Circuiti del primo ordine

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Circuiti del primo ordine"

Transcript

1 Circuii del primo ordine Un circuio del primo ordine è caraerizzao da un equazione differenziale del primo ordine I circuii del primo ordine sono di due ipi: L o C Teoria dei Circuii Prof. Luca Perregrini Circuii del primo ordine, pag. 1

2 Circuii del primo ordine L ecciazione può essere di due ipi auonoma: il circuio non comprende generaori indipendeni ed eole nel empo grazie all energia immagazzinaa nel condensaore (C) o nell induore (L) forzaa: il circuio comprende generaori indipendeni che ne deerminano il comporameno nel empo Teoria dei Circuii Prof. Luca Perregrini Circuii del primo ordine, pag. 2

3 Circuio C auonomo Ipoesi: i C i ( ) V C 1 w( ) C V 2 2 ()? (per > ) Teoria dei Circuii Prof. Luca Perregrini Circuii del primo ordine, pag. 3

4 Circuio C auonomo C i i C d d i C C i d d C ( ) Ae / C ( ) V ( ) Ve / C Teoria dei Circuii Prof. Luca Perregrini Circuii del primo ordine, pag. 4

5 Circuio C auonomo: risposa naurale La risposa naurale rappresena il comporameno inrinseco di un circuio, senza l inereno di sorgeni eserne di ecciazione ( ) Ve /τ V τ C cosane di empo 1 V Ve - 3 τ Teoria dei Circuii Prof. Luca Perregrini Circuii del primo ordine, pag. 5

6 Circuio C auonomo: cosane di empo ( ) 1 V Ve /τ τ C cosane di empo /τ e τ 2 τ 1 e /τ τ τ τ τ τ.674 τ Teoria dei Circuii Prof. Luca Perregrini Circuii del primo ordine, pag. 6

7 Circuio C auonomo: poenza ed energia ( ) Ve p( ) i /τ V 2 2 /τ e i ( ) ( ) Poenza dissipaa nel resisore: V /τ e i C C i Energia assorbia dal resisore fino all isane : 2 V 2 / τ 1 2 w ( ) p d e d C V (1- e 2 2 / τ ) 1 2 w ( ) C V w() 2 Dopo un empo sufficienemene lungo ( >> τ) il resisore ha assorbio ua l energia immagazzinaa nel condensaore all isane iniziale ( ) Teoria dei Circuii Prof. Luca Perregrini Circuii del primo ordine, pag. 7

8 Circuio C auonomo: riassuno Il calcolo della risposa naurale di un circuio C auonomo richiede: la conoscenza o il calcolo della ensione sul condensaore all isane iniziale (V ) il calcolo della resisenza equialene posa in parallelo al condensaore per la deerminazione della cosane di empo τ C ( ) Ve /τ Teoria dei Circuii Prof. Luca Perregrini Circuii del primo ordine, pag. 8

9 Circuio L auonomo L L i Ipoesi: i ( ) I 1 w( ) L I 2 2 i()? (per > ) Teoria dei Circuii Prof. Luca Perregrini Circuii del primo ordine, pag. 9

10 Circuio L auonomo L di d L i L i L di d i L i( ) Ae / L i ( ) I i( ) Ie / L Teoria dei Circuii Prof. Luca Perregrini Circuii del primo ordine, pag. 1

11 Circuio L auonomo: risposa naurale La risposa naurale rappresena il comporameno inrinseco di un circuio, senza l inereno di sorgeni eserne di ecciazione i( ) Ie /τ i I τ L / cosane di empo I I 3-1 e τ Teoria dei Circuii Prof. Luca Perregrini Circuii del primo ordine, pag. 11

12 Circuio L auonomo: poenza ed energia i( ) p Ie /τ ( ) 2 e 2 /τ i I ( ) i Poenza dissipaa nel resisore: Ie /τ L i L Energia assorbia dal resisore fino all isane : 2 2 / τ 1 2 w ( ) p d I e d L I (1- e 2 2 / τ ) 1 2 w ( ) L I w() 2 Dopo un empo sufficienemene lungo ( >> τ) il resisore ha assorbio ua l energia immagazzinaa nell induore all isane iniziale ( ) Teoria dei Circuii Prof. Luca Perregrini Circuii del primo ordine, pag. 12

13 Circuio L auonomo: riassuno Il calcolo della risposa naurale di un circuio L auonomo richiede: la conoscenza o il calcolo della correne sull induore all isane iniziale (I ) il calcolo della resisenza equialene posa in parallelo all induore per la deerminazione della cosane di empo τ L/ i( ) Ie /τ Teoria dei Circuii Prof. Luca Perregrini Circuii del primo ordine, pag. 13

14 La funzione gradino uniario La funzione a gradino uniario è una funzione disconinua. Essa iene uilizzaa per rappresenare ariazioni molo rapide di ensione o correne u u( ) 1 < > 1 Teoria dei Circuii Prof. Luca Perregrini Circuii del primo ordine, pag. 14

15 Teoria dei Circuii Prof. Luca Perregrini Circuii del primo ordine, pag. 15 La funzione gradino uniario u > < 1 ) ( u 1 > < ) ( V V ) ( ) ( u V V

16 La funzione gradino uniario a a V V u( ) b b a a I I u( ) b b Teoria dei Circuii Prof. Luca Perregrini Circuii del primo ordine, pag. 16

17 isposa al gradino di un circuio C V S C V S u() C Ipoesi: ( ) V ()? Teoria dei Circuii Prof. Luca Perregrini Circuii del primo ordine, pag. 17

18 isposa al gradino di un circuio C: V S u() C non può cambiare isananeamene: ( ) ( ) V Teoria dei Circuii Prof. Luca Perregrini Circuii del primo ordine, pag. 18

19 isposa al gradino di un circuio C: > C d d d d V V C S S V S C d( V d S ) V C S ( ) V S Ae / C ( ) V ( ) V ( V V S S ) e /τ τ C Teoria dei Circuii Prof. Luca Perregrini Circuii del primo ordine, pag. 19

20 Circuio C: risposa complea La risposa complea rappresena il comporameno di un circuio alla applicazione improisa di un generaore, supponendo il condensaore già carico V V ( ) / τ S ( V VS ) e < > V S τ C cosane di empo V τ Teoria dei Circuii Prof. Luca Perregrini Circuii del primo ordine, pag. 2

21 Circuio C: risposa complea ( ) risposa naurale o ransiorio risposa forzaa o regime ( ) τ ( )/τ () ( ) [ ( ) ( )] e > Teoria dei Circuii Prof. Luca Perregrini Circuii del primo ordine, pag. 21

22 Circuio C: riassuno Il calcolo della risposa complea di un circuio C richiede: la conoscenza o il calcolo della ensione sul condensaore all isane iniziale (( )) il calcolo della ensione a regime sul condensaore (( )) il calcolo della resisenza equialene posa in parallelo al condensaore per la deerminazione della cosane di empo τ C Teoria dei Circuii Prof. Luca Perregrini Circuii del primo ordine, pag. 22

23 isposa complea di circuii del I ordine La risposa complea di un circuio del primo ordine è sempre del ipo: x( ) x( ) x( ) [ x( ( ) x( )] e doe x rappresena indifferenemene la ensione o la correne sul condensaore o sull induanza e è l isane in cui commua l inerruore. Si richiede il calcolo di: alori iniziali x( ) e x( ); alore a regime x( ); cosane di empo τ C oppure τ L/ )/ τ < > Teoria dei Circuii Prof. Luca Perregrini Circuii del primo ordine, pag. 23

24 isposa al gradino di un circuio L i i V S L V S u( ) L Ipoesi: ) i ( I i()? Teoria dei Circuii Prof. Luca Perregrini Circuii del primo ordine, pag. 24

25 isposa al gradino di un circuio L V S L i alori iniziali: i ( I ) i( ) alore a regime: cosane di empo: i( ) τ L VS Teoria dei Circuii Prof. Luca Perregrini Circuii del primo ordine, pag. 25

26 Teoria dei Circuii Prof. Luca Perregrini Circuii del primo ordine, pag. 26 Circuio L: risposa complea L / τ cosane di empo > < ) / ( e ) ( V I V I i S S τ i τ I V S

Lezione n.7. Variabili di stato

Lezione n.7. Variabili di stato Lezione n.7 Variabili di sao 1. Variabili di sao 2. Funzione impulsiva di Dirac 3. Generaori impulsivi per variabili di sao disconinue 3.1 ondizioni iniziali e generaori impulsivi In quesa lezione inrodurremo

Dettagli

Regime dinamico nel dominio del tempo

Regime dinamico nel dominio del tempo egime dinamico nel dominio del empo Appuni a cura dell Ingg. Basoccu Gian Piero e Marras Luca Tuors del corso di A. A 3/4 e 4/5 Ulimo aggiornameno 4//9 Premessa egime sazionario Un sisema elerico è in

Dettagli

Regime dinamico nel dominio del tempo

Regime dinamico nel dominio del tempo egime dinamico nel dominio del empo Appuni a cura dell Ingg. Basoccu Gian Piero e Marras Luca Tuors del corso di LTTOTNIA per meccanici e chimici A. A 3/4 e 4/5 Ulimo aggiornameno // Appuni a cura degli

Dettagli

RISPOSTA NEL DOMINIO DEL TEMPO

RISPOSTA NEL DOMINIO DEL TEMPO RISPOSTA NEL DOMINIO DEL TEMPO Nel dominio del empo le variabili sono esaminae secondo la loro evoluzione emporale. Normalmene si esamina la risposa del sisema a un segnale di prova canonico, cioè si sollecia

Dettagli

Interruttore ideale. + v(t) i(t) t = t 0. i(t) = 0 v(t) = 0. i(t) v(t) v(t) = 0 i(t) = 0. Per t > t 0. interruttore di chiusura

Interruttore ideale. + v(t) i(t) t = t 0. i(t) = 0 v(t) = 0. i(t) v(t) v(t) = 0 i(t) = 0. Per t > t 0. interruttore di chiusura Inerruore ideale inerruore di chiusura { i() = 0 v() = 0 inerruore di aperura { v() = 0 i() = 0 per < 0 per > 0 per < 0 per > 0 v() i() = 0 v() i() = 0 Esempio: inerruore ideale di aperura Per < 0, i()

Dettagli

Giorgio Porcu. Appunti di SISTEMI. ITI Elettronica Classe QUINTA

Giorgio Porcu. Appunti di SISTEMI. ITI Elettronica Classe QUINTA Giorgio Porcu Appuni di SSTEM T Eleronica lasse QUNTA Appuni di SSTEM T Eleronica - lasse QUNTA 1. TEORA DE SSTEM SSTEMA ollezione di elemeni che ineragiscono per realizzare un obieivo. l ermine è applicabile

Dettagli

VALORE EFFICACE DEL VOLTAGGIO

VALORE EFFICACE DEL VOLTAGGIO Fisica generale, a.a. /4 TUTOATO 8: ALO EFFC &CCUT N A.C. ALOE EFFCE DEL OLTAGGO 8.. La leura con un mulimero digiale del volaggio ai morsei di un generaore fornisce + in coninua e 5.5 in alernaa. Tra

Dettagli

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica Edile - Informatica Esercitazione 4 CIRCUITI ELETTRICI

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica Edile - Informatica Esercitazione 4 CIRCUITI ELETTRICI Fisica Generale Modulo di Fisica II A.A. 6-7 Ingegneria Meccanica Edile - Informaica Eserciazione IUITI ELETTII b. Nel circuio della figura si ha 5, e 3 3 e nella resisenza passa una correne di A.Il volaggio

Dettagli

Regolatori switching

Regolatori switching 2 A4 Regolaori swiching I regolaori di ensione lineari hanno il grave difeo di non consenire il raggiungimeno di valori di efficienza paricolarmene elevai. Infai, in quese archieure gli elemeni di regolazione

Dettagli

Il condensatore. Carica del condensatore: tempo caratteristico

Il condensatore. Carica del condensatore: tempo caratteristico Il condensaore IASSUNTO: apacia ondensaori a geomeria piana, cilindrica, sferica La cosane dielerica ε r ondensaore ceramico, a cara, eleroliico Il condensaore come elemeno di circuio: ondensaori in serie

Dettagli

IL RISCALDAMENTO DELLE MACCHINE ELETTRICHE

IL RISCALDAMENTO DELLE MACCHINE ELETTRICHE IL RISCALDAMENO DELLE MACCHINE ELERICHE Lezione 3: Riscaldameno delle macchine eleriche Fenomeni ransiori ransiorio elerico i IL RIS SCALDAM moore e m carico secondi 10-4 10-1 10-3 10 ω Θ e m ransiorio

Dettagli

Elettrotecnica. Regime lentamente variabile. Corso di. Teoria dei Circuiti. Università degli Studi di Pavia. Dipartimento di Ingegneria Elettrica

Elettrotecnica. Regime lentamente variabile. Corso di. Teoria dei Circuiti. Università degli Studi di Pavia. Dipartimento di Ingegneria Elettrica Universià degli Sudi di Pavia Facolà di Ingegneria Corso di Eleroecnica Teoria dei Circuii Regime lenamene variabile v(), i(), p() funzioni del empo Esempio: a() a Relazioni: non algebriche, ma inegro-differenziali

Dettagli

Esercizi Scheda N Fisica II. Esercizi con soluzione svolta

Esercizi Scheda N Fisica II. Esercizi con soluzione svolta Poliecnico di Torino etem Esercizi Scheda N. 0 45 Fisica II Esercizi con soluzione svola Esercizio 0. Si consideri il circuio V R T R T V I V 0 Vols R 5 Ω R 0 Ω µf sapendo che per 0 T on T off 5 µs T off

Dettagli

Convertitore flyback. Convertitore flyback

Convertitore flyback. Convertitore flyback onveriore flyback Derivao dal converiore base buckboos buckboos flyback i d R R onveriore flyback Derivao dal converiore base buckboos Isolameno ra ingresso ed uscia Muli oupu a ensioni diverse Uilizzao

Dettagli

Generazione di corrente alternata - alternatore

Generazione di corrente alternata - alternatore . la forza eleromorice può essere indoa: a)..; b)..; c) variando l angolo ra B e la normale alla superficie del circuio θ( (roazione di spire o bobine) ezione Generazione di correne alernaa - alernaore

Dettagli

Esercitazioni di Elettrotecnica: circuiti in evoluzione dinamica

Esercitazioni di Elettrotecnica: circuiti in evoluzione dinamica Uniersià degli Sudi di assino serciazioni di leroecnica: circuii in eoluzione dinamica nonio Maffucci er seembre ircuii dinamici del primo ordine S onsiderao il seguene circuio che o all isane laora in

Dettagli

TEMPORIZZATORE CON Ic NE 555 ( a cura del prof A. GARRO ) SCHEMA A BLOCCHI : NE555 1 T. reset (4) VCC R6 10K. C5 10uF

TEMPORIZZATORE CON Ic NE 555 ( a cura del prof A. GARRO ) SCHEMA A BLOCCHI : NE555 1 T. reset (4) VCC R6 10K. C5 10uF TEMPOIZZATOE CON Ic NE 555 ( a cura del prof A GAO ) SCHEMA A BLOCCHI : M (8) NE555 00K C7 00uF STAT S 4 K C6 0uF (6) (5) () TH C T A B 0 0 Q S Q rese T DIS (7) OUT () 0 T T09*()*C7 (sec) GND () (4) 6

Dettagli

V AK. Fig.1 Caratteristica del Diodo

V AK. Fig.1 Caratteristica del Diodo 1 Raddrizzaore - Generalià I circuii raddrizzaori uilizzano componeni come i Diodi che presenano la caraerisica di unidirezionalià, cioè permeono il passaggio della correne solo in un verso. In figura

Dettagli

7 CIRCUITI ELETTRICI IN REGIME SINUSOIDALE

7 CIRCUITI ELETTRICI IN REGIME SINUSOIDALE 7 IUII ELEII IN EGIME SINUSIDALE Il primo generaore di correne coninua fu realizzao nel 83 da Faraday; queso disposiivo era cosiuio da un disco di rame poso in roazione ra le espansioni polari di una calamia.

Dettagli

TIMER 555 E CIRCUITI DI IMPIEGO

TIMER 555 E CIRCUITI DI IMPIEGO ME E U MEGO U EL OF. GNLO FON...S.. MONO - OSENZ NE imer e circuii di impiego...ag. Mulivibraore asabile col imer...ag. Mulivibraore monosabile col imer.... ag. rieri di progeo.ag. 6 rogeo e verifica di

Dettagli

Un po di teoria. cos è un condensatore?

Un po di teoria. cos è un condensatore? Sudio sperimenale del processo di carica e scarica di un condensaore cos è un condensaore? Un po di eoria Un condensaore è un sisema di due conduori affacciai, dei armaure, separai da un isolane. Esso

Dettagli

Campi Elettromagnetici e Circuiti I Condensatori e induttori

Campi Elettromagnetici e Circuiti I Condensatori e induttori Facolà d Ingegnera Unersà degl sud d Paa orso d aurea Trennale n Ingegnera Eleronca e Informaca amp Eleromagnec e rcu I ondensaor e nduor amp Eleromagnec e rcu I a.a. 3/4 Prof. uca Perregrn ondensaor e

Dettagli

METODI DECISIONALI PER L'AZIENDA. www.lvproject.com. Dott. Lotti Nevio

METODI DECISIONALI PER L'AZIENDA. www.lvproject.com. Dott. Lotti Nevio METODI DECISIONALI PER L'AZIENDA www.lvprojec.com Do. Loi Nevio Generalià sui sisemi dinamici. Variabili di sao, di ingresso, di uscia. Sisemi discrei. Sisemi lineari. Paper: Dynamic Modelling Do. Loi

Dettagli

Principi di ingegneria elettrica. Lezione 19 a. Conversione elettromeccanica dell'energia Trasmissione e distribuzione dell'energia elettrica

Principi di ingegneria elettrica. Lezione 19 a. Conversione elettromeccanica dell'energia Trasmissione e distribuzione dell'energia elettrica Principi di ingegneria elerica Lezione 19 a Conversione eleromeccanica dell'energia Trasmissione e disribuzione dell'energia elerica acchina elerica elemenare Una barra condurice di lunghezza l immersa

Dettagli

3 CORRENTE ELETTRICA E CIRCUITI

3 CORRENTE ELETTRICA E CIRCUITI 3 ONT LTT UT lessandro ola Descrizione dell esperienza di Galvani Nel 79 il medico bolognese Luigi Galvani nell ambio dello sudio delle azioni eleriche sugli organi animali osservò che occando con uno

Dettagli

7 I convertitori Analogico/Digitali.

7 I convertitori Analogico/Digitali. 7 I converiori Analogico/Digiali. 7 1. Generalià Un volmero numerico, come si evince dal nome, è uno srumeno che effeua misure di ensione mediane una conversione analogicodigiale della grandezza in ingresso

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondameni di Conrolli Auomaici Prova Parziale 8 Aprile 2 - A.A. 2/ Nome: Nr. Ma. Firma: a) Deerminare la rasformaa di Laplace X i (s) dei segueni segnali emporali x i (): x () = 4 + 2 e +5 cos(3 6), x

Dettagli

funzione: trasformare un segnale ottico in un segnale elettrico;

funzione: trasformare un segnale ottico in un segnale elettrico; Foorivelaori (a semiconduore) funzione: rasformare un segnale oico in un segnale elerico; ipi: fooconduori; foodiodi (pn, pin, a valanga...) caraerisiche: modo di funzionameno; larghezza di banda; sensibilià;

Dettagli

Economia e gestione delle imprese - 07. Sommario. Liquidità e solvibilità

Economia e gestione delle imprese - 07. Sommario. Liquidità e solvibilità Economia e gesione delle imprese - 07 Obieivi: Descrivere i processi operaivi della gesione finanziaria nel coneso aziendale. Analizzare le decisioni di invesimeno. Analizzare le decisioni di finanziameno.

Dettagli

Il circuito RC Misure e Simulazione

Il circuito RC Misure e Simulazione Il circuio R Misure e Simulazione Laboraorio di Fisica - Liceo Scienifico G.D. assini Sanremo 8 oobre 8 E.Smerieri & L.Faè Progeo Lauree Scienifiche 6-9 Oobre - Sanremo he cosa verrà fao in quesa esperienza

Dettagli

C R CARICO. Fig. 2.1 - Sistema meccanico

C R CARICO. Fig. 2.1 - Sistema meccanico 2 DINAMIA DEL SISTEMA MOTOE AIO 2. Equazione di equilibrio meccanico Nel caso di movimeno roaorio, che rappresena il caso più comune nel campo degli azionameni elerici, il moore ed il relaivo carico azionao

Dettagli

Il PLL: anello ad aggancio di fase

Il PLL: anello ad aggancio di fase 9 Il PLL: anello ad aggancio di ase l PLL (Phase-Locked Loop) è un circuio, le cui applicazioni sono descrie nel SOTTOPARAGRAFO 9., cosiuio da re blocchi (FIGURA ) che realizzano un sisema in reroazione

Dettagli

Analisi dei guasti a terra nei sistemi MT a neutro isolato e neutro compensato

Analisi dei guasti a terra nei sistemi MT a neutro isolato e neutro compensato Analisi dei uasi a erra nei sisemi MT a neuro isolao e neuro compensao - Problemaiche inereni alle proezioni 5N e 67N - A cura di: n. laudio iucciarelli n. Marco iucciarelli . nroduzione Di seuio viene

Dettagli

Esempi di progetto di alimentatori

Esempi di progetto di alimentatori Alimenaori 1 Esempi di progeo di alimenaori Progeo di alimenaore senza circuio di correzione del faore di poenza (PFC) Valore del condensaore Correne di picco Scela diodi Correne RMS Progeo di alimenaore

Dettagli