Trasformazioni nello spazio Grafica 3d
|
|
|
- Graziano Paoletti
- 10 anni fa
- Visualizzazioni
Transcript
1 Trasformazioni nello spazio Grafica 3d Giancarlo RINALDO Dipartimento di Matematica Università di Messina Trasformazioni nello spaziografica 3d p. 1
2 Introduzione In questa lezione estenderemo quanto detto nella precedente lezione allo spazio a 3 dimensioni. In particolare I punti in coordinate omogenee avranno 4 coordinate (x,y,z, 1); Trasformazioni nello spaziografica 3d p. 2
3 Introduzione In questa lezione estenderemo quanto detto nella precedente lezione allo spazio a 3 dimensioni. In particolare I punti in coordinate omogenee avranno 4 coordinate (x,y,z, 1); Alle trasformazioni saranno associate matrici 4 4. Trasformazioni nello spaziografica 3d p. 2
4 Introduzione In questa lezione estenderemo quanto detto nella precedente lezione allo spazio a 3 dimensioni. In particolare I punti in coordinate omogenee avranno 4 coordinate (x,y,z, 1); Alle trasformazioni saranno associate matrici 4 4. La rappresentazione su un piano dovrà essere effettuata tramite una proiezione. Trasformazioni nello spaziografica 3d p. 2
5 Introduzione In questa lezione estenderemo quanto detto nella precedente lezione allo spazio a 3 dimensioni. In particolare I punti in coordinate omogenee avranno 4 coordinate (x,y,z, 1); Alle trasformazioni saranno associate matrici 4 4. La rappresentazione su un piano dovrà essere effettuata tramite una proiezione. In un primo momento visualizzeremmo sul nostro schermo solo le coordinate x, y, scartando la z, successivamente considereremo le proiezioni. Trasformazioni nello spaziografica 3d p. 2
6 Orientamento Trasformazioni nello spaziografica 3d p. 3
7 Orientamento Nel proseguio considereremo il nostro spazio in un sistema di coordinate cartesiane ortogonali, cioè tali che x y, x z, y z. Trasformazioni nello spaziografica 3d p. 3
8 Orientamento Nel proseguio considereremo il nostro spazio in un sistema di coordinate cartesiane ortogonali, cioè tali che x y, x z, y z. Inoltre orienteremo i nostri assi nel seguente modo: se x e y sono disegnati nel modo standard sul nostro schermo, allora l asse z sarà perpendicolare al piano (schermo) ed uscente nella nostra direzione. Trasformazioni nello spaziografica 3d p. 3
9 Orientamento Nel proseguio considereremo il nostro spazio in un sistema di coordinate cartesiane ortogonali, cioè tali che x y, x z, y z. Inoltre orienteremo i nostri assi nel seguente modo: se x e y sono disegnati nel modo standard sul nostro schermo, allora l asse z sarà perpendicolare al piano (schermo) ed uscente nella nostra direzione. Analogamente possiamo usare la regola della mano destra : si punta il pollice nella direzione dell asse x, l indice in quella dell asse y, il medio dà la direzione dell asse z. Trasformazioni nello spaziografica 3d p. 3
10 Traslazione nello spazio Trasformazioni nello spaziografica 3d p. 4
11 Traslazione nello spazio I punti nello spazio xyz possono essere traslati in una nuova posizione aggiungendo le quantità, T x, T y, T z, cioè considerando la trasformazione: Trasformazioni nello spaziografica 3d p. 4
12 Traslazione nello spazio I punti nello spazio xyz possono essere traslati in una nuova posizione aggiungendo le quantità, T x, T y, T z, cioè considerando la trasformazione: (x,y,z, 1) = T x T y T z x y z 1 Trasformazioni nello spaziografica 3d p. 4
13 Traslazione nello spazio I punti nello spazio xyz possono essere traslati in una nuova posizione aggiungendo le quantità, T x, T y, T z, cioè considerando la trasformazione: (x,y,z, 1) = T x T y T z Ovviamente l applicazione di una traslazione di T z unità, non ha effetto apparente sul nostro schermo. x y z 1 Trasformazioni nello spaziografica 3d p. 4
14 Scala. Trasformazioni nello spaziografica 3d p. 5
15 Scala Anche i punti nello spazio possono essere scalati (stirati/accorciati) di un fattore S x lungo l asse x, di un fattore S y lungo l asse y e di un fattore S z lungo l asse z. Trasformazioni nello spaziografica 3d p. 5
16 Scala Anche i punti nello spazio possono essere scalati (stirati/accorciati) di un fattore S x lungo l asse x, di un fattore S y lungo l asse y e di un fattore S z lungo l asse z. La trasformazione è data da: (x,y,z, 1) = S x S y S z x y z 1 Trasformazioni nello spaziografica 3d p. 5
17 Scala Anche i punti nello spazio possono essere scalati (stirati/accorciati) di un fattore S x lungo l asse x, di un fattore S y lungo l asse y e di un fattore S z lungo l asse z. La trasformazione è data da: (x,y,z, 1) = S x S y S z Anche in questo caso l applicazione di una scala S z, non ha effetto apparente sul nostro schermo. x y z 1 Trasformazioni nello spaziografica 3d p. 5
18 Scala Anche i punti nello spazio possono essere scalati (stirati/accorciati) di un fattore S x lungo l asse x, di un fattore S y lungo l asse y e di un fattore S z lungo l asse z. La trasformazione è data da: (x,y,z, 1) = S x S y S z Anche in questo caso l applicazione di una scala S z, non ha effetto apparente sul nostro schermo. x y z 1 Trasformazioni nello spaziografica 3d p. 5
19 Rotazione R z La rotazione in 2D non è altro che la rotazione rispetto all asse z, R z. Dunque essa avrà la forma: Trasformazioni nello spaziografica 3d p. 6
20 Rotazione R z La rotazione in 2D non è altro che la rotazione rispetto all asse z, R z. Dunque essa avrà la forma: cos θ sinθ 0 0 x (x,y,z, 1) = sinθ cos θ 0 0 y z Trasformazioni nello spaziografica 3d p. 6
21 Rotazioni R x, R y La rotazione rispetto all asse x, R x, sarà: Trasformazioni nello spaziografica 3d p. 7
22 Rotazioni R x, R y La rotazione rispetto all asse x, R x, sarà: (x,y,z, 1) = 0 cosθ sin θ 0 0 sin θ cosθ x y z 1 Trasformazioni nello spaziografica 3d p. 7
23 Rotazioni R x, R y La rotazione rispetto all asse x, R x, sarà: (x,y,z, 1) = 0 cosθ sin θ 0 0 sin θ cosθ x y z 1 La rotazione rispetto all asse y, R y, sarà: (x,y,z, 1) = cosθ 0 sinθ sin θ 0 cos θ x y z 1 Trasformazioni nello spaziografica 3d p. 7
24 Una traslazione utile Proviamo ad effettuare la seguente traslazione Trasformazioni nello spaziografica 3d p. 8
25 Una traslazione utile Proviamo ad effettuare la seguente traslazione x (x,y,z, 1) = y z Trasformazioni nello spaziografica 3d p. 8
26 Esercizi Ruotare la casa rispetto al suo centro di simmetria tramite R x, R y ed R z ; Trasformazioni nello spaziografica 3d p. 9
27 Esercizi Ruotare la casa rispetto al suo centro di simmetria tramite R x, R y ed R z ; Ruotare la casa rispetto ad un suo lato (che dunque giace su un asse di rotazione); Trasformazioni nello spaziografica 3d p. 9
28 Esercizi Ruotare la casa rispetto al suo centro di simmetria tramite R x, R y ed R z ; Ruotare la casa rispetto ad un suo lato (che dunque giace su un asse di rotazione); Scalare la casa rispetto al suo centro di simmetria; Trasformazioni nello spaziografica 3d p. 9
29 Esercizi Ruotare la casa rispetto al suo centro di simmetria tramite R x, R y ed R z ; Ruotare la casa rispetto ad un suo lato (che dunque giace su un asse di rotazione); Scalare la casa rispetto al suo centro di simmetria; Tentare di visualizzare la profondità della casa. Trasformazioni nello spaziografica 3d p. 9
Proiezioni Grafica 3d
Proiezioni Grafica 3d Giancarlo RINALDO [email protected] Dipartimento di Matematica Università di Messina ProiezioniGrafica 3d p. 1 Introduzione Il processo di visualizzazione in 3D è intrinsecamente
Grandezze scalari e vettoriali
Grandezze scalari e vettoriali Esempio vettore spostamento: Esistono due tipi di grandezze fisiche. a) Grandezze scalari specificate da un valore numerico (positivo negativo o nullo) e (nel caso di grandezze
Trasformazioni Geometriche 1 Roberto Petroni, 2011
1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni
4. Proiezioni del piano e dello spazio
4. Proiezioni del piano e dello spazio La visualizzazione di oggetti tridimensionali richiede di ottenere una vista piana dell'oggetto. Questo avviene mediante una sequenza di operazioni. Innanzitutto,
Trasformazioni 2D. Grande differenza rispetto alla grafica raster!
Trasformazioni 2D Il grande vantaggio della grafica vettoriale è che le immagini vettoriali descrivono entità matematiche È immediato manipolare matematicamente tali entità In quasi tutte le manipolazioni
DISEGNO DI MACCHINE APPUNTI DELLE LEZIONI
DISEGNO DI MACCHINE APPUNTI DELLE LEZIONI Lezione 3: Proiezioni Ortogonali con il metodo europeo Francesca Campana Le proiezioni ortogonali Le proiezioni ortogonali descrivono bi-dimensionalmente un oggetto
Test, domande e problemi di Robotica industriale
Test, domande e problemi di Robotica industriale 1. Quale, tra i seguenti tipi di robot, non ha giunti prismatici? a) antropomorfo b) cilindrico c) polare d) cartesiano 2. Un volume di lavoro a forma di
Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica
Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica Terzo Appello del corso di Geometria e Algebra II Parte - Docente F. Flamini, Roma, 7/09/2007 SVOLGIMENTO COMPITO III APPELLO
Trasformazioni geometriche nel piano cartesiano
Trasformazioni geometriche nel piano cartesiano Francesco Biccari 18 marzo 2013 Una trasformazione geometrica del piano è una legge (corrispondenza biunivoca) che consente di associare a un determinato
Le trasformazioni geometriche
Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni affini del piano o affinità Le similitudini Le isometrie Le traslazioni Le rotazioni Le simmetrie assiale e centrale Le omotetie
DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2.
FUNZIONI DI DUE VARIABILI 1 DOMINIO E LIMITI Domini e disequazioni in due variabili. Insiemi di livello. Elementi di topologia (insiemi aperti, chiusi, limitati, convessi, connessi per archi; punti di
GEOGEBRA I OGGETTI GEOMETRICI
GEOGEBRA I OGGETTI GEOMETRICI PROPRIETA : Finestra Proprietà (tasto destro mouse sull oggetto) Fondamentali: permette di assegnare o cambiare NOME, VALORE, di mostrare nascondere l oggetto, di mostrare
CORPO GIREVOLE ATTORNO AD UN ASSE E MOMENTI. TORNA ALL'INDICE
CORPO GIREVOLE ATTORNO AD UN ASSE E MOMENTI. TORNA ALL'INDICE Consideriamo adesso un corpo esteso, formato da più punti, e che abbia un asse fisso, attorno a cui il corpo può ruotare. In questo caso l
Esempi di funzione. Scheda Tre
Scheda Tre Funzioni Consideriamo una legge f che associa ad un elemento di un insieme X al più un elemento di un insieme Y; diciamo che f è una funzione, X è l insieme di partenza e X l insieme di arrivo.
Matematica e Statistica
Matematica e Statistica Prova d esame (0/07/03) Università di Verona - Laurea in Biotecnologie - A.A. 0/3 Matematica e Statistica Prova di MATEMATICA (0/07/03) Università di Verona - Laurea in Biotecnologie
Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni
Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni A cura di Sebastiano Cappuccio SCHEDA N. 6 ARGOMENTO: Grafici di funzioni sottoposte a trasformazioni elementari.
FUNZIONE REALE DI UNA VARIABILE
FUNZIONE REALE DI UNA VARIABILE Funzione: legge che ad ogni elemento di un insieme D (Dominio) tale che D R, fa corrispondere un elemento y R ( R = Codominio ). f : D R : f () = y ; La funzione f(): A
La simmetria centrale
La simmetria centrale Una simmetria centrale di centro O è una isometria che associa al punto O se stesso e ad ogni altro punto P del piano il punto P in modo che O sia il punto medio del segmento PP.
GEOMETRIA DELLE MASSE
1 DISPENSA N 2 GEOMETRIA DELLE MASSE Si prende in considerazione un sistema piano, ossia giacente nel pian x-y. Un insieme di masse posizionato nel piano X-Y, rappresentato da punti individuati dalle loro
Solidi comunque inclinati nello spazio e i sistemi di riferimento ausiliari
Solidi comunque inclinati nello spazio e i sistemi di riferimento ausiliari Alla fine del capitolo saremo in grado di: Operare su forme tridimensionali comunque inclinate nello spazio rispetto ai piani
L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare
L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare Cap.4 giroscopio, magnetismo e forza di Lorentz teoria del giroscopio Abbiamo finora preso in considerazione le condizionidi equilibrio
f : A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che si può invertire.
Consideriamo l insieme P dei punti del piano e una f funzione biiettiva da P in P: f : { P P A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che
Numeri complessi. x 2 = 1.
