Modelli Probabilistici per la Computazione Affettiva: Reti Bayesiane

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Modelli Probabilistici per la Computazione Affettiva: Reti Bayesiane"

Transcript

1 Modelli Probabilistici per la Computazione Affettiva: Reti Bayesiane Corso di Modelli di Computazione Affettiva Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano //rappresentazione: PGM diretti (DAG) Grafo diretto (Rete Bayesiana) Grafo indiretto

2 //rappresentazione a BN Costruzione del modello: Step 1. Identifico gli oggetti semanticamente rilevanti e li rappresento in termini di variabili aleatorie (Step 2). Definisco la probabilità di tutto, o probabilità congiunta //rappresentazione: struttura Step 3. Introduco i vincoli del problema: mi consentono di strutturare / semplificare la congiunta. La rappresentazione è un grafo probabilistico Grafo diretto (Rete Bayesiana)

3 //rappresentazione: struttura Step 3. Introduco i vincoli del problema: mi consentono di strutturare / semplificare la congiunta. La rappresentazione è un grafo probabilistico Chain Rule per Reti Bayesiane //rappresentazione: struttura Questo mi consente di fattorizzare il tabellone della congiunta CPD : Conditional Probability Distribution 0.6 * 0.3 * 0.02 * 0.8 * 0.01 CPT : Conditional Probability Tables

4 //rappresentazione: struttura Questo mi consente di fattorizzare il tabellone della congiunta CPD : Conditional Probability Distribution 0.6 * 0.3 * 0.02 * 0.8 * 0.01 CPT : Conditional Probability Tables //rappresentazione: struttura Questo mi consente di fattorizzare il tabellone della congiunta CPD : Conditional Probability Distribution 0.6 * 0.3 * 0.02 * 0.8 * 0.01 CPT : Conditional Probability Tables

5 //rappresentazione: PGM diretti (DAG) Definizione di rete Bayesiana: è una coppia è grafo diretto aciclico (DAG) sulle variabili Le variabili aleatorie sono i nodi del grafo a cui sono associate le CPD P è una distribuzione che fattorizza sul grafo secondo la chain rule: //rappresentazione: PGM diretti (DAG) Si noti che la distribuzione congiunta P così ottenuta è effettivamente una distribuzione di probabilità ammissibile: P 0 (Dim. E il prodotto di CPD tutte non negative) P = 1 (Dim. Si somma su tutte le variabili sfruttando la fattorizzazione)

6 //BN: Pattern di ragionamento / inferenza Valutiamo il pattern downstream o causale o predittivo Bob avrà una lettera di raccomandazione? Bob non è tanto intelligente. Avrà una lettera di raccomandazione? = / 3 = Cause Bob non è tanto intelligente ma l esame di Matematica è semplice. Avrà una lettera di raccomandazione? Effetti //BN: Pattern di ragionamento / inferenza Valutiamo il pattern upstream o evidenziale : Bob è intelligente? mmm... 30% a priori Bob prende C. Bob è intelligente? evidenza Cause evidenza Effetti

7 //BN: Pattern di ragionamento / inferenza Valutiamo il pattern intercausale: lo studente prende C Bob è intelligente? mmm... 30% a priori Bob prende C. Bob è intelligente? Bob prende C, ma l esame di Matematica è difficile. Bob è intelligente? Cause Cause Effetti //BN: Pattern di ragionamento / inferenza Valutiamo il pattern intercausale: lo studente prende C Bob è intelligente? mmm... 30% a priori Bob prende C. Pero Bob aveva superato il SAT brillantemente Cause Cause Explaining away Effetti

8 //Flussi in BN: quando X influenza Y? Condizionando su X, influenzo la credenza di Y causale evidenziale causa comune effetto comune V structure //Flussi in BN: quando X influenza Y? L influenza è come un flusso che si propaga su trail (cammini) attivi attivo se Z non osservato attivo se Z non osservato attivo se Z non osservato V structure attivo se Z osservato

9 //Flussi in BN: quando X influenza Y? L influenza è come un flusso che si propaga su trail (cammini) attivi V structure attivo se Z o un figlio di Z osservato attivo se Z non osservato attivo se Z non osservato attivo se Z non osservato //Flussi in BN: quando X influenza Y? Ho un trail (cammino) attivo S - I- G - D se: Ho un trail (cammino) bloccato S - I- G - D se:

10 //Flussi in BN: trail attivi Sia un trail sul grafo G. Sia Z un sottoinsieme di variabili osservate sul grafo G. Il cammino è attivo se e solo se Data una struttura V del tipo è in Z un discendente di è in Z Nessun altro nodo del trail è in Z Esempio //Il problema dell irrigatore Alice vive a Napoli (dove piove poco): Caso 1: si sveglia e osserva il prato del giardino bagnato: ha lasciato l irrigatore in funzione? Caso 2: poi osserva il prato del vicino, Bob..: anche quello è bagnato QUERY: qual è la probabilità che l'irrigatore fosse in funzione nei due casi?

