENERAZIONE DI NUMERI PSEUDOCASUALI GENERAZIONE DI NUMERI PSEUDOCASUALI Corso di Tecniche di Simulazione, a.a. 2005/2006 Francesca Mazzia Dipartimento di Matematica Università di Bari 24 Aprile 2006 Francesca Mazzia (Univ. Bari) GENERAZIONE

Dettagli

PROBABILITÀ - SCHEDA N. 3 VARIABILI ALEATORIE CONTINUE E SIMULAZIONE

PROBABILITÀ - SCHEDA N. 3 VARIABILI ALEATORIE CONTINUE E SIMULAZIONE PROBABILITÀ - SCHEDA N. 3 VARIABILI ALEATORIE CONTINUE E SIMULAZIONE (da un idea di M. Impedovo Variabili aleatorie continue e simulazione Progetto Alice n. 15, ) 1. La simulazione Nelle schede precedenti

Dettagli

Capitolo 5 Variabili aleatorie discrete notevoli Insegnamento: Statistica Applicata Corso di Laurea in "Scienze e Tecnologie Alimentari"

Capitolo 5 Variabili aleatorie discrete notevoli Insegnamento: Statistica Applicata Corso di Laurea in Scienze e Tecnologie Alimentari Levine, Krehbiel, Berenson Statistica Capitolo 5 Variabili aleatorie discrete notevoli Insegnamento: Statistica Applicata Corso di Laurea in "Scienze e Tecnologie Alimentari" Unità Integrata Organizzativa

Dettagli

PROBABILITÀ - SCHEDA N. 3 VARIABILI ALEATORIE CONTINUE E SIMULAZIONE

PROBABILITÀ - SCHEDA N. 3 VARIABILI ALEATORIE CONTINUE E SIMULAZIONE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) PROBABILITÀ -

Dettagli

Statistica ARGOMENTI. Calcolo combinatorio

Statistica ARGOMENTI. Calcolo combinatorio Statistica ARGOMENTI Calcolo combinatorio Probabilità Disposizioni semplici Disposizioni con ripetizione Permutazioni semplici Permutazioni con ripetizioni Combinazioni semplici Assiomi di probabilità

Dettagli

Teoria dei Fenomeni Aleatori AA 2012/13

Teoria dei Fenomeni Aleatori AA 2012/13 Simulazione al Calcolatore La simulazione al calcolatore (computer simulation), (nel caso qui considerato simulazione stocastica) si basa sulla generazione, mediante calcolatore, di sequenze di numeri

Dettagli

Simulazione. rappresentare sistemi reali anche complessi tenendo conto anche delle sorgenti di incertezza;

Simulazione. rappresentare sistemi reali anche complessi tenendo conto anche delle sorgenti di incertezza; 2 Simulazione Con il termine simulazione si intende la riproduzione del comportamento di un sistema. In generale, si parla di simulazione sia nel caso in cui viene utilizzato un modello concreto, sia nel

Dettagli

Laboratorio di Chimica Fisica. Analisi Statistica

Laboratorio di Chimica Fisica. Analisi Statistica Università degli Studi di Bari Dipartimento di Chimica 9 giugno F.Mavelli- Laboratorio Chimica Fisica - a.a. 3-4 F.Mavelli Laboratorio di Chimica Fisica a.a. 3-4 Analisi Statistica dei Dati Analisi Statistica

Dettagli

Sperimentazioni di Fisica I mod. A Statistica - Lezione 2

Sperimentazioni di Fisica I mod. A Statistica - Lezione 2 Sperimentazioni di Fisica I mod. A Statistica - Lezione 2 A. Garfagnini M. Mazzocco C. Sada Dipartimento di Fisica G. Galilei, Università di Padova AA 2014/2015 Elementi di Statistica Lezione 2: 1. Istogrammi

Dettagli

Laboratorio di Calcolo B 68

Laboratorio di Calcolo B 68 Generazione di numeri casuali Abbiamo già accennato all idea che le tecniche statistiche possano essere utili per risolvere problemi di simulazione di processi fisici e di calcoli numerici. Dobbiamo però