1 Numeri complessi Nel corso dello studio della matematica si assiste ad una progressiva estensione del concetto di numero. Dall insieme degli interi naturali N si passa a quello degli interi relativi
VERIFICA DI MATEMATICA. CLASSI TERZE (3AS, 3BS, 3CS, 3DS, 3ES) 2 settembre 2013 COGNOME E NOME.. CLASSE.
VERIFIC DI MTEMTIC CLSSI TERZE (S, BS, CS, DS, ES) settembre COGNOME E NOME.. CLSSE. Esercizio In un piano cartesiano ortogonale determinare: a) l equazione della parabola con asse parallelo all asse,
Manuale Operativo per la Compilazione dei Questionari di Valutazione della Didattica
Università degli Studi di Messina Area Sistema Informativo per l'analisi dei Dati e Calcolo Scientifico Settore Supporto Informatico per l'analisi Decisionale di Ateneo Manuale Operativo per la Compilazione
Matteo Moda Geometria e algebra lineare Fasci. Fasci. N.B.: Questo argomento si trova sull eserciziario. Fasci di rette nel piano
Fasci N.B.: Questo argomento si trova sull eserciziario Fasci di rette nel piano 1 Fasci di piani nello spazio 2 Matteo Moda Geometria e algebra lineare Fasci Date due rette r ed r di equazione: : 0 :
Misure di base su una carta. Calcoli di distanze
Misure di base su una carta Calcoli di distanze Per calcolare la distanza tra due punti su una carta disegnata si opera nel modo seguente: 1. Occorre identificare la scala della carta o ricorrendo alle
Laboratorio di Rappresentazione e Modellazione dell Architettura
Laboratorio di Rappresentazione e Modellazione dell Architettura Seconda Università di Napoli Facoltà di Architettura Corso di Laurea in Architettura Laboratorio di Rappresentazione e Modellazione dell
TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 1
TRASFORMAZIONI GEOMETRICHE NEL PIANO Parte 1 La geometria è la scienza che studia la forma e l estensione dei corpi e le trasformazioni che questi possono subire. In generale per trasformazione geometrica
CONI, CILINDRI, SUPERFICI DI ROTAZIONE
CONI, CILINDRI, SUPERFICI DI ROTAZIONE. Esercizi x + z = Esercizio. Data la curva x, calcolare l equazione del cilindro avente γ y = 0 come direttrice e con generatrici parallele al vettore v = (, 0, ).
Prova scritta di Geometria 2 Prof. M. Boratynski
10/9/2008 Es. 1: Si consideri la forma bilineare simmetrica b su R 3 associata, rispetto alla base canonica {e 1, e 2, e 3 } alla matrice 3 2 1 A = 2 3 0. 1 0 1 1) Provare che (R 3, b) è uno spazio vettoriale
Liceo G.B. Vico Corsico
Liceo G.B. Vico Corsico Classe: 3A Materia: MATEMATICA Insegnante: Nicola Moriello Testo utilizzato: Bergamini Trifone Barozzi: Manuale blu.0 di Matematica Moduli S, L, O, Q, Beta ed. Zanichelli 1) Programma
Intorni Fissato un punto sull' asse reale, si definisce intorno del punto, un intervallo aperto contenente e tutto contenuto in
Intorni Fissato un punto sull' asse reale, si definisce intorno del punto, un intervallo aperto contenente e tutto contenuto in Solitamente si fa riferimento ad intorni simmetrici =, + + Definizione: dato
Processo di rendering
Processo di rendering Trasformazioni di vista Trasformazioni di vista Il processo di visione in tre dimensioni Le trasformazioni di proiezione 2 Rendering nello spazio 2D Il processo di rendering (visualizzazione)
Coordinate 3D. Coordinate cartesiane. Coordinate 3D. Coordinate cartesiane. Coordinate cartesiane. Sinistrorsa. Destrorsa
200 Coordinate D Anche nella grafica D gli oggetti da visualiare vengono codificati a partire da primitive che collegano punti. I punti appartengono ad uno spaio tridimensionale. Vengono memoriati utiliando
Capitolo 11. Il disegno in 3D
Capitolo 11 Il disegno in 3D o 11.1 Uso delle coordinate nello spazio o 11.2 Creazione di oggetti in 3D o 11.3 Uso dei piani di disegno in 3D (UCS) o 11.4 Creazione delle finestre di vista o 11.5 Definizione
. Si determina quindi quale distanza viene percorsa lungo l asse y in questo intervallo di tempo: h = v 0y ( d
Esercizio 1 Un automobile viaggia a velocità v 0 su una strada inclinata di un angolo θ rispetto alla superficie terrestre, e deve superare un burrone largo d (si veda la figura, in cui è indicato anche
LE FUNZIONI E LE LORO PROPRIETÀ
LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI REALI DI VARIABILE REALE COSA SONO LE FUNZIONI Dati due sottoinsiemi A e B non vuoti di R, una FUNZIONE da A a B è una relazione che associa ad ogni numero reale
GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω
GIROSCOPIO Scopo dell esperienza: Verificare la relazione: ω p = bmg/iω dove ω p è la velocità angolare di precessione, ω è la velocità angolare di rotazione, I il momento principale d inerzia assiale,
a) Il campo di esistenza di f(x) è dato da 2x 0, ovvero x 0. Il grafico di f(x) è quello di una iperbole -1 1
LE FUNZIONI EALI DI VAIABILE EALE Soluzioni di quesiti e problemi estratti dal Corso Base Blu di Matematica volume 5 Q[] Sono date le due funzioni: ) = e g() = - se - se = - Determina il campo di esistenza
Analisi Matematica di circuiti elettrici
Analisi Matematica di circuiti elettrici Eserciziario A cura del Prof. Marco Chirizzi 2011/2012 Cap.5 Numeri complessi 5.1 Definizione di numero complesso Si definisce numero complesso un numero scritto
AutoCAD 3D. Lavorare nello spazio 3D
AutoCAD 3D Lavorare nello spazio 3D Differenze tra 2D e 3 D La modalità 3D include una direzione in più: la profondità (oltre l altezza e la larghezza) Diversi modi di osservazione Maggiore concentrazione
Fisica quantistica. Introduzione alla polarizzazione e altri sistemi a due livelli. Christian Ferrari. Liceo di Locarno
Fisica quantistica Introduzione alla polarizzazione e altri sistemi a due livelli Christian Ferrari Liceo di Locarno Sommario La polarizzazione della luce e del fotone Altri sistemi a due livelli L evoluzione
LA RETTA. b) se l equazione si presente y=mx+q (dove q è un qualsiasi numero reale) si ha una retta generica del piano.
LA RETTA DESCRIZIONE GENERALE Nella GEOMETRIA ANALITICA si fa sempre un riferimento rispetto al piano cartesiano Oxy; questa riguarda lo studio della retta, delle trasformazioni lineari piane e delle coniche.
Gestione Rapporti (Calcolo Aree)
Gestione Rapporti (Calcolo Aree) L interfaccia dello strumento generale «Gestione Rapporti»...3 Accedere all interfaccia (toolbar)...3 Comandi associati alle icone della toolbar...4 La finestra di dialogo
Andrea Pagano, Laura Tedeschini Lalli
3.5 Il toro 3.5.1 Modelli di toro Modelli di carta Esempio 3.5.1 Toro 1 Il modello di toro finito che ciascuno può costruire è ottenuto incollando a due a due i lati opposti di un foglio rettangolare.
UNIVERSITÀ DEGLI STUDI DI PADOVA Facoltà di Ingegneria sede di Vicenza A.A. 2007/08
UNIVERSITÀ DEGLI STUDI DI PADOVA Facoltà di Ingegneria sede di Vicenza Corso di Disegno Tecnico Industriale per il Corso di Laurea triennale in Ingegneria Meccanica e in Ingegneria Meccatronica Tolleranze
FUNZIONE. Si scrive: A B f: A B x y=f(x) (si legge: f funzione da A in B) x f y= f(x)
1 FUNZIONE Dati gli insiemi A e B, si definisce funzione da A in B una relazione o legge o corrispondenza che ad ogni elemento di A associa uno ed un solo elemento di B. Si scrive: A B f: A B f() (si legge:
geometriche. Parte Sesta Trasformazioni isometriche
Parte Sesta Trasformazioni isometriche In questa sezione di programma di matematica parliamo della geometria delle trasformazioni che studia le figure geometriche soggette a movimenti. Tali movimenti,
Raccomandazione del Parlamento europeo 18/12/2006 CLASSE PRIMA COMPETENZE ABILITÀ CONOSCENZE. Operare con i numeri
COMPETENZA CHIAVE MATEMATICA Fonte di legittimazione Raccomandazione del Parlamento europeo 18/12/2006 CLASSE PRIMA COMPETENZE ABILITÀ CONOSCENZE L alunno utilizza il calcolo scritto e mentale con i numeri
La spirale iperbolica: Fu descritta per la prima volta da Pierre Varignon (1654-1722). L equazione, espressa in coordinate polari, è del tipo:
Esistono delle forme geometriche che sono in grado, per complessi fattori psicologici non del tutto chiariti, di comunicarci un senso d equilibrio, di gradimento e di benessere. Tra queste analizzeremo
MOMENTI DI INERZIA. m i. i=1
MOMENTI DI INEZIA Massa Ad ogni punto materiale si associa uno scalare positivo m che rappresenta la quantità di materia di cui è costituito il punto. m, la massa, è costante nel tempo. Dato un sistema
Studio di funzioni ( )
Studio di funzioni Effettuare uno studio qualitativo e tracciare un grafico approssimativo delle seguenti funzioni. Si studi in particolare anche la concavità delle funzioni e si indichino esplicitamente
COSTRUIAMO UN AEROMODELLO 3D 4
COSTRUIAMO UN AEROMODELLO 3D 4 Con i comandi che abbiamo visto fina ad ora dovreste essere in grado di costruire da soli le ali del modello (ovviamente fatene una sola e poi specchiatela), basta trasformare
GEOMETRIA I Corso di Geometria I (seconda parte)
Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo
2 Argomenti introduttivi e generali
1 Note Oltre agli esercizi di questa lista si consiglia di svolgere quelli segnalati o assegnati sul registro e genericamente quelli presentati dal libro come esercizio o come esempio sugli argomenti svolti
13. Campi vettoriali
13. Campi vettoriali 1 Il campo di velocità di un fluido Il concetto di campo in fisica non è limitato ai fenomeni elettrici. In generale il valore di una grandezza fisica assegnato per ogni punto dello
Cambiamento di variabili negli integrali doppi: La trasformazione in coordinate polari. esiste (evidentemente) una sola coppia ( ρ, θ) R [ 0,2π[
Cambiamento di variabili negli integrali doppi: La trasformazione in coordinate polari Osservazione: Se ( x, ) \{(0,0)} esiste (evidentemente) una sola coppia ( ρ, θ) [ 0,[ tale che x. imane in tal modo
Come riportare il disegno del quadrante sulla parete utilizzando il programma Orologi Solari
Come riportare il disegno del quadrante sulla parete utilizzando il programma Orologi Solari Una volta terminato il progetto del quadrante, occorre riportare il disegno sulla parete. Utilizzando Orologi
FUNZIONI ELEMENTARI - ESERCIZI SVOLTI
FUNZIONI ELEMENTARI - ESERCIZI SVOLTI 1) Determinare il dominio delle seguenti funzioni di variabile reale: (a) f(x) = x 4 (c) f(x) = 4 x x + (b) f(x) = log( x + x) (d) f(x) = 1 4 x 5 x + 6 ) Data la funzione
Grazie ai Colleghi di Geometria del Dipartimento di Matematica dell Università degli Studi di Torino per il loro prezioso contributo. Grazie al Prof.
A01 178 Grazie ai Colleghi di Geometria del Dipartimento di Matematica dell Università degli Studi di Torino per il loro prezioso contributo. Grazie al Prof. S.M. Salamon per tanti utili suggerimenti e
6 Generalità Quando un pezzo presenta fori o cavità, il disegno può risultare di difficile comprensione a causa della presenza di numerose linee tratteggiate. 7 Generalità Sezionando ( tagliando ) con
Corso di controllo numerico (Cnc iso)
Corso di controllo numerico (Cnc iso) A cura di Ferrarese Adolfo. - Copyright 2007 - Ferrarese Adolfo - Tutti i diritti riservati - 1 Prefazione: Il corso si articola in 8 sezioni: 7 lezioni più un'ampia
Guida alla redazione del Fascicolo XBRL
o Europeo 2015 22.2.3 BILANCIO EUROPEO 2015 Guida alla redazione del Fascicolo XBRL Versione 22.2.3 Data Marzo 2015 Sommario GUIDA ALLA REDAZIONE DEL FASCICOLO XBRL parte 1 Premessa o Europeo e la gestione
NAVIGAORA HOTSPOT. Manuale utente per la configurazione
NAVIGAORA HOTSPOT Manuale utente per la configurazione NAVIGAORA Hotspot è l innovativo servizio che offre ai suoi clienti accesso ad Internet gratuito, in modo semplice e veloce, grazie al collegamento
2) Sul piano coordinato z = 0 studiare il fascio Φ di coniche di equazione. determinando in particolare le sue coniche spezzate ed i suoi punti base.
DPARTMENTO D MATEMATCA E NFORMATCA Corso di Laurea in ngegneria Telematica Prova scritta di Elementi di Algebra e Geometria assegnata il 18/7/02 È assegnato l endomorfismo f : R 3 R 3 definito dalle relazioni
ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004
ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 004 Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PRBLEMA Sia la curva d equazione: ke ove k e
Corso Integrato di DISEGNO A Prof.ssa Anna De Santis
Prima Facoltà di Architettura Ludovico Quaroni Corso di Laurea in DISEGNO INDUSTRIALE A.A. 2007-08 - 1 Semestre Corso Integrato di DISEGNO A Prof.ssa Anna De Santis Calendario del corso con argomenti svolti
Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott.
Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Franco Obersnel Lezione 19: campi vettoriali e formule di Gauss-Green nel piano.
2 FUNZIONI REALI DI VARIABILE REALE
2 FUNZIONI REALI DI VARIABILE REALE 2.1 CONCETTO DI FUNZIONE Definizione 2.1 Siano A e B due insiemi. Una funzione (o applicazione) f con dominio A a valori in B è una legge che associa ad ogni elemento
BLACK SLOT COME SI GIOCA A BLACK SLOT:
BLACK SLOT COME SI GIOCA A BLACK SLOT: Questo videogioco utilizza quattro display per informare il giocatore lungo tutto il corso della partita. Indicheremo questi display con le lettere A) B) C) D) per
RETTE, PIANI, SFERE, CIRCONFERENZE
RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,
ISTRUZIONI PER LA DETERMINAZIONE DELL OMBREGGIAMENTO DI SUPERFICI TRASPARENTI SU PARETE VERTICALE
ISTRUZIONI PER LA DETERMINAZIONE DELL OMBREGGIAMENTO DI SUPERFICI TRASPARENTI SU PARETE VERTICALE Per ogni superficie trasparente presente sulle facciate degli edifici è possibile costruire una maschera
DISPENSA DI GEOMETRIA
Il software di geometria dinamica Geogebra GeoGebra è un programma matematico che comprende geometria, algebra e analisi. È sviluppato da Markus Hohenwarter presso la Florida Atlantic University per la
LE TRASFORMAZIONI GEOMETRICHE NEL PIANO
LE TRASFORMAZIONI GEOMETRICHE NEL PIANO Una trasformazione geometrica è una funzione che fa corrispondere a ogni punto del piano un altro punto del piano stesso Si può pensare come MOVIMENTO di punti e
Rette e piani con le matrici e i determinanti
CAPITOLO Rette e piani con le matrici e i determinanti Esercizio.. Stabilire se i punti A(, ), B(, ) e C(, ) sono allineati. Esercizio.. Stabilire se i punti A(,,), B(,,), C(,, ) e D(4,,0) sono complanari.
Lezione del 28-11-2006. Teoria dei vettori ordinari
Lezione del 8--006 Teoria dei vettori ordinari. Esercizio Sia B = {i, j, k} una base ortonormale fissata. ) Determinare le coordinate dei vettori v V 3 complanari a v =,, 0) e v =, 0, ), aventi lunghezza
IL SISTEMA CARTOGRAFICO NAZIONALE
IL SISTEMA CARTOGRAFICO NAZIONALE La Il paragrafo è intitolato La Carta di Gauss poiché, delle infinite formule che si possono adottare per mettere in corrispondenza i punti dell'ellissoide con quelli
Algebra Lineare e Geometria
Algebra Lineare e Geometria Corso di Laurea in Ingegneria Elettronica A.A. 2013-2014 Prova d esame del 16/06/2014. 1) a) Determinare la matrice associata all applicazione lineare T : R 3 R 4 definita da
CONOSCERE E OPERARE CON I NUMERI
MATERIA MATEMATICA SCUOLA PRIMARIA CLASSE QUARTA COMPETENZE OBIETTIVI DI APPRENDIMENTO STRATEGIE DIDATTICHE DESCRITTORI DEI LIVELLI DI COMPETENZA CONOSCENZE ABILITA LIVELLO E LIVELLO M LIVELLO B CONOSCERE
CORSO DI LAUREA IN INGEGNERIA.
CORSO DI LAUREA IN INGEGNERIA. FOGLIO DI ESERCIZI 4 GEOMETRIA E ALGEBRA LINEARE 2010/11 Esercizio 4.1 (2.2). Determinare l equazione parametrica e Cartesiana della retta dello spazio (a) Passante per i
I NUMERI DECIMALI. che cosa sono, come si rappresentano
I NUMERI DECIMALI che cosa sono, come si rappresentano NUMERI NATURALI per contare bastano i numeri naturali N i numeri naturali cominciano con il numero uno e vanno avanti con la regola del +1 fino all
e l insieme delle soluzioni, dopo le analoghe riduzioni del caso n = 2, si scrive come
Numeri complessi 9 Da questi esempi si può osservare che, facendo le successive potene di un numero complesso, i punti corrispondenti girano attorno all origine. Se inoltre > allora i punti si allontanano
3 GRAFICI DI FUNZIONI
3 GRAFICI DI FUNZIONI Particolari sottoinsiemi di R che noi studieremo sono i grafici di funzioni. Il grafico di una funzione f (se non è specificato il dominio di definizione) è dato da {(x, y) : x dom
ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI. (Visione 3D)
ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI () Una immagine (digitale) permette di percepire solo una rappresentazione 2D del mondo La visione 3D si pone lo scopo di percepire il mondo per come è in 3 dimensioni
PROCEDURA CAMBIO ANNO SCOLASTICO IN AREA ALUNNI
PROCEDURA CAMBIO ANNO SCOLASTICO IN AREA ALUNNI GENERAZIONE ARCHIVI Per generazione archivi si intende il riportare nel nuovo anno scolastico tutta una serie di informazioni necessarie a preparare il lavoro
CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t)
CONTINUITÀ E DERIVABILITÀ Esercizi proposti 1. Determinare lim M(sin) (M(t) denota la mantissa di t) kπ/ al variare di k in Z. Ove tale limite non esista, discutere l esistenza dei limiti laterali. Identificare
SCHEDA M MOSAICI CLASSIFICARE CON LA SIMMETRIA
SCHEDA M MOSAICI CLASSIFICARE CON LA SIMMETRIA Qui sotto avete una griglia, che rappresenta una normale quadrettatura, come quella dei quaderni a quadretti; nelle attività che seguono dovrete immaginare
Funzioni di gestione degli interventi: esperti
Funzioni di gestione degli interventi: esperti Percorso dell esperto: La documentazione dell attività I soggetti che hanno il compito di programmare e attuare percorsi formativi nell ambito del piano dell
Integrali doppi - Esercizi svolti
Integrali doppi - Esercizi svolti Integrali doppi senza cambiamento di variabili Si disegni il dominio e quindi si calcolino gli integrali multipli seguenti:... xy dx dy, con (x, y R x, y x x }; x + y
Esercizio data base "Biblioteca"
Rocco Sergi Esercizio data base "Biblioteca" Database 2: Biblioteca Testo dell esercizio Si vuole realizzare una base dati per la gestione di una biblioteca. La base dati conterrà tutte le informazioni
Capitolo 5. Funzioni. Grafici.
Capitolo 5 Funzioni. Grafici. Definizione: Una funzione f di una variabile reale,, è una corrispondenza che associa ad ogni numero reale appartenente ad un insieme D f R un unico numero reale, y R, denotato
ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA Corso di Laurea Ingegneria Edile-Architettura
Cognome Nome Matricola ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA Corso di Laurea Ingegneria Edile-Architettura (Primo appello/ii prova parziale 15/6/15 - Chiarellotto-Urbinati) Per la II prova: solo esercizi
Laboratorio Informatico di base A.A. 2013/2014 Dipartimento di Scienze Aziendali e Giuridiche Università della Calabria Dott.
Strumenti di presentazione (Microsoft PowerPoint) Laboratorio Informatico di base A.A. 2013/2014 Dipartimento di Scienze Aziendali e Giuridiche Università della Calabria Dott. Pierluigi Muoio ([email protected])
Dispensa sulle funzioni trigonometriche
Sapienza Universita di Roma Dipartimento di Scienze di Base e Applicate per l Ingegneria Sezione di Matematica Dispensa sulle funzioni trigonometriche Paola Loreti e Cristina Pocci A. A. 00-0 Dispensa
I tre concetti si possono descrivere in modo unitario dicendo che f e iniettiva, suriettiva, biiettiva se e solo se per ogni b B l equazione
Lezioni del 29 settembre e 1 ottobre. 1. Funzioni iniettive, suriettive, biiettive. Sia f : A B una funzione da un insieme A ad un insieme B. Sia a A e sia b = f (a) B l elemento che f associa ad a, allora
La dissomiglianza tra due distribuzioni normali
Annali del Dipartimento di Scienze Statistiche Carlo Cecchi Università degli Studi di Bari Aldo Moro - Vol. X (2011): 43-50 Editore CLEUP, Padova - ISBN: 978-88-6129-833-0 La dissomiglianza tra due distribuzioni
Kangourou della Matematica 2014 finale nazionale italiana Mirabilandia, 12 maggio 2014
Kangourou della Matematica 2014 finale nazionale italiana Mirabilandia, 12 maggio 2014 LIVELLO STUDENT K,M N CD BC A S1. (5 punti ) In figura si vede una circonferenza della quale i segmenti AB, BC e CD