11 Esempio //Il problema dell irrigatore Supponiamo che tutte le tabelle di probabilità siano note (nessun learning) P=0 P= I=0 I= A=0 A=1 B=0 B=1 P= P=1 0 1 P=0 I=0 1 0 P=1 I=0 0 1 P=0 I= P=1 I=1 0 1 Esempio //Il problema dell irrigatore: soluzione con BNT QUERY: qual è la probabilità che l'irrigatore fosse in funzione nei due casi? P(I=true A=true) =? Caso 1: si sveglia e osserva il prato del giardino bagnato: ha lasciato l irrigatore in funzione? Caso 2: poi osserva il prato del vicino, Bob..: anche quello è bagnato

12 Esempio //Il problema dell irrigatore: soluzione con BNT QUERY: qual è la probabilità che l'irrigatore fosse in funzione nei due casi? P(I=true A=true,B=true) =? Caso 1: si sveglia e osserva il prato del giardino bagnato: ha lasciato l irrigatore in funzione? Caso 2: poi osserva il prato del vicino, Bob..: anche quello è bagnato trail attivo Esempio //Il problema dell irrigatore: soluzione con BNT QUERY: qual è la probabilità che l'irrigatore fosse in funzione nei due casi? Caso 1: si sveglia e osserva il prato del giardino bagnato: ha lasciato l irrigatore in funzione? P(I=true A=true) = falso vero Caso 2: poi osserva il prato del vicino, Bob..: anche quello è bagnato P(I=true A=true,B=true) = falso vero

13 Esempio: Alice e Bob in BNT (kevin murphy) //Flussi in BN e indipendenza condizionale Il concetto di trail attivo / non attivo su grafo è in relazione con il concetto di indipendenza condizionale Ricordiamo il concetto di indipendenza (marginale): due eventi indipendenti in P, sono se vale inoltre indipendenza marginale Analogamente per le VA

14 //Flussi in BN e indipendenza condizionale Esempio: G non è osservata e marginalizzo su G per ottenere P(I,D),... P(I,D,G) G G non è osservato: il trail è bloccato P(I,D) D P(I) P(D) I P(I,D) = P(I) * P(D) //Flussi in BN e indipendenza condizionale Per eventi: Per variabili aleatorie vale qualunque Caveat: l indipendenza marginale è il sotto caso Vale la proprietà: Sia P una distribuzione su indipendenza indipendenza condizionale Denotiamo l insieme delle asserzioni di che valgono in P come:

15 //Flussi in BN e indipendenza condizionale Definizione insieme delle asserzioni di indipendenza valide per P Si tratta di comprendere la relazione fra proprietà di indipendenza e fattorizzazione Idea generale: P fattorizza nella forma: INDIPENDENZA FATTORIZZAZIONE //Flussi in BN e indipendenza condizionale P(I,S,G) I è osservato: il trail è bloccato P(S,G I = i 0 ) P(S I = i 0 ) X P(G I = i 0 )

16 //Fattorizzazione e indipendenza Concetto fondamentale: due modi equivalenti di vedere la struttura grafica Fattorizzazione: G permette di rappresentare P I-map: le indipendenze codificate da G valgono in P A B P fattorizza su G ecc... Insieme delle asserzioni di indipendenza che valgono in P //Fattorizzazione e indipendenza Generalizziamo il flusso di influenza nel concetto di d-separazione Si supponga di avere tre insiemi di nodi in G, Se non esiste nessun trail attivo tra qualsiasi nodo dato Z, allora e qualsiasi

17 //Fattorizzazione e indipendenza Fattorizzazione Indipendenza Teorema (proprietà di validità o soundness): P fattorizza su G Esempio: dimostrare che vale l indipendenza se Questa vale //Fattorizzazione e indipendenza Denotiamo l insieme delle indipendenze che corrispondono alla d- separazione come: Definizione: I-map Se P soddisfa I(G), allora G è una I-map (indipendency map) di P I(G) Insieme delle indipendenze che corrispondono alla d-separazione

18 //Fattorizzazione e indipendenza Proprietà di validità (soundness): Se la distribuzione P fattorizza come G, allora ovvero G è una I- map per P Oss. 1: ci dice che se due nodi sono d-separati dato Z, allora sono condizionalmente indipendenti dato Z Oss. 2: Posso leggere direttamente sul grafo G le indipendenze per P I(G) Insieme delle indipendenze che corrispondono alla d-separazione I(P) Insieme delle asserzioni di indipendenza che valgono in P //Fattorizzazione e indipendenza La proprietà fondamentale delle RB deriva da questo teorema: Ogni nodo della rete, dati i suoi genitori, è d-separato dai suoi nondiscendenti P fattorizza su G Formalmente: Una rete Bayesiana è un DAG che codifica un insieme di ipotesi di indipendenza (indipendenze locali): Per qualunque variabile Ogni VA è indipendente dalle altre VA non figlie, dati i suoi genitori Semantica delle RB