Dettagli

ELEMENTI DI STATISTICA INFERENZIALE ELEMENTI DI STATISTICA INFERENZIALE

ELEMENTI DI STATISTICA INFERENZIALE ELEMENTI DI STATISTICA INFERENZIALE ELEMENTI DI STATISTICA INFERENZIALE 129 2.2 ELEMENTI DI STATISTICA INFERENZIALE In questo paragrafo verranno illustrati alcuni elementi di Statistica che sono essenziali per procedere alla costruzione

Dettagli

Ulteriori Conoscenze di Informatica e Statistica

Ulteriori Conoscenze di Informatica e Statistica Ulteriori Conoscenze di Informatica e Statistica Carlo Meneghini Dip. di fisica via della Vasca Navale 84, st. 83 (I piano) tel.: 06 55 17 72 17 meneghini@fis.uniroma3.it Indici di forma Descrivono le

Dettagli

Generazione di variabili aleatorie con distribuzione non uniforme. Daniela Picin

Generazione di variabili aleatorie con distribuzione non uniforme. Daniela Picin Generazione di variabili aleatorie con distribuzione non uniforme Daniela Picin A partire da una sequenza di numeri random u k ~ U(0,1) opportunamente generati, alcuni dei metodi per la generazione di

Dettagli

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA.

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA. Lezione 4 DISTRIBUZIONE DI FREQUENZA 1 DISTRIBUZIONE DI PROBABILITA Una variabile i cui differenti valori seguono una distribuzione di probabilità si chiama variabile aleatoria. Es:il numero di figli maschi

Dettagli

Computazione per l interazione naturale: fondamenti probabilistici (1)

Computazione per l interazione naturale: fondamenti probabilistici (1) Computazione per l interazione naturale: fondamenti probabilistici (1) Corso di Interazione uomo-macchina II Prof. Giuseppe Boccignone Dipartimento di Scienze dell Informazione Università di Milano boccignone@dsi.unimi.it

Dettagli

Statistica 2. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 2. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 2 Esercitazioni Dott. L 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

DISTRIBUZIONI DI PROBABILITA

DISTRIBUZIONI DI PROBABILITA DISTRIBUZIONI DI PROBABILITA Nell associare ai risultati di un esperimento un valore numerico si costruisce una variabile casuale (o aleatoria, o stocastica). Ogni variabile casuale ha una corrispondente

Dettagli

Studio dell aleatorietà: : proprietà di indipendenza ed uniformità. Daniela Picin

Studio dell aleatorietà: : proprietà di indipendenza ed uniformità. Daniela Picin Studio dell aleatorietà: : proprietà di indipendenza ed uniformità Daniela Picin TEST TEORICI: studio della media, della varianza e della correlazione del primo ordine, studio della struttura reticolare.

Dettagli

Elaborazione statistica di dati

Elaborazione statistica di dati Elaborazione statistica di dati CONCETTI DI BASE DI STATISTICA ELEMENTARE Taratura strumenti di misura IPOTESI: grandezza da misurare identica da misura a misura Collaudo sistemi di produzione IPOTESI:

Dettagli

Probabilità e Statistica

Probabilità e Statistica Probabilità e Statistica Non faremo una trattazione sistematica di probabilità e statistica (si veda in proposito il corso di Esperimentazioni III) Richiameremo alcuni argomenti che avete già visto quando

Dettagli

Alcune v.a. discrete notevoli

Alcune v.a. discrete notevoli Alcune v.a. discrete notevoli Variabile aleatoria Bernoulliana Il risultato X di un esperimento aleatorio può essere classificato nel modo che segue: successo oppure insuccesso. Indichiamo: Successo =

Dettagli

BLAND-ALTMAN PLOT. + X 2i 2 la differenza ( d ) tra le due misure per ognuno degli n campioni; d i. X i. = X 1i. X 2i

BLAND-ALTMAN PLOT. + X 2i 2 la differenza ( d ) tra le due misure per ognuno degli n campioni; d i. X i. = X 1i. X 2i BLAND-ALTMAN PLOT Il metodo di J. M. Bland e D. G. Altman è finalizzato alla verifica se due tecniche di misura sono comparabili. Resta da comprendere cosa si intenda con il termine metodi comparabili

Dettagli

Ulteriori Conoscenze di Informatica e Statistica

Ulteriori Conoscenze di Informatica e Statistica ndici di forma Ulteriori Conoscenze di nformatica e Statistica Descrivono le asimmetrie della distribuzione Carlo Meneghini Dip. di fisica via della Vasca Navale 84, st. 83 ( piano) tel.: 06 55 17 72 17

Dettagli

Concetti di teoria dei campioni ad uso degli studenti di Statistica Economica e Finanziaria, A.A. 2017/2018. Giovanni Lafratta

Concetti di teoria dei campioni ad uso degli studenti di Statistica Economica e Finanziaria, A.A. 2017/2018. Giovanni Lafratta Concetti di teoria dei campioni ad uso degli studenti di Statistica Economica e Finanziaria, A.A. 2017/2018 Giovanni Lafratta ii Indice 1 Spazi, Disegni e Strategie Campionarie 1 2 Campionamento casuale

Dettagli

Corso di Laurea in Informatica Applicata Esame di Calcolo delle Probabilità e Statistica Prova scritta dell 11 gennaio 2007

Corso di Laurea in Informatica Applicata Esame di Calcolo delle Probabilità e Statistica Prova scritta dell 11 gennaio 2007 Corso di Laurea in Informatica Applicata Esame di Calcolo delle Probabilità e Statistica Prova scritta dell 11 gennaio 007 Primo esercizio Per una certa stampante S 1, la probabilità che un generico foglio

Dettagli

Statistica Applicata all edilizia: Stime e stimatori

Statistica Applicata all edilizia: Stime e stimatori Statistica Applicata all edilizia E-mail: orietta.nicolis@unibg.it 15 marzo 2011 Statistica Applicata all edilizia: Indice 1 2 Statistica Applicata all edilizia: Uno dei problemi principali della statistica

Dettagli

Variabili casuali. - di Massimo Cristallo -

Variabili casuali. - di Massimo Cristallo - Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 16 e 27 maggio 2013 - di Massimo Cristallo - Variabili casuali

Dettagli

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Metodi per l Analisi dei Dati Sperimentali AA009/010 IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Sommario Massima Verosimiglianza Introduzione La Massima Verosimiglianza Esempio 1: una sola misura sperimentale

Dettagli

Variabili aleatorie continue

Variabili aleatorie continue Variabili aleatorie continue Per descrivere la distribuzione di una variabile aleatoria continua, non si può più assegnare una probabilità positiva ad ogni valore possibile. Si assume allora di poter specificare

Dettagli

1 Funzioni reali di una variabile reale

1 Funzioni reali di una variabile reale 1 Funzioni reali di una variabile reale Qualche definizione e qualche esempio che risulteranno utili più avanti Durante tutto questo corso studieremo funzioni reali di una variabile reale, cioè Si ha f

Dettagli

Probabilità e Statistica

Probabilità e Statistica Probabilità e Statistica Non faremo una trattazione sistematica di probabilità e statistica (si veda in proposito il corso di Esperimentazioni III) Richiameremo alcuni argomenti che avete già visto quando

Dettagli

Laboratorio di Calcolo B 67

Laboratorio di Calcolo B 67 Generazione di numeri casuali Abbiamo già accennato all idea che le tecniche statistiche possano essere utili per risolvere problemi di simulazione di processi fisici e di calcoli numerici. Dobbiamo però

Dettagli

RICHIAMI DI CALCOLO DELLE PROBABILITÀ

RICHIAMI DI CALCOLO DELLE PROBABILITÀ UNIVERSITA DEL SALENTO INGEGNERIA CIVILE RICHIAMI DI CALCOLO DELLE PROBABILITÀ ing. Marianovella LEONE INTRODUZIONE Per misurare la sicurezza di una struttura, ovvero la sua affidabilità, esistono due

Dettagli

Calcolo delle Probabilità e Statistica Matematica Fisciano, 10/1/2012

Calcolo delle Probabilità e Statistica Matematica Fisciano, 10/1/2012 Fisciano, 10/1/2012 Esercizio 1 Un esperimento consiste nel generare a caso un vettore di interi (x 1, x 2, x 3, x 4 ), dove x i {1, 2, 3, 4, 5, 6} i. (i) Si individui lo spazio campionario, determinandone

Dettagli

5. Analisi dei dati di output

5. Analisi dei dati di output Anno accademico 2006/07 Analisi dei dati di Output Y 1, Y 2,..., Y m : output della simulazione. Le variabili casuali Y 1, Y 2,..., Y m non sono in generale indipendenti Se supponiamo però di avere effettuato

Dettagli

Contenuto del capitolo

Contenuto del capitolo Capitolo 8 Stima 1 Contenuto del capitolo Proprietà degli stimatori Correttezza: E(Stimatore) = parametro da stimare Efficienza Consistenza Intervalli di confidenza Per la media - per una proporzione Come

Dettagli

λ è detto intensità e rappresenta il numero di eventi che si

λ è detto intensità e rappresenta il numero di eventi che si ESERCITAZIONE N 1 STUDIO DI UN SISTEMA DI CODA M/M/1 1. Introduzione Per poter studiare un sistema di coda occorre necessariamente simulare gli arrivi, le partenze e i tempi di ingresso nel sistema e di

Dettagli

Matematica e Statistica per Scienze Ambientali

Matematica e Statistica per Scienze Ambientali per Scienze Ambientali LABORATORIO R - Appunti 1 1 Dipartimento di Matematica Sapienza, Università di Roma Roma, Gennaio 2014 Argomenti La distribuzione normale e applicazioni La distribuzione binomiale

Dettagli

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA.

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA. Lezione 4 DISTRIBUZIONE DI FREQUENZA 1 DISTRIBUZIONE DI PROBABILITA Una variabile i cui differenti valori seguono una distribuzione di probabilità si chiama variabile aleatoria. Es:il numero di figli maschi

Dettagli

DISTRIBUZIONE NORMALE (1)

DISTRIBUZIONE NORMALE (1) DISTRIBUZIONE NORMALE (1) Nella popolazione generale molte variabili presentano una distribuzione a forma di campana, bene caratterizzata da un punto di vista matematico, chiamata distribuzione normale

Dettagli

Generazione di variabili aleatorie con distribuzione non uniforme. Daniela Picin

Generazione di variabili aleatorie con distribuzione non uniforme. Daniela Picin Generazione di variabili aleatorie con distribuzione non uniforme Daniela Picin A partire da una sequenza di numeri random u k ~ U(0,1) opportunamente generati, alcuni dei metodi per la generazione di

Dettagli

Università degli Studi Roma Tre Anno Accademico 2017/2018 ST410 Statistica 1

Università degli Studi Roma Tre Anno Accademico 2017/2018 ST410 Statistica 1 Università degli Studi Roma Tre Anno Accademico 2017/2018 ST410 Statistica 1 Lezione 1 - Mercoledì 27 Settembre 2017 Introduzione al corso. Richiami di probabilità: spazi di probabilità, variabili aleatorie,

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 006/07 Esercizio 1 Prova scritta del 16/1/006 In un ufficio postale lavorano due impiegati che svolgono lo stesso compito in maniera indipendente, sbrigando

Dettagli

Il metodo Monte Carlo. Numeri (pseudo)casuali. Esempio di transizione al caos. Analisi dati in Fisica Subnucleare. Introduzione al metodo Monte Carlo

Il metodo Monte Carlo. Numeri (pseudo)casuali. Esempio di transizione al caos. Analisi dati in Fisica Subnucleare. Introduzione al metodo Monte Carlo Analisi dati in Fisica Subnucleare Introduzione al metodo Monte Carlo (N.B. parte di queste trasparenze sono riciclate da un seminario di L. Lista) Il metodo Monte Carlo È una tecnica numerica che si basa

Dettagli

Concetti di teoria dei campioni ad uso degli studenti di Statistica Economica e Finanziaria, A.A. 2016/2017. Giovanni Lafratta

Concetti di teoria dei campioni ad uso degli studenti di Statistica Economica e Finanziaria, A.A. 2016/2017. Giovanni Lafratta Concetti di teoria dei campioni ad uso degli studenti di Statistica Economica e Finanziaria, A.A. 2016/2017 Giovanni Lafratta ii Indice 1 Spazi, Disegni e Strategie Campionarie 1 2 Campionamento casuale

Dettagli

Dispensa di Statistica

Dispensa di Statistica Dispensa di Statistica 1 parziale 2012/2013 Diagrammi... 2 Indici di posizione... 4 Media... 4 Moda... 5 Mediana... 5 Indici di dispersione... 7 Varianza... 7 Scarto Quadratico Medio (SQM)... 7 La disuguaglianza

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Variabili casuali Prof. Livia De Giovanni statistica@dis.uniroma.it Esercizio Determinare se le funzioni seguenti: 0.0 se x < 0. se x = g(x) = 0.5 se x = 0.7 se x = 3 se x =

Dettagli

VETTORI DI VARIABILI ALEATORIE

VETTORI DI VARIABILI ALEATORIE VETTOI DI VAIABILI ALEATOIE E. DI NADO 1. Funzioni di ripartizione congiunte e marginali Definizione 1.1. Siano X 1, X 2,..., X n v.a. definite su uno stesso spazio di probabilità (Ω, F, P ). La n-pla

Dettagli

Richiami di probabilità e statistica

Richiami di probabilità e statistica Richiami di probabilità e statistica Una variabile casuale (o aleatoria) X codifica gli eventi con entità numeriche x ed è caratterizzata dalla funzione di distribuzione di probabilità P(x) : P(x)=Pr ob[x

Dettagli

Elaborazione statistica di dati

Elaborazione statistica di dati Elaborazione statistica di dati 1 CONCETTI DI BASE DI STATISTICA ELEMENTARE 2 Taratura strumenti di misura IPOTESI: grandezza da misurare identica da misura a misura Per la presenza di errori casuali,

Dettagli

Laboratorio di Statistica 1 con R Esercizi per la Relazione. I testi e/o i dati degli esercizi contassegnati da sono tratti dai libri consigliati

Laboratorio di Statistica 1 con R Esercizi per la Relazione. I testi e/o i dati degli esercizi contassegnati da sono tratti dai libri consigliati Laboratorio di Statistica 1 con R Esercizi per la Relazione I testi e/o i dati degli esercizi contassegnati da sono tratti dai libri consigliati nel corso. Esercizio 1. 1. Facendo uso dei comandi

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Stima Puntuale Prof. Livia De Giovanni statistica@dis.uniroma.it Esercizio In ciascuno dei casi seguenti determinare quale tra i due stimatori S e T per il parametro θ è distorto

Dettagli

Note di Teoria della Probabilità.

Note di Teoria della Probabilità. Note di Teoria della Probabilità. In queste brevi note, si richiameranno alcuni risultati di Teoria della Probabilità, riguardanti le conseguenze elementari delle definizioni di probabilità e σ-algebra.

Dettagli

Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva

Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva Probabilità classica Distribuzioni e leggi di probabilità La probabilità di un evento casuale è il rapporto tra il numero dei casi favorevoli ed il numero dei casi possibili, purchè siano tutti equiprobabili.

Dettagli

Analisi multivariata per osservazioni appaiate. Analisi multivariata per osservazioni appaiate

Analisi multivariata per osservazioni appaiate. Analisi multivariata per osservazioni appaiate Introduzione Notazione Modello additivo Verifica d ipotesi Sia X una variabile q-dimensionale, a valori reali, non degenere, osservata in k tempi diversi (τ 1, τ 2,..., τ k ), sulle stesse n unità statistiche

Dettagli

Indici di posizione e dispersione per distribuzioni di variabili aleatorie

Indici di posizione e dispersione per distribuzioni di variabili aleatorie Indici di posizione e dispersione per distribuzioni di variabili aleatorie 12 maggio 2017 Consideriamo i principali indici statistici che caratterizzano una distribuzione: indici di posizione, che forniscono

Dettagli

Project Scheduling: PERT. Il PERT ha potenzialità superiori rispetto a quelle di un semplice mezzo per la pianificazione ed il controllo.

Project Scheduling: PERT. Il PERT ha potenzialità superiori rispetto a quelle di un semplice mezzo per la pianificazione ed il controllo. 1. Introduzione Project Scheduling: PERT Il PERT è una tecnica introdotta per la pianificazione ed il controllo di progetti in cui le durate t ij delle singole attività sono delle variabili aleatorie.

Dettagli

I modelli probabilistici

I modelli probabilistici e I modelli probabilistici Finora abbiamo visto che esistono modelli probabilistici che possiamo utilizzare per prevedere gli esiti di esperimenti aleatori. Naturalmente la previsione è di tipo probabilistico:

Dettagli

Trasformazione dei dati

Trasformazione dei dati Trasformazione dei dati AnnaMaria Zanaboni ottobre 2017 È utile trasformare i dati per diverse ragioni: per poterli confrontare con altri, per poterli elaborare con tecniche che prevedono di lavorare su

Dettagli

Computazione per l interazione naturale: fondamenti probabilistici (2)

Computazione per l interazione naturale: fondamenti probabilistici (2) Computazione per l interazione naturale: fondamenti probabilistici (2) Corso di Interazione uomo-macchina II Prof. Giuseppe Boccignone Dipartimento di Scienze dell Informazione Università di Milano boccignone@dsi.unimi.it

Dettagli

Il metodo Monte Carlo. Esempio di transizione al caos. Numeri (pseudo)casuali. λ 1. Analisi dati in Fisica Subnucleare

Il metodo Monte Carlo. Esempio di transizione al caos. Numeri (pseudo)casuali. λ 1. Analisi dati in Fisica Subnucleare Analisi dati in Fisica Subnucleare Introduzione al metodo Monte Carlo (N.B. parte di queste trasparenze sono riciclate da un seminario di L. Lista) Il metodo Monte Carlo È una tecnica numerica che si basa

Dettagli

Università degli Studi Roma Tre Anno Accademico 2014/2015 ST410 Statistica 1

Università degli Studi Roma Tre Anno Accademico 2014/2015 ST410 Statistica 1 Università degli Studi Roma Tre Anno Accademico 2014/2015 ST410 Statistica 1 Lezione 1 - Martedì 23 Settembre 2014 Introduzione al corso. Richiami di probabilità: spazi di probabilità, variabili aleatorie,

Dettagli

Università degli Studi Roma Tre Anno Accademico 2016/2017 ST410 Statistica 1

Università degli Studi Roma Tre Anno Accademico 2016/2017 ST410 Statistica 1 Università degli Studi Roma Tre Anno Accademico 2016/2017 ST410 Statistica 1 Lezione 1 - Mercoledì 28 Settembre 2016 Introduzione al corso. Richiami di probabilità: spazi di probabilità, variabili aleatorie,

Dettagli

Distribuzioni e inferenza statistica

Distribuzioni e inferenza statistica Distribuzioni e inferenza statistica Distribuzioni di probabilità L analisi statistica spesso studia i fenomeni collettivi confrontandoli con modelli teorici di riferimento. Tra di essi, vedremo: la distribuzione

Dettagli

Appunti di statistica

Appunti di statistica Appunti di statistica. Concetti generali La probabilità è una quantificazione del grado di aspettativa nei confronti di un evento. Considereremo la probabilità un concetto elementare. La quantificazione

Dettagli

4. Stime & Test. Corso di Simulazione. Anno accademico 2008/09

4. Stime & Test. Corso di Simulazione. Anno accademico 2008/09 Anno accademico 2008/09 Media campionaria X 1, X 2,..., X n v.c. indipendenti con distribuzione F, e: E[X i ] = µ Var[X i ] = σ 2, i = 1,..., n Media campionaria: X n è uno stimatore di µ. È uno stimatore

Dettagli

Variabili aleatorie Parte I

Variabili aleatorie Parte I Variabili aleatorie Parte I Variabili aleatorie Scalari - Definizione Funzioni di distribuzione di una VA Funzioni densità di probabilità di una VA Indici di posizione di una distribuzione Indici di dispersione

Dettagli

Appunti di Simulazione

Appunti di Simulazione Appunti di Simulazione M. Gianfelice Corso di modelli probabilistici per le applicazioni Master di II livello in Matematica per le Applicazioni a.a. 2004/2005 1 Simulazione di numeri aleatori con distribuzione

Dettagli

Statistica. POPOLAZIONE: serie di dati, che rappresenta linsieme che si vuole indagare (reali, sperimentali, matematici)

Statistica. POPOLAZIONE: serie di dati, che rappresenta linsieme che si vuole indagare (reali, sperimentali, matematici) Statistica La statistica può essere vista come la scienza che organizza ed analizza dati numerici per fini descrittivi o per permettere di prendere delle decisioni e fare previsioni. Statistica descrittiva:

Dettagli

Distribuzioni campionarie. Antonello Maruotti

Distribuzioni campionarie. Antonello Maruotti Distribuzioni campionarie Antonello Maruotti Outline 1 Introduzione 2 Concetti base Si riprendano le considerazioni fatte nella parte di statistica descrittiva. Si vuole studiare una popolazione con riferimento

Dettagli

Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha. P {X = a, Y = b} = P {X = a}p {Y = b}

Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha. P {X = a, Y = b} = P {X = a}p {Y = b} Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha P {X = a, Y = b} = P {X = a}p {Y = b} Una variabile aleatoria χ che assume i soli valori 1, 2,..., n

Dettagli

Simulazione dei dati

Simulazione dei dati Simulazione dei dati Scopo della simulazione Fasi della simulazione Generazione di numeri casuali Esempi Simulazione con Montecarlo 0 Scopo della simulazione Le distribuzioni di riferimento usate per determinare

Dettagli

19 Marzo Equazioni differenziali.

19 Marzo Equazioni differenziali. 19 Marzo 2019 Equazioni differenziali. Definizione 1. Si chiama equazione differenziale una relazione che coinvolge una o più derivate di una funzione incognita y(x), la funzione stessa, funzioni di x

Dettagli

Introduzione all inferenza statistica, II lezione

Introduzione all inferenza statistica, II lezione T (X) è sufficiente? (2) Introduzione all inferenza statistica, II lezione Carla Rampichini Dipartimento di Statistica Giuseppe Parenti - Firenze - Italia carla@ds.unifi.it - www.ds.unifi.it/rampi/ TEOREMA

Dettagli

Capitolo 6. Variabili casuali continue. 6.1 La densità di probabilità

Capitolo 6. Variabili casuali continue. 6.1 La densità di probabilità Capitolo 6 Variabili casuali continue Le definizioni di probabilità che abbiamo finora usato sono adatte solo per una variabile casuale che possa assumere solo valori discreti; vediamo innanzi tutto come

Dettagli

Minimi quadrati vincolati e test F

Minimi quadrati vincolati e test F Minimi quadrati vincolati e test F Impostazione del problema Spesso, i modelli econometrici che stimiamo hanno dei parametri che sono passibili di interpretazione diretta nella teoria economica. Consideriamo

Dettagli

Capitolo 6. La distribuzione normale

Capitolo 6. La distribuzione normale Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 6 La distribuzione normale Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università

Dettagli

LA DISTRIBUZIONE NORMALE o DI GAUSS

LA DISTRIBUZIONE NORMALE o DI GAUSS p. 1/2 LA DISTRIBUZIONE NORMALE o DI GAUSS Osservando gli istogrammi delle misure e degli scarti, nel caso di osservazioni ripetute in identiche condizioni Gli istogrammi sono campanulari e simmetrici,

Dettagli

ANALISI ESPLORATIVA DI SERIE DI OSSERVAZIONI

ANALISI ESPLORATIVA DI SERIE DI OSSERVAZIONI IDROLOGIA Analisi esplorativa di serie di dati ANALISI ESPLORATIVA DI SERIE DI OSSERVAZIONI P Claps IDROLOGIA Analisi esplorativa di serie di dati Rappresentazione tabellare della serie storica Sequenza

Dettagli

5.4.5 Struttura dell algoritmo ed esempi

5.4.5 Struttura dell algoritmo ed esempi CAPITOLO 5. IL METODO DEL SIMPLESSO 6 5.4.5 Struttura dell algoritmo ed esempi Come abbiamo già ampiamente osservato, la fase II del metodo del simplesso, a partire da una soluzione di base ammissibile,

Dettagli

Capitolo 6 La distribuzione normale

Capitolo 6 La distribuzione normale Levine, Krehbiel, Berenson Statistica Casa editrice: Pearson Capitolo 6 La distribuzione normale Insegnamento: Statistica Corso di Laurea Triennale in Economia Dipartimento di Economia e Management, Università

Dettagli

assuma valori in un determinato intervallo è data dall integrale della sua densità ( = )=

assuma valori in un determinato intervallo è data dall integrale della sua densità ( = )= VARIABILI ALEATORIE CONTINUE Esistono parecchi fenomeni reali per la cui descrizione le variabili aleatorie discrete non sono adatte. Per esempio è necessaria una variabile aleatoria continua ovvero una

Dettagli