La simmetria centrale
|
|
|
- Ugo Guido Neri
- 10 anni fa
- Visualizzazioni
Transcript
1 La simmetria centrale Una simmetria centrale di centro O è una isometria che associa al punto O se stesso e ad ogni altro punto P del piano il punto P in modo che O sia il punto medio del segmento PP.
2 Attività. Il pantografo per la simmetria assiale. Il quadrilatero ABCP è un parallelogramma. Il punto O (medio di BC) è fissato ed è il centro di simmetria. Il segmento BQ è ottenuto prolungando AB, in modo che AB = BQ. (
3 Attività. Disegnare una figura F e farne la simmetria assiale rispetto a un asse a, ottenendo F. Poi fare la simmetria assiale di F rispetto a una retta b perpendicolare ad a.
4 Attività. Disegnare una figura F e farne la simmetria assiale rispetto a un asse a, ottenendo F. Poi fare la simmetria assiale di F rispetto a una retta b perpendicolare ad a.
5 Un figura F è simmetrica rispetto a un punto O se il simmetrico di ogni suo punto, rispetto a O, è un punto che appartiene ad F. Quali poligoni/figure hanno un centro di simmetria?
6
7 Attività. Dopo aver discusso/spiegato le simmetrie assiale e centrale, chiedere agli alunni di trovare oggetti dotati di tali simmetrie, cercandoli in classe o nella scuola o ritagliandone le immagini da riviste.
8 La rotazione Una rotazione di centro O e angolo ˆα è una isometria che associa al centro O se stesso e ad ogni altro punto P del piano il punto P in modo che PÔP = ˆα e che OP = OP.
9 Attività. Disegnare una figura F e farne la simmetria assiale rispetto a un asse a, ottenendo F. Poi fare la simmetria assiale di F rispetto a una retta b obliqua ad a.
10 Attività. Disegnare una figura F e farne la simmetria assiale rispetto a un asse a, ottenendo F. Poi fare la simmetria assiale di F rispetto a una retta b obliqua ad a.
11 Attività. Rilevazione Nazionale INValSI 2012/2013, classe V.
12 Attività. Rilevazione Nazionale INValSI 2012/2013, classe V.
13 Attività. Rilevazione Nazionale INValSI 2010/2011, classe V. Risult. camp. (a): A 3,2% B 90,2% C 1,5% D 4,9% NR 0,2% Risult. camp. (b): Corretta 85,4% Errata 9,4% NR 5,2%
14 Facendo ruotare un poligono regolare di n vertici attorno al suo centro di un angolo di 360 n gradi si ottiene il poligono stesso. Attività. Costruire modelli di poligoni regolari e farli ruotare (su un supporto si rappresenta un semplice goniometro e si fissa il poligono con una puntina in modo che il centro del poligono e quello del goniometro coincidano).
15 Testi scolastici.
16 Attività. Disegnare le lettere dell alfabeto su un cartellone (in modo preciso, utilizzando la carta a quadretti). Chiedere agli alunni di individuare assi di simmetria, centro di simmetria, lettere invarianti per rotazioni. Link: Simmetria, lettere e specchi
17 Attività. I polimini. Sono poligoni costituiti da quadrati che hanno a due a due un lato in comune. i duomini sono costituiti da due quadrati; i trimini da tre; i quadrimini da quattro; i pentamini da cinque;... Due polimini sono diversi se non ci sono movimenti rigidi (riflessione, rotazione, traslazione) che mandano uno nell altro.
18 Ci sono: un monomino; un duomino; due trimini; cinque quadrimini; dodici pentamini.
19 Con i dodici polimini si possono ricoprire rettangoli 3x20, 5x12, 6x10, 4x15. Non si può ricoprire un quadrato, a meno che non si lascino quattro quadretti liberi:
20 Il gioco consiste nel riempire una scacchiera 8x8, collocando un pentamino a turno. Perde chi non riesce a collocare più nessun pezzo (senza sovrapporlo ad altri e senza uscire dalla scacchiera).
21 8.2 Le omotetie 8.2 Le omotetie Una omotetia di centro O e rapporto h è una trasformazione del piano che a ogni punto P associa P in modo che OP = h OP. Un omotetia non conserva le distanze: non è una isometria.
22 8.2 Le omotetie Omotetie particolari: che cosa accade se h = 1? E se h = 1?
23 Capitolo 8. Le trasformazioni del piano 8.2 Le omotetie Attivita. Pantografo per l omotetia.
24 8.3 Le similitudini 8.3 Le similitudini Una similitudine è una trasformazione del piano che si ottiene eseguendo una isometria e una omotetia. Due figure sono simili se si corrispondono tramite una similitudine. Due poligoni simili hanno i lati in proporzione e gli angoli corrispondenti congruenti.
25 8.3 Le similitudini Rilevazione Nazionale INValSI 2013/2014, classe V. Le rappresentazioni in scala sono esempi di similitudine.
f : A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che si può invertire.
Consideriamo l insieme P dei punti del piano e una f funzione biiettiva da P in P: f : { P P A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che
TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 1
TRASFORMAZIONI GEOMETRICHE NEL PIANO Parte 1 La geometria è la scienza che studia la forma e l estensione dei corpi e le trasformazioni che questi possono subire. In generale per trasformazione geometrica
Trasformazioni Geometriche 1 Roberto Petroni, 2011
1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni
Similitudine e omotetia nella didattica della geometria nella scuola secondaria di primo grado di Luciano Porta
Similitudine e omotetia nella didattica della geometria nella scuola secondaria di primo grado di Luciano Porta Il concetto di similitudine è innato: riconosciamo lo stesso oggetto se è più o meno distante
geometriche. Parte Sesta Trasformazioni isometriche
Parte Sesta Trasformazioni isometriche In questa sezione di programma di matematica parliamo della geometria delle trasformazioni che studia le figure geometriche soggette a movimenti. Tali movimenti,
Osservazioni sulla prima prova intermedia
Avviso Istituzioni di matematiche 2 Diego Noja ([email protected]) 28 aprile 2009 La seconda prova intermedia si svolgerà martedì 26 maggio 2008, dalle 16.30 alle 18.30 Cognomi dalla A alla L: aula
SCHEDA M MOSAICI CLASSIFICARE CON LA SIMMETRIA
SCHEDA M MOSAICI CLASSIFICARE CON LA SIMMETRIA Qui sotto avete una griglia, che rappresenta una normale quadrettatura, come quella dei quaderni a quadretti; nelle attività che seguono dovrete immaginare
Progetto Pilota Valutazione della scuola italiana. Anno Scolastico 2002 2003 PROVA DI MATEMATICA. Scuola Secondaria Superiore.
Gruppo di lavoro per la predisposizione degli indirizzi per l attuazione delle disposizioni concernenti la valutazione del servizio scolastico Progetto Pilota Valutazione della scuola italiana Anno Scolastico
Le trasformazioni geometriche
Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni affini del piano o affinità Le similitudini Le isometrie Le traslazioni Le rotazioni Le simmetrie assiale e centrale Le omotetie
Geometria in movimento:
Geometria in movimento: alla scoperta di invarianti Aspetti teorici e didattici della geometria delle trasformazioni, con l utilizzo di materiale manipolabile e GeoGebra INCONTRI DI FORMAZIONE C.R.S.E.M.
Parte Seconda. Geometria
Parte Seconda Geometria Geometria piana 99 CAPITOLO I GEOMETRIA PIANA Geometria: scienza che studia le proprietà delle figure geometriche piane e solide, cioè la forma, l estensione e la posizione dei
LEZIONI CON I PAD Docente scuola secondaria IC Moglia Carla Casareggio Classi seconde 2014/2015 Proprietà triangoli e quadrilateri con Sketchometry
LEZIONI CON I PAD Docente scuola secondaria IC Moglia Carla Casareggio Classi seconde 2014/2015 Proprietà triangoli e quadrilateri con Sketchometry La costruzione di figure geometriche al computer con
LABORATORIO DI MACCHINE MATEMATICHE: SIMMETRIA ASSIALE
LABORATORIO DI MACCHINE MATEMATICHE: SIMMETRIA ASSIALE Anno Scolastico 20010/2011 Classe 1^C dell Istituto comprensivo G. Parini plesso Ghittoni di San Giorgio- Piacenza Docente della Classe : Paola Farroni
APPUNTI DI MATEMATICA GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1)
GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1) Un ente (geometrico) è un oggetto studiato dalla geometria. Per descrivere gli enti vengono utilizzate delle definizioni. Una definizione è una
TITOLO ESPERIENZA: POLIMINI
TITOLO ESPERIENZA: POLIMINI FIGURE COMPOSTE DALL'UNIONE DI QUADRATI PER APPROFONDIRE IN MODO PRATICO E GIOCOSO TEMI COME L'EQUIVALENZA DELLE FIGURE PIANE, L'ISOPERIMETRIA, LE ISOMETRIE CHE PORTANO A FAR
PRIMA DI SVOLGERE GLI ESERCIZI RIPASSA GLI ARGOMENTI SUL LIBRO E GLI APPUNTI SUL QUADERNO.
Compiti di matematica e scienze a. s. 2014 2015 classe 2 M da fare su un unico quaderno Alcuni esercizi vanno svolti sul quaderno. Il quaderno e la scheda verranno ritirati al ritorno dalle vacanze PRIMA
Che tipo di linee riconosci in questi quadri? Ripassale con una matita colorata e, con la stessa tinta, colora il pallino corrispondente.
Linee Che tipo di linee riconosci in questi quadri? Ripassale con una matita colorata e, con la stessa tinta, colora il pallino corrispondente. a. curva spezzata retta mista aperta chiusa b. curva spezzata
Contenuti del corso. Istituzioni di matematiche 2. Misura, proporzionalità, similitudine. Isometrie. Diego Noja (diego.noja@unimib.
Istituzioni di matematiche 2 Diego Noja ([email protected]) 9 marzo 2009 Contenuti del corso CDL Scienze della Formazione Primaria Istituzioni di matematiche 2 pagina 1 CDL Scienze della Formazione
CORSO DI LAUREA IN INGEGNERIA.
CORSO DI LAUREA IN INGEGNERIA. FOGLIO DI ESERCIZI 4 GEOMETRIA E ALGEBRA LINEARE 2010/11 Esercizio 4.1 (2.2). Determinare l equazione parametrica e Cartesiana della retta dello spazio (a) Passante per i
Geogebra. Numero lati: Numero angoli: Numero diagonali:
TRIANGOLI Geogebra IL TRIANGOLO 1. Fai clic sull icona Ic2 e nel menu a discesa scegli Nuovo punto : fai clic all interno della zona geometria e individua il punto A. Fai di nuovo clic per individuare
Costruzioni sulla carta a
Avviso Istituzioni di matematiche 2 Diego Noja ([email protected]) 7 aprile 2009 La prima prova intermedia si svolgerà: martedì 20 aprile 2009, dalle 16.30 alle 18.30 Cognomi dalla A alla L: aula U6-06
LabM@t. Lucio Lombardo Radice. Maria Angela Grisanti 9/12/2009
LabM@t Perché, per controllare quello che gli allievi hanno imparato, non fate in classe un ora di giochi invece di interrogare? Giocare bene significa avere gusto per la precisione, amore per la lingua,
Alla ricerca del rettangolo più bello
Alla ricerca del rettangolo più bello Livello scolare: biennio Abilità interessate Individuare nel mondo reale situazioni riconducibili alla similitudine e descrivere le figure con la terminologia specifica.
Quesito 1 Piano cartesiano. Quesito 2 Equazioni. Quesito 3 Geometria solida. Quesito 4 Leggi di Ohm. x x x
Esame di stato scuola media Esempio di tema d esame 002 UbiMath - 1 Quesito 1 Piano cartesiano Fissando come unità di misura il metro (1 cm = 1 m = unità di misura) rappresenta in un piano cartesiano ortogonale
TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA PRIMARIA
SCUOLA PRIMARIA DI CORTE FRANCA MATEMATICA CLASSE QUINTA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA PRIMARIA L ALUNNO SVILUPPA UN ATTEGGIAMENTO POSITIVO RISPETTO ALLA MATEMATICA,
Rilevazione degli apprendimenti
Rilevazione degli apprendimenti Anno Scolastico 00-0 PROVA DI MATEMATIA Scuola secondaria di II grado lasse... Studente... Simulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato
Con carta e forbici alla scoperta del paese Geometria
Con carta e forbici alla scoperta del paese Geometria Anna Asti Enrica Ventura La parola non serve a nulla, il disegno non basta, è necessaria l azione perché il bambino giunga a combinare delle operazioni
Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26
Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo
MODULO 3/4 - TRASFORMAZIONI GEOMETRICHE - (Supporto didattico)
MODULO 3/4 - TRASFORMAZIONI GEOMETRICHE - (Supporto didattico) 1. Alcuni obiettivi da far conseguire agli alunni entro la quinta classe della scuola primaria riguardano sostanzialmente un capitolo della
Matematica e giochi di gruppo
Matematica e giochi di gruppo Possiamo riempire di contenuti matematici situazioni di piccola sfida personale, situazioni di giochi di società. Di seguito proponiamo attività che affrontano i seguenti
INdAM QUESITI A RISPOSTA MULTIPLA
INdAM Prova scritta per il concorso a 40 borse di studio, 2 borse aggiuntive e a 40 premi per l iscrizione ai Corsi di Laurea in Matematica, anno accademico 2011/2012. Piano Lauree Scientifiche. La prova
Rette e piani con le matrici e i determinanti
CAPITOLO Rette e piani con le matrici e i determinanti Esercizio.. Stabilire se i punti A(, ), B(, ) e C(, ) sono allineati. Esercizio.. Stabilire se i punti A(,,), B(,,), C(,, ) e D(4,,0) sono complanari.
Esempi di funzione. Scheda Tre
Scheda Tre Funzioni Consideriamo una legge f che associa ad un elemento di un insieme X al più un elemento di un insieme Y; diciamo che f è una funzione, X è l insieme di partenza e X l insieme di arrivo.
CURRICOLO MATEMATICA ABILITA COMPETENZE
CURRICOLO MATEMATICA 1) Operare con i numeri nel calcolo aritmetico e algebrico, scritto e mentale, anche con riferimento a contesti reali. Per riconoscere e risolvere problemi di vario genere, individuando
Andrea Pagano, Laura Tedeschini Lalli
3.5 Il toro 3.5.1 Modelli di toro Modelli di carta Esempio 3.5.1 Toro 1 Il modello di toro finito che ciascuno può costruire è ottenuto incollando a due a due i lati opposti di un foglio rettangolare.
LIVELLO STUDENT S1. S2. S3. S4. S5. S6.
LIVELLO STUDENT S1. (5 punti ) La figura mostra due quadrati uguali che hanno in comune esattamente un vertice. È possibile precisare la misura dell'angolo ABC? S2. (7 punti ) Negli usuali fogli (rettangolari)
LE TRASFORMAZIONI GEOMETRICHE NEL PIANO
LE TRASFORMAZIONI GEOMETRICHE NEL PIANO Una trasformazione geometrica è una funzione che fa corrispondere a ogni punto del piano un altro punto del piano stesso Si può pensare come MOVIMENTO di punti e
LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A
LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 6/7 SIMULAZIONE DI II PROVA - A Tempo a disposizione: cinque ore E consentito l uso della calcolatrice non programmabile. Non è consentito uscire dall aula
GLI ANGOLI. Ricordiamo insieme: ogni volta che una linea spezzata, chiusa o aperta, cambia orientamento si forma un angolo.
GLI ANGOLI Ricordiamo insieme: ogni volta che una linea spezzata, chiusa o aperta, cambia orientamento si forma un angolo. A. Osserva questa linea spezzata aperta e continua tu a colorare gli angoli, come
I TRIANGOLI Un triangolo è un poligono con tre lati e tre angoli.
I TRIANGOLI Un triangolo è un poligono con tre lati e tre angoli. In ogni triangolo un lato è sempre minore della somma degli altri due e sempre maggiore della loro differenza. Relazione fra i lati di
LA GRAFICA E LA GEOMETRIA OPERATIVA
LA GRAFICA E LA GEOMETRIA OPERATIVA La geometria operativa, contrariamente a quella descrittiva basata sulle regole per la rappresentazione delle forme geometriche, prende in considerazione lo spazio racchiuso
ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004
ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 004 Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PRBLEMA Sia la curva d equazione: ke ove k e
VERIFICA DELLA LEGGE DI MALUS E MISURA DELLA CONCENTRAZIONE DI UNA SOLUZIONE CON DUE POLAROIDI
VERIFICA DELLA LEGGE DI MALUS E MISURA DELLA CONCENTRAZIONE DI UNA SOLUZIONE CON DUE POLAROIDI A) VERIFICA DELLA LEGGE DI MALUS L intensità luminosa trasmessa da un sistema costituito da due polaroidi
Mete e coerenze formative. Dalla scuola dell infanzia al biennio della scuola secondaria di II grado
Mete e coerenze formative Dalla scuola dell infanzia al biennio della scuola secondaria di II grado Area disciplinare: Area Matematica Finalità Educativa Acquisire gli alfabeti di base della cultura Disciplina
ASSIOMI DELLA GEOMETRIA RAZIONALE
ASSIOMI DELLA GEOMETRIA RAZIONALE ASSIOMI DI APPARTENENZA A1 Per ogni coppia di punti A e B di un piano π esiste ed è unica la retta che li contiene. A2 Data nel piano π una retta r esistono almeno due
Trasformazioni nello spazio Grafica 3d
Trasformazioni nello spazio Grafica 3d Giancarlo RINALDO [email protected] Dipartimento di Matematica Università di Messina Trasformazioni nello spaziografica 3d p. 1 Introduzione In questa lezione
CONVESSITÀ NELLA GEOMETRIA DEL TAXI DI MINKOWSKI
CONVESSITÀ NELLA GEOMETRIA DEL TAXI DI MINKOWSKI ELISABETTA AVIZZANO NICOLETTA CAPOTORTO CHIARA CEROCCHI GIORGIO CICCARELLA IVAN COLAVITA EMANUELE DI CARO SERENA NUNZIATA AMANDA PISELLI ANDREA PIEPOLI
Vertici opposti. Fig. C6.1 Definizioni relative ai quadrilateri.
6. Quadrilateri 6.1 efinizioni Un poligono di 4 lati è detto quadrilatero. I lati di un quadrilatero che hanno un vertice in comune sono detti consecutivi. I lati di un quadrilatero non consecutivi tra
Geometria TERESA GENOVESE LORENZA MANZONE BERTONE GIORGIO RINALDI. S. Lattes & C. Editori SpA - Vietata la vendita e la diffusione
Geometria TERES GENESE LRENZ MNZNE ERTNE GIRGI RINLDI LIR MIST PRGETT Geometria TERES GENESE LRENZ MNZNE ERTNE GIRGI RINLDI Redazione: puntoacapo - Torino Impaginazione: entro Grafico Meridionale - Napoli
ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.
ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. Prerequisiti I radicali Risoluzione di sistemi di equazioni di primo e secondo grado. Classificazione e dominio delle funzioni algebriche Obiettivi minimi Saper
LE TRASFORMAZIONI GEOMETRICHE
Lezione 8 3/11/2017 LE TRASFORMAZIONI GEOMETRICHE Narciso di Caravaggio I sette tipi di fregi TRASFORMARE Ogni giorno facciamo esperienza di trasformazioni nello spazio: ci si sposta nello spazio si
Soluzioni del Certamen Mathematicum
Soluzioni del Certamen Mathematicum dicembre 2004 1. Notiamo che un qualsiasi quadrato modulo 4 è sempre congruo o a 0 o a 1. Infatti, se tale numero è pari possiamo scriverlo come 2k, seè dispari invece
LE TRASFORMAZIONI GEOMETRICHE
pag. 1 LE TRASFORMAZIONI GEOMETRICHE Trasformazione geometrica Movimento rigido Traslazione Simmetria Costruzione di due punti simmetrici rispetto ad una retta Poligoni aventi assi di simmetria Rotazione
FUNZIONE. Si scrive: A B f: A B x y=f(x) (si legge: f funzione da A in B) x f y= f(x)
1 FUNZIONE Dati gli insiemi A e B, si definisce funzione da A in B una relazione o legge o corrispondenza che ad ogni elemento di A associa uno ed un solo elemento di B. Si scrive: A B f: A B f() (si legge:
Seminario di didattica 1
Seminario di didattica - Contents Seminario di didattica 1 Alessia Bonanini, Alessio Cirimele, Alice Bottaro, Laura Spada, Laura Tarigo 28 maggio 2012 1 Seminario di didattica - Contents Indice Introduzione...................................
ISTITUTO COMPRENSIVO DEL CHIESE
ISTITUTO COMPRENSIVO DEL CHIESE Piano di studio di istituto di Matematica Competenza 1 al termine del 4 biennio (seconda e terza media) Strumenti 1)Utilizzare con sicurezza le tecniche e le procedure del
GEOGEBRA I OGGETTI GEOMETRICI
GEOGEBRA I OGGETTI GEOMETRICI PROPRIETA : Finestra Proprietà (tasto destro mouse sull oggetto) Fondamentali: permette di assegnare o cambiare NOME, VALORE, di mostrare nascondere l oggetto, di mostrare
GEOMETRIA DELLE MASSE
1 DISPENSA N 2 GEOMETRIA DELLE MASSE Si prende in considerazione un sistema piano, ossia giacente nel pian x-y. Un insieme di masse posizionato nel piano X-Y, rappresentato da punti individuati dalle loro
Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete.
I triangoli e i criteri di congruenza Diapositive riassemblate e rielaborate da prof. ntonio Manca da materiali offerti dalla rete. ontributi di: tlas editore, matematicamente, Prof.ssa. nnamaria Iuppa,
Lavoro individuale: leggi attentamente il testo e completa il testo che trovi al termine del stesso. (10 )
Testo 1: Lavoro individuale: leggi attentamente il testo e completa il testo che trovi al termine del stesso. (10 ) Lavoro di gruppo T1: discuti assieme ai tuoi compagni il significato di quanto hai letto
Primo allenamento per i Giochi Kangourou della Matematica
Primo allenamento per i Giochi Kangourou della Matematica Per gli alunni di prima e seconda media i quesiti sono dal numero 1 al numero 11 Per gli alunni di terza media i quesiti sono dal numero 7 al numero
Corso di Laurea in Scienze della Formazione Primaria Università di Genova MATEMATICA Il
Lezione 5:10 Marzo 2003 SPAZIO E GEOMETRIA VERBALE (a cura di Elisabetta Contardo e Elisabetta Pronsati) Esercitazione su F5.1 P: sarebbe ottimale a livello di scuola dell obbligo, fornire dei concetti
Dalla geometria in 3D alla geometria in 2D dal cubo al quadrato
Dalla geometria in 3D alla geometria in 2D dal cubo al quadrato Firenze, 5 maggio 2013 Scuola Città Pestalozzi 8 SEMINARIO NAZIONALE SUL CURRICOLO VERTICALE Classe prima e seconda Paola Bertini, Antonio
I Giochi di Archimede - Soluzioni Biennio 22 novembre 2012
PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE I Giochi di Archimede - Soluzioni Biennio novembre 0 Griglia delle risposte corrette Problema Risposta
Progetto Pilota Valutazione della scuola italiana. Anno Scolastico 2003 2004 PROVA DI MATEMATICA. Scuola Elementare. Classe Quarta. Codici.
Ministero dell Istruzione, dell Università e della Ricerca Gruppo di lavoro per la predisposizione degli indirizzi per l attuazione delle disposizioni concernenti la valutazione del servizio scolastico
Classe seconda scuola primaria
Classe seconda scuola primaria Il percorso di seconda cerca di approfondire le differenze tra le principali proprietà delle figure geometriche solide, in particolare il cubo, e di creare attività di osservazione
MATEMATICA 5 PERIODI
BAC EUROPEO 2008 MATEMATICA 5 PERIODI DATA 5 giugno 2008 DURATA DELL ESAME : 4 ore (240 minuti) MATERIALE AUTORIZZATO Formulario delle scuole europee Calcolatrice non grafica e non programmabile AVVERTENZE
Disegno in quadretti le parti da calcolare; se capisco quanto vale un quadretto è fatta.
CLASSE III C RECUPERO GEOMETRIA AREA PERIMETRO POLIGONI Disegno in quadretti le parti da calcolare; se capisco quanto vale un quadretto è fatta. ES: se ho fatto questo disegno e so che 1 quadretto vale
giocare con le forme
IS science centre immaginario scientifico Laboratorio dell'immaginario Scientifico - Trieste tel. 040224424 - fax 040224439 - e-mail: [email protected] - www.immaginarioscientifico.it indice A caccia
Appunti sul galleggiamento
Appunti sul galleggiamento Prof.sa Enrica Giordano Corso di Didattica della fisica 1B a.a. 2006/7 Ad uso esclusivo degli studenti frequentanti, non diffondere senza l autorizzazione della professoressa
ISTITUTO COMPRENSIVO MONTEGROTTO TERME SCUOLA PRIMARIA DISCIPLINA: MATEMATICA - CLASSE PRIMA OBIETTIVI DI APPRENDIMENTO
PRIMA DELLA DISCIPLINA: MATEMATICA - CLASSE PRIMA L alunno si muove con sicurezza nel calcolo scritto e mentale con i numeri naturali. Legge e comprende testi che coinvolgono aspetti logici e matematici.
Scuola Primaria di Lierna. Classe 5^ a.s. 2014/2015. Insegnante: Maglia Elena. U.A. di MATEMATICA UN MONDO DI NUMERI
Scuola Primaria di Lierna Classe 5^ a.s. 2014/2015 Insegnante: Maglia Elena U.A. di MATEMATICA UN MONDO DI NUMERI Conoscere i numeri fino al periodo dei miliardi Storia, geografia, scienze e tecnologia
Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...
Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.
PROVA INVALSI Scuola Secondaria di I grado Classe Prima
SNV 2010-2011; SNV 2011-2012; SNV 2012-2013 SPAZIO E FIGURE SNV 2011 10 quesiti su 29 (12 item di cui 6 a risposta aperta) SNV 2012 11 quesiti su 30 (13 item di cui 2 a risposta aperta) SNV 2013 9 quesiti
Elementi di Geometria. Lezione 03
Elementi di Geometria Lezione 03 I triangoli I triangoli sono i poligoni con tre lati e tre angoli. Nelle rappresentazioni grafiche (Figura 32) i vertici di un triangolo sono normalmente contrassegnati
la restituzione prospettica da singolo fotogramma
la restituzione prospettica da singolo fotogramma arch. francesco guerini [email protected] politecnico di Milano, Facoltà di Architettura e Società Laboratorio di Rappresentazione 1 Prof. Andrea
Liceo Scientifico F. Lussana Bergamo Programma di MATEMATICA A.S. 2014/2015 Classe 3 A C Prof. Matteo Bonetti. Equazioni e Disequazioni
Liceo Scientifico F. Lussana Bergamo Programma di MATEMATICA A.S. 2014/2015 Classe 3 A C Prof. Matteo Bonetti Equazioni e Disequazioni Ripasso generale relativo alla risoluzione di equazioni, disequazioni,
ACCOMPAGNAMENTO ALLE INDICAZIONI NAZIONALI- MIUR 2012 MATEMATICA. Nodo concettuale disciplinare
ACCOMPAGNAMENTO ALLE INDICAZIONI NAZIONALI- MIUR 2012 CURRICOLO VERTICALE MATEMATICA NUCLEO TEMATICO SPAZIO E FIGURE Nodo concettuale disciplinare DESCRIVERE E RAPPRESENTARE LE FORME E LO SPAZIO (Daniela
A.S. 2012-1013 CLASSE PRIMA SCUOLA PRIMARIA D ISTITUTO COMPETENZA CHIAVE EUROPEA DISCIPLINA
ISTITUTO COMPRENSIVO STATALE di Scuola dell Infanzia, Scuola Primaria e Scuola Secondaria di 1 grado San Giovanni Teatino (CH) CURRICOLO A.S. 2012-1013 CLASSE PRIMA SCUOLA PRIMARIA OBIETTIVI DI Sviluppa
MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).
MATEMATICA 2001 66. Quale fra le seguenti affermazioni è sbagliata? A) Tutte le funzioni ammettono la funzione inversa B) Una funzione dispari è simmetrica rispetto all origine C) Una funzione pari è simmetrica
Forze come grandezze vettoriali
Forze come grandezze vettoriali L. Paolucci 23 novembre 2010 Sommario Esercizi e problemi risolti. Per la classe prima. Anno Scolastico 2010/11 Parte 1 / versione 2 Si ricordi che la risultante di due
Capitolo 3. Iniziamo col far vedere cosa si è ottenuto, per far comprendere le successive descrizioni, avendo in mente ciò che si vuole realizzare.
Realizzazione meccanica Iniziamo col far vedere cosa si è ottenuto, per far comprendere le successive descrizioni, avendo in mente ciò che si vuole realizzare. - 37 - 3.1 Reperibilità dei pezzi La prima
SIMULAZIONE QUARTA PROVA: MATEMATICA
SIMULAZIONE QUARTA PROVA: MATEMATICA COGNOME: NOME: TEMPO IMPIEGATO: VOTO: TEMPO DELLA PROVA = 44 (a fianco di ogni quesito si trova il tempo consigliato per lo svolgimento dell esercizio). PUNTEGGIO TOTALE
PROGRAMMA di MATEMATICA
Liceo Scientifico F. Lussana - Bergamo PROGRAMMA di MATEMATICA Classe 3^ I a.s. 2014/15 - Docente: Marcella Cotroneo Libro di testo : Leonardo Sasso "Nuova Matematica a colori 3" - Petrini Ore settimanali
CAPITOLO VII USO DELLA CARTA TOPOGRAFICA
CAPITOLO VII USO DELLA CARTA TOPOGRAFICA LA CARTA TOPOGRAFICA 88. La carta topografica è una rappresentazione grafica di una parte più o meno ampia della superficie terrestre in una determinata scala.
Piano Lauree Scientifiche 2012/2013. Liceo Scientifico Renato Caccioppoli Napoli Napoli
Piano Lauree Scientifiche 2012/2013 Liceo Scientifico Renato Caccioppoli Napoli Napoli Pitagora utilizzando l inversione circolare Euclide e Gli Elementi Negli Elementi Euclide parte da postulati formula
UBI MATH. Matematica per il tuo futuro ARITMETICA 1
Ubaldo Pernigo Marco Tarocco UBI MATH Matematica per il tuo futuro ARITMETICA Sommario contenuti digitali integrativi unità Gli insiemi Gli insiemi e la loro rappresentazione 2 Prime competenze 4 2 I sottoinsiemi
Relazione attività in classe sul Teorema di Pitagora
Relazione attività in classe sul Teorema di Pitagora Lez. 2/04. Prima Lezione A.S. 2011/2012 Insegnante: Siamo nel VI secolo a.c. in Grecia. In questo periodo visse Pitagora che nacque a Samo e vi restò
METODI E TECNOLOGIE PER L INSEGNAMETO DELLA MATEMATICA. LEZIONE n 13
METODI E TECNOLOGIE PER L INSEGNAMETO DELLA MATEMATICA LEZIONE n 13 Parte terza TRASFORMAZIONI GEOMETRICHE Dalle indicazioni nazionali: Descrivere, denominare e classificare figure geometriche, identificando
LINEE, SPAZI E FIGURE GEOMETRICHE, UN PERCORSO ATTRAVERSO L ARTE
LINEE, SPAZI E FIGURE GEOMETRICHE, UN PERCORSO ATTRAVERSO L ARTE Per cominciare Prepariamo una serie di pannelli, con fogli di carta da pacco, sui quali raccogliere le esperienze e le osservazioni: un
ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA. A. Concetti e proprietà di base del sistema dei numeri della matematica ( ) + 64 7 10 :5
ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA PER IL CORSO DI LAUREA IN SCIENZE DELLA FORMAZIONE PRIMARIA Ana Millán Gasca Luigi Regoliosi La lettura e lo studio del libro Pensare in matematica da parte degli
Vincere a testa o croce
Vincere a testa o croce Liceo Scientifico Pascal Merano (BZ) Classe 2 Liceo Scientifico Tecnologico Insegnante di riferimento: Maria Elena Zecchinato Ricercatrice: Ester Dalvit Partecipanti: Jacopo Bottonelli,
La composizione di isometrie
La composizione di isometrie Quello che è più interessante in una trasformazione geometrica è studiare quali effetti ha sulle figure e soprattutto valutare quali proprietà delle figure di partenza si conservano
Utilizzo del foglio di lavoro con gli strumenti di disegno di Excel
Utilizzo del foglio di lavoro con gli strumenti di disegno di Excel Geometra Luigi Amato Guida Avanzata per immagini Excel 2000 1 Presentazione della barra degli strumenti di disegno La barra degli strumenti
I quesiti di Matematica per la classe di concorso A059
I quesiti di Matematica per la classe di concorso A059 Prof. Michelangelo Di Stasio Liceo Scientifico Statale Galileo Galilei di Piedimonte Matese (CE) [email protected] SOMMARIO Si propone la
Introduzione al 3D con Autocad
2 Introduzione al 3D con Autocad Coso di CAD B condotto da Daniela Sidari a.a. 2012/2013 19.02.2013 Modellazione geometrica 3D wireframe superfici solidi Si distinguono tre tecniche principali di modellazione:
Unità Didattica N 28 Punti notevoli di un triangolo
68 Unità Didattica N 8 Punti notevoli di un triangolo Unità Didattica N 8 Punti notevoli di un triangolo 0) ircocentro 0) Incentro 03) Baricentro 04) Ortocentro Pagina 68 di 73 Unità Didattica N 8 Punti
Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...
Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.
le figure geometriche piane.
Il progetto sperimentale nella classe terza: le figure geometriche piane. In classe terza si è deciso di continuare con l approccio laboratoriale allo studio della geometria e quindi il progetto è stato
12. Le date possono essere scritte in forma numerica usando le otto cifre. Per esempio, il 19 gennaio 2005 può essere scritto come 19-01-2005.
Logica matematica 12. Le date possono essere scritte in forma numerica usando le otto cifre. Per esempio, il 19 gennaio 2005 può essere scritto come 19-01-2005. In quale anno cadrà la prossima data nella