19 //Fattorizzazione e indipendenza Fattorizzazione Indipendenza Teorema: G è una I-map per P P fattorizza su G: P soddisfa I(G) Insieme delle indipendenze che corrispondono alla d-separazione //Fattorizzazione e indipendenza Esempio chain rule (regola del prodotto) IPOTESI: G è una I-map per P: TESI: P fattorizza su G:

20 //Fattorizzazione e indipendenza In sintesi: due modi equivalenti di vedere la struttura grafica Fattorizzazione: G permette di rappresentare P I-map: le indipendenze codificate da G valgono in P Se P fattorizza su un grafo G, possiamo leggere dal grafo le indipendenze che devono valere per P (ovvero la mappa delle indipendenze, I-map) Esempio //Naive Bayes Indicando con C Valgono le seguenti ipotesi di indipendenza X1 X2 P fattorizza come X3

21 Esempio //Naive Bayes Decidiamo se Obama è allegro (C=c1) o triste (C= c2) C X1 X2 Se non ci sono vincoli particolari, P(C)= 0.5 X3 Esempio //Naive Bayes: Sebe et al. (2002)

22 Esempio //Naive Bayes: Sebe et al. (2002) Esempio //Naive Bayes: Sebe et al. (2002)

Modelli Grafici Probabilistici (1): concetti generali

Modelli Grafici Probabilistici (1): concetti generali Modelli Grafici Probabilistici (1): concetti generali Corso di Modelli di Computazione Affettiva Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it Giuseppe.Boccignone@unimi.it

Dettagli

Modelli Probabilistici per la Computazione Affettiva: Reti di Markov

Modelli Probabilistici per la Computazione Affettiva: Reti di Markov Modelli Probabilistici per la Computazione Affettiva: Reti di Markov Corso di Modelli di Computazione Affettiva Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it

Dettagli

Computazione per l interazione naturale: fondamenti probabilistici (2)

Computazione per l interazione naturale: fondamenti probabilistici (2) Computazione per l interazione naturale: fondamenti probabilistici (2) Corso di Interazione uomo-macchina II Prof. Giuseppe Boccignone Dipartimento di Scienze dell Informazione Università di Milano boccignone@di.unimi.it

Dettagli

Modelli Probabilistici per la Computazione Affettiva: Modelli a template e rappresentazioni complesse

Modelli Probabilistici per la Computazione Affettiva: Modelli a template e rappresentazioni complesse Modelli Probabilistici per la Computazione Affettiva: Modelli a template e rappresentazioni complesse Corso di Modelli di Computazione Affettiva Prof. Giuseppe Boccignone Dipartimento di Informatica Università

Dettagli

Modelli Grafici Probabilistici (2): concetti generali

Modelli Grafici Probabilistici (2): concetti generali Modelli Grafici Probabilistici (2): concetti generali Corso di Modelli di Computazione Affettiva Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it Giuseppe.Boccignone@unimi.it

Dettagli

Ragionamento Probabilistico

Ragionamento Probabilistico Università di Bergamo Facoltà di Ingegneria Intelligenza Artificiale Paolo Salvaneschi A9_2 V1.8 Ragionamento Probabilistico Il contenuto del documento è liberamente utilizzabile dagli studenti, per studio

Dettagli

Computazione per l interazione naturale: Regressione probabilistica

Computazione per l interazione naturale: Regressione probabilistica Computazione per l interazione naturale: Regressione probabilistica Corso di Interazione Naturale Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it boccignone.di.unimi.it/in_2018.html

Dettagli

Computazione per l interazione naturale: Regressione lineare Bayesiana

Computazione per l interazione naturale: Regressione lineare Bayesiana Computazione per l interazione naturale: Bayesiana Corso di Interazione uomo-macchina II Prof. Giuseppe Boccignone Dipartimento di Scienze dell Informazione Università di Milano boccignone@di.unimi.it

Dettagli

Introduzione alle Reti Bayesiane

Introduzione alle Reti Bayesiane Introduzione alle Reti Bayesiane Giovedì, 18 Novembre 2004 Francesco Folino Riferimenti: Chapter 6, Mitchell A Tutorial on Learning with Bayesian Networks, Heckerman Bayesian Network Perchè ci interessano?

Dettagli

Modelli Probabilistici per la Computazione Affettiva: Learning/Inferenza parametri

Modelli Probabilistici per la Computazione Affettiva: Learning/Inferenza parametri Modelli Probabilistici per la Computazione Affettiva: Learning/Inferenza parametri Corso di Modelli di Computazione Affettiva Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano

Dettagli

8 Derivati dell entropia

8 Derivati dell entropia (F1X) Teoria dell Informazione e della Trasmissione 8 Derivati dell entropia Docente: Nicolò Cesa-Bianchi versione 23 marzo 2016 Siano X e Y due variabili casuali con valori in insiemi finiti X e Y. Detta

Dettagli

Modelli tradizionali e statistici applicati alla percezione (2/2) Francesco Panerai

Modelli tradizionali e statistici applicati alla percezione (2/2) Francesco Panerai Modelli tradizionali e statistici applicati alla percezione (2/2) Francesco Panerai Modulo integrativo del corso di - Sistemi Intelligenti Naturali e Artificiali - 2002/2003 Elementi di statistica bayesiana

Dettagli

Computazione per l interazione naturale: fondamenti probabilistici (2)

Computazione per l interazione naturale: fondamenti probabilistici (2) Computazione per l interazione naturale: fondamenti probabilistici (2) Corso di Interazione uomo-macchina II Prof. Giuseppe Boccignone Dipartimento di Scienze dell Informazione Università di Milano boccignone@dsi.unimi.it

Dettagli

Richiami di probabilità. Decision Theory e Utilità. Richiami di probabilità. assumere certi valori in un insieme x 1, x 2, x n (dominio)

Richiami di probabilità. Decision Theory e Utilità. Richiami di probabilità. assumere certi valori in un insieme x 1, x 2, x n (dominio) 9 lezione Scaletta argomenti: Probabilità Richiami di probabilità Reti Bayesiane Decision Theory e Utilità 1 Richiami di probabilità - La formalizzazione deriva da Boole - Concetto di VARIABILE CASUALE

Dettagli

Richiami di teoria della probabilitá e Modelli Grafici

Richiami di teoria della probabilitá e Modelli Grafici Modelli di computazione affettiva e comportamentale Data: 23 Aprile 2010 Richiami di teoria della probabilitá e Modelli Grafici Docente: Prof. Giuseppe Boccignone Scriba: Matteo Battistini 1 Richiami di

Dettagli

Lezione 1. 1 Probabilità e statistica. 2 Definizioni di probabilità. Statistica e analisi dei dati Data: 22 Febbraio 2016

Lezione 1. 1 Probabilità e statistica. 2 Definizioni di probabilità. Statistica e analisi dei dati Data: 22 Febbraio 2016 Statistica e analisi dei dati Data: 22 Febbraio 2016 Lezione 1 Docente: Prof. Giuseppe Boccignone Scriba: Nicolò Pisaroni 1 Probabilità e statistica Probabilità: Un modello probabilistico é una descrizione

Dettagli

REGISTRO DELLE LEZIONI

REGISTRO DELLE LEZIONI UNIVERSITÀ DEGLI STUDI DI GENOVA Dipartimento DIBRIS Corso di laurea magistrale in Informatica REGISTRO DELLE LEZIONI dell INSEGNAMENTO o MODULO UFFICIALE Nome: Algebraic graph models codice: 66877 codice

Dettagli

Paolo Frasconi 1 Andrea Passerini 1 Alberto Conti 2. Università degli Studi di Firenze. Azienda Ospedaliero-Universitaria di Careggi, Firenze

Paolo Frasconi 1 Andrea Passerini 1 Alberto Conti 2. Università degli Studi di Firenze. Azienda Ospedaliero-Universitaria di Careggi, Firenze Apprendimento di Reti Bayesiane per la Valutazione del Valore Diagnostico e Prognostico dei Test Ergometrici nei Pazienti con Sospetta Cardiopatia Ischemica Paolo Frasconi 1 Andrea Passerini 1 Alberto

Dettagli

Computazione per l interazione naturale: classificazione probabilistica

Computazione per l interazione naturale: classificazione probabilistica Computazione per l interazione naturale: classificazione probabilistica Corso di Interazione Naturale Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it boccignone.di.unimi.it/in_2016.html

Dettagli

Computazione per l interazione naturale: Regressione probabilistica

Computazione per l interazione naturale: Regressione probabilistica Computazione per l interazione naturale: Regressione probabilistica Corso di Interazione Naturale Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it boccignone.di.unimi.it/in_2016.html

Dettagli

Modelli probabilistici per la percezione

Modelli probabilistici per la percezione Modelli probabilistici per la percezione Corso di Principi e Modelli della Percezione Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it http://homes.di.unimi.it/~boccignone/giuseppeboccignone_webpage/pmp_2014.html

Dettagli

Modelli probabilistici per la percezione

Modelli probabilistici per la percezione Modelli probabilistici per la percezione orso di Principi e Modelli della Percezione Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it http://boccignone.di.unimi.it/pmp_2015.html

Dettagli

) la sua densità discreta sarà della forma. p X (0) = 1 2, p X(1) = 1 2,

) la sua densità discreta sarà della forma. p X (0) = 1 2, p X(1) = 1 2, Esercizi settimana 6 Esercizi applicati Esercizio. Siano X e Y due v.a. discrete indipendenti tali che X B(, ) e Y B(, ), n 0. (i) Si calcoli la legge di X + Y ; (ii) Si calcoli la legge di X Y ; (iii)

Dettagli

Informatica

Informatica Informatica 2019-01-18 Nota: Scrivete su tutti i fogli nome e matricola. Esercizio 1. Si enuncino, senza dimostrarli, i risultati relativi al determinismo e alla totalità della semantica delle espressioni

Dettagli

Computazione per l interazione naturale: Regressione probabilistica

Computazione per l interazione naturale: Regressione probabilistica Computazione per l interazione naturale: Regressione probabilistica Corso di Interazione Naturale Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it boccignone.di.unimi.it/in_2017.html

Dettagli

Programmazione lineare: basi e soluzioni di base

Programmazione lineare: basi e soluzioni di base Programmazione lineare:basi e soluzioni di base p. 1/33 Programmazione lineare: basi e soluzioni di base Mariantonia Cotronei Facoltà di Ingegneria Università degli Studi Mediterranea di Reggio Calabria

Dettagli

Note introduttive alla probabilitá e alla statistica

Note introduttive alla probabilitá e alla statistica Note introduttive alla probabilitá e alla statistica 1 marzo 2017 Presentiamo sinteticamente alcuni concetti introduttivi alla probabilitá e statistica 1 Probabilità e statistica Probabilità: Un modello

Dettagli

Statistica e analisi dei dati Data: 07 marzo Lezione 5. Figura 1: Modello ad Urna

Statistica e analisi dei dati Data: 07 marzo Lezione 5. Figura 1: Modello ad Urna Statistica e analisi dei dati Data: 07 marzo 2016 Lezione 5 Docente: Prof. Giuseppe Boccignone Scriba: Alessandra Birlini 1 Il modello a urna Figura 1: Modello ad Urna Con questo tipo di modello posso

Dettagli

Computazione per l interazione naturale: classificazione probabilistica

Computazione per l interazione naturale: classificazione probabilistica Computazione per l interazione naturale: classificazione probabilistica Corso di Interazione uomo-macchina II Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it

Dettagli

Variabili aleatorie: parte 1. 1 Definizione di variabile aleatoria e misurabilitá

Variabili aleatorie: parte 1. 1 Definizione di variabile aleatoria e misurabilitá Statistica e analisi dei dati Data: 11 Aprile 2016 Variabili aleatorie: parte 1 Docente: Prof. Giuseppe Boccignone Scriba: Noemi Tentori 1 Definizione di variabile aleatoria e misurabilitá Informalmente,

Dettagli

UNIVERSITA DEGLI STUDI DI FIRENZE. Facoltà di Ingegneria Corso di Laurea in Ingegneria Informatica

UNIVERSITA DEGLI STUDI DI FIRENZE. Facoltà di Ingegneria Corso di Laurea in Ingegneria Informatica UNIVERSITA DEGLI STUDI DI FIRENZE Facoltà di Ingegneria Corso di Laurea in Ingegneria Informatica Esercitazioni per l esame di Intelligenza Artificiale Prof. G. Soda Bayesian Networks di Sauro Menchetti

Dettagli

Progettazione di Algoritmi

Progettazione di Algoritmi Corso di laurea in Informatica Prova scritta del: Progettazione di Algoritmi 0/06/06 Prof. De Prisco Inserire i propri dati nell apposito spazio. Non voltare la finché non sarà dato il via. Dal via avrai

Dettagli

Certificati dei problemi in NP

Certificati dei problemi in NP Certificati dei problemi in NP La stringa y viene in genere denominata un certificato Un Certificato è una informazione ausiliaria che può essere utilizzata per verificare in tempo polinomiale nella dimensione

Dettagli

Apprendimento di Reti Bayesiane

Apprendimento di Reti Bayesiane Apprendimento di Reti Bayesiane Massera Gianluca Università degli studi di Roma La Sapienza facoltà di S.M.F.N. corso di laurea in Informatica Reti Bayesiane p.1/32 Reti Bayesiane: introduzione Le Rete

Dettagli

Corso di Analisi Matematica Funzioni di una variabile

Corso di Analisi Matematica Funzioni di una variabile Corso di Analisi Matematica Funzioni di una variabile Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 24 1 Generalità 2 Funzioni reali

Dettagli

Registro dell'insegnamento

Registro dell'insegnamento Registro dell'insegnamento Anno accademico 2014/2015 Prof. MARCO SPADINI Settore inquadramento MAT/05 - ANALISI MATEMATICA Scuola Ingegneria Dipartimento Matematica e Informatica 'Ulisse Dini' Insegnamento

Dettagli

Partizioni intere. =! i# P. Es: Dato {38, 17, 52, 61, 21, 88, 25} possiamo rispondere positivamente al quesito poiché

Partizioni intere. =! i# P. Es: Dato {38, 17, 52, 61, 21, 88, 25} possiamo rispondere positivamente al quesito poiché Partizioni intere PARTIZIONAMENTO: Dato un insieme di n interi non negativi rappresentati in binario, trovare un sottoinsieme P! {1,2,..., n } tale che! i"p a i =! i# P a i Es: Dato {38, 17, 52, 61, 21,

Dettagli

min det det Allora è unimodulare se e solo se det 1, 1, 0 per ogni sottomatrice quadrata di di qualsiasi dimensione.

min det det Allora è unimodulare se e solo se det 1, 1, 0 per ogni sottomatrice quadrata di di qualsiasi dimensione. Se è unimodulare e è intero allora il poliedro 0 ha vertici interi. Sia un vertice di Per definizione esiste allora una base di tale che, 0 Poiché è non singolare ( invertibile det 0) si ha che det 1 è

Dettagli

Computazione per l interazione naturale: modelli a variabili latenti (clustering e riduzione di dimensionalità)

Computazione per l interazione naturale: modelli a variabili latenti (clustering e riduzione di dimensionalità) Computazione per l interazione naturale: modelli a variabili latenti (clustering e riduzione di dimensionalità) Corso di Interazione Naturale Prof. Giuseppe Boccignone Dipartimento di Informatica Università

Dettagli

Computazione per l interazione naturale: fondamenti probabilistici

Computazione per l interazione naturale: fondamenti probabilistici Computazione per l interazione naturale: fondamenti probabilistici Corso di Interazione Naturale Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it boccignone.di.unimi.it/in_2017.html

Dettagli

Note di Teoria della Probabilità.

Note di Teoria della Probabilità. Note di Teoria della Probabilità. In queste brevi note, si richiameranno alcuni risultati di Teoria della Probabilità, riguardanti le conseguenze elementari delle definizioni di probabilità e σ-algebra.

Dettagli

Calcolo delle probabilità e ragionamento bayesiano. Unit 5 Corso di Logica e Teoria dell Argomentazione

Calcolo delle probabilità e ragionamento bayesiano. Unit 5 Corso di Logica e Teoria dell Argomentazione Calcolo delle probabilità e ragionamento bayesiano Unit 5 Corso di Logica e Teoria dell Argomentazione Sommario Nozioni probabilistiche Probabilità condizionata Ragionamento bayesiano Applicazioni a giochi

Dettagli

Modelli probabilistici nelle scienze cognitive (2)

Modelli probabilistici nelle scienze cognitive (2) Modelli probabilistici nelle scienze cognitive (2) Corso di Interazione uomo-macchina II Prof. Giuseppe Boccignone Dipartimento di Scienze dell Informazione Università di Milano boccignone@dsi.unimi.it

Dettagli

Computazione per l interazione naturale: fondamenti probabilistici (1)

Computazione per l interazione naturale: fondamenti probabilistici (1) Computazione per l interazione naturale: fondamenti probabilistici (1) Corso di Interazione uomo-macchina II Prof. Giuseppe Boccignone Dipartimento di Scienze dell Informazione Università di Milano boccignone@dsi.unimi.it

Dettagli

Modelli Probabilistici per la Computazione Affettiva: Inferenza approssimata con Monte Carlo

Modelli Probabilistici per la Computazione Affettiva: Inferenza approssimata con Monte Carlo Modelli Probabilistici per la Computazione Affettiva: Inferenza approssimata con Monte Carlo Corso di Modelli di Computazione Affettiva Prof. Giuseppe Boccignone Dipartimento di Informatica Università

Dettagli

GRAFI. Cosa sono Grafi non orientati Grafi orientati Grafi pesati Alberi Automi!

GRAFI. Cosa sono Grafi non orientati Grafi orientati Grafi pesati Alberi Automi! G R A F I 1 GRAFI Cosa sono Grafi non orientati Grafi orientati Grafi pesati Alberi Automi! 2 cip: cip: Pallogrammi Pallogrammi GRAFI: cosa sono I grafi sono una struttura matematica fondamentale: servono

Dettagli

c) Ancora in corrispondenza allo stesso valore di p e ponendo Y = minorazione, fornita dalla diseguaglianza di Chebichev, per la probabilita

c) Ancora in corrispondenza allo stesso valore di p e ponendo Y = minorazione, fornita dalla diseguaglianza di Chebichev, per la probabilita Laurea Triennale in Matematica Corso di Calcolo delle Probabilita I A.A. 00/00 (Docenti: M. Piccioni, F. Spizzichino) a prova di esonero 6 giugno 00 Risolvere almeno tre dei seguenti esercizi.. Indichiamo

Dettagli

METODI MATEMATICI PER L INFORMATICA

METODI MATEMATICI PER L INFORMATICA METODI MATEMATICI PER L INFORMATICA Tutorato Lezione 6 12/05/2016 Corso per matricole congrue a 1 Docente: Margherita Napoli Tutor: Amedeo Leo Induzione Esercizio 20 pagina 330 Mostrare che 3 n < n! se

Dettagli

Problemi intrattabili

Problemi intrattabili Tempo polinomiale ed esponenziale Una Tm M ha complessita in tempo T(n) se, dato un input w di lunghezza n, M si ferma dopo al massimo T (n) passi. Problemi intrattabili Ci occuperemo solo di problemi

Dettagli

Calcolo combinatorio minimo.

Calcolo combinatorio minimo. Calcolo combinatorio minimo. Ricordiamo (vedi prima lezione) che il numero delle possibili coppie (a i, b j ) con i A e j B è A B. il numero delle n-uple di elementi di un insieme A è A n. il numero di

Dettagli

Sperimentazioni di Fisica I mod. A Statistica - Lezione 3

Sperimentazioni di Fisica I mod. A Statistica - Lezione 3 Sperimentazioni di Fisica I mod. A Statistica - Lezione 3 A Garfagnini, M Mazzocco, C Sada Dipartimento di Fisica G. Galilei, Università di Padova AA 2014/2015 Elementi di Teoria della Probabilità L ineliminabile

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Riepilogo lezione 5 Abbiamo visto: Modelli probabilistici nel continuo Distribuzione uniforme continua Distribuzione

Dettagli

Variabili casuali multidimensionali

Variabili casuali multidimensionali Capitolo 1 Variabili casuali multidimensionali Definizione 1.1 Le variabili casuali multidimensionali sono k-ple ordinate di variabili casuali unidimensionali definite sullo stesso spazio di probabilità.

Dettagli

Introduzione al calcolo delle probabilità

Introduzione al calcolo delle probabilità Introduzione al calcolo delle probabilità L. Boni Approccio empirico OSSERVAZIONE IPOTESI TEORIA DOMINANTE ESPERIMENTO L esperimento Un esperimento (dal latino ex, da, e perire, tentare, passare attraverso

Dettagli

Computazione per l interazione naturale: fondamenti probabilistici

Computazione per l interazione naturale: fondamenti probabilistici Computazione per l interazione naturale: fondamenti probabilistici Corso di Interazione Naturale Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it boccignone.di.unimi.it/in_2016.html

Dettagli

Distribuzioni di due variabili aleatorie

Distribuzioni di due variabili aleatorie Statistica e analisi dei dati Data: 6 Maggio 206 Distribuzioni di due variabili aleatorie Docente: Prof. Giuseppe Boccignone Scriba: Noemi Tentori Distribuzioni congiunte e marginali Consideriamo due variabili

Dettagli

Computazione per l interazione naturale: Regressione lineare

Computazione per l interazione naturale: Regressione lineare Computazione per l interazione naturale: Corso di Interazione uomo-macchina II Prof. Giuseppe Boccignone Dipartimento di Scienze dell Informazione Università di Milano boccignone@dsi.unimi.it http://homes.dsi.unimi.it/~boccignone/l

Dettagli

Grafi e reti di flusso

Grafi e reti di flusso Grafi e reti di flusso Molti problemi di ottimizzazione sono caratterizzati da una struttura di grafo: in molti casi questa struttura emerge in modo naturale, in altri nasce dal particolare modo in cui

Dettagli

Analisi interazione domanda/offerta: modelli di assegnazione

Analisi interazione domanda/offerta: modelli di assegnazione Corso di Laurea Ingegneria Civile e Ambientale - AA Corso di: Fondamenti di Trasporti Lezione: Analisi interazione domanda/offerta: modelli di assegnazione Giuseppe Inturri Università di Catania Dipartimento

Dettagli

ELEMENTI DI LOGICA MATEMATICA LEZIONE VII

ELEMENTI DI LOGICA MATEMATICA LEZIONE VII ELEMENTI DI LOGICA MATEMATICA LEZIONE VII MAURO DI NASSO In questa lezione introdurremo i numeri naturali, che sono forse gli oggetti matematici più importanti della matematica. Poiché stiamo lavorando

Dettagli

Vettori Aleatori discreti

Vettori Aleatori discreti Vettori Aleatori discreti Un vettore aleatorio X =(X,X 2,...,X n ) si dice discreto se esiste un insieme finito o numerabile C R n tale che P (X = x) >, 8x 2 C, P (X = x) =, 8x /2 C, dove, ponendo x =(x,...,x

Dettagli

DIMOSTRAZIONI E TAUTOLOGIE, IPOTESI NON TAUTOLOGICHE. Corso di Logica per la Programmazione A.A. 2013/14 Andrea Corradini

DIMOSTRAZIONI E TAUTOLOGIE, IPOTESI NON TAUTOLOGICHE. Corso di Logica per la Programmazione A.A. 2013/14 Andrea Corradini DIMOSTRAZIONI E TAUTOLOGIE, IPOTESI NON TAUTOLOGICHE Corso di Logica per la Programmazione A.A. 2013/14 Andrea Corradini INFERENZE CORRETTE E TAUTOLOGIE Il Calcolo Proposizionale permette di formalizzare

Dettagli

Cenni di calcolo delle probabilità

Cenni di calcolo delle probabilità Cenni di calcolo delle probabilità Prof.ssa G. Serio, Prof. P. Trerotoli, Cattedra di Statistica Medica, Università di Bari 1/19 Quando si compie un esperimento o una serie di prove i possibili risultati

Dettagli

Variabili aleatorie parte 2. 1 Definizione di funzione di ripartizione o funzione cumulativa (CDF)

Variabili aleatorie parte 2. 1 Definizione di funzione di ripartizione o funzione cumulativa (CDF) Statistica e analisi dei dati Data: 11 aprile 2016 Variabili aleatorie parte 2 Docente: Prof. Giuseppe Boccignone Scriba: Alessandra Birlini 1 Definizione di funzione di ripartizione o funzione cumulativa

Dettagli

Studente: Matricola: Soluzione. V usando la disuguaglianza di Chebyschev, per n sucientemente grande segue,

Studente: Matricola: Soluzione. V usando la disuguaglianza di Chebyschev, per n sucientemente grande segue, Es Es 2 Es 3 Es 4 Tot Secondo appello luglio Calcolo delle probabilità 2 luglio 29 Studente: Matricola: Vero o falso Esercizio ( pti). Si dica, motivando la propria risposta, se le seguenti aermazioni

Dettagli

Presentazione dell edizione italiana

Presentazione dell edizione italiana 1 Indice generale Presentazione dell edizione italiana Prefazione xi xiii Capitolo 1 Una introduzione alla statistica 1 1.1 Raccolta dei dati e statistica descrittiva... 1 1.2 Inferenza statistica e modelli

Dettagli

Naïve Bayesian Classification

Naïve Bayesian Classification Naïve Bayesian Classification Di Alessandro rezzani Sommario Naïve Bayesian Classification (o classificazione Bayesiana)... 1 L algoritmo... 2 Naive Bayes in R... 5 Esempio 1... 5 Esempio 2... 5 L algoritmo

Dettagli

Bayes, PDF, CDF. Renato Mainetti

Bayes, PDF, CDF. Renato Mainetti Bayes, PDF, CDF Renato Mainetti Importiamo i dati di un esperimento Censimento volatili isola di Nim: 100 volatili vivono su quest isola 30 piccioni marroni (classe 1) 20 piccioni bianchi (classe 2) 10

Dettagli

Informatica

Informatica Informatica 2019-06-24 Nota: Scrivete su tutti i fogli nome e matricola. Esercizio 1. Si forniscano le regole della semantica delle espressioni di IMP, e si enunci il risultato di determinismo per tale

Dettagli

Tutorato I Probabilità e Statistica a.a. 2015/2016

Tutorato I Probabilità e Statistica a.a. 2015/2016 Tutorato I Probabilità e Statistica a.a. 2015/2016 Argomenti: probabilità uniforme; probabilità condizionata; formula di Bayes; formula delle probabilità totali; indipendenza. Esercizio 1. Siano A, B,

Dettagli

Analisi interazione domanda/offerta: modelli di assegnazione

Analisi interazione domanda/offerta: modelli di assegnazione Corso di Laurea Ingegneria Civile - AA 1112 Corso di: Fondamenti di Trasporti Lezione: Analisi interazione domanda/offerta: modelli di assegnazione Giuseppe Inturri Università di Catania Dipartimento di

Dettagli

Esercizi. 2. [Conteggio diretto] Due dadi vengono lanciati in successione. a) Qual è la probabilità che la somma dei due risultati faccia 7?

Esercizi. 2. [Conteggio diretto] Due dadi vengono lanciati in successione. a) Qual è la probabilità che la somma dei due risultati faccia 7? 1 E. Vitali Matematica (Scienze Naturali) Esercizi 1. [Conteggio diretto] Quattro ragazzi, A, B, C e D, dispongono di due biglietti per il teatro e decidono di tirare a sorte chi ne usufruirà. a) Qual

Dettagli

Esercizio 2 Si consideri l esperimento avente come risultati possibili i numeri 1, 2, 3, 4, 5 di probabilità rispettivamente 0.2, 0.4, 0.1, 0.1, 0.2.

Esercizio 2 Si consideri l esperimento avente come risultati possibili i numeri 1, 2, 3, 4, 5 di probabilità rispettivamente 0.2, 0.4, 0.1, 0.1, 0.2. Esercizio 2 Si consideri l esperimento avente come risultati possibili i numeri 1, 2, 3, 4, 5 di probabilità rispettivamente 0.2, 0.4, 0.1, 0.1, 0.2. a) Determinare l insieme di tutti i possibili sottoinsiemi

Dettagli

A proposito di valutazione scolastica

A proposito di valutazione scolastica A proposito di valutazione scolastica Livello scolare: 2 biennio Abilità interessate Identificare situazioni che richiedono di rilevare lo stesso carattere su una unità statistica formata da 2 elementi,

Dettagli

Modelli descrittivi, statistica e simulazione

Modelli descrittivi, statistica e simulazione Modelli descrittivi, statistica e simulazione Master per Smart Logistics specialist Roberto Cordone (roberto.cordone@unimi.it) Teoria della probabilità Cernusco S.N., mercoledì 15 marzo 2017 1 / 13 Probabilità

Dettagli

Apprendimento Automatico

Apprendimento Automatico Apprendimento Automatico Metodi Bayesiani Fabio Aiolli 11 Dicembre 2017 Fabio Aiolli Apprendimento Automatico 11 Dicembre 2017 1 / 19 Metodi Bayesiani I metodi Bayesiani forniscono tecniche computazionali

Dettagli

Regressione. Apprendimento supervisionato //Regressione. Corso di Sistemi di Elaborazione dell Informazione

Regressione. Apprendimento supervisionato //Regressione. Corso di Sistemi di Elaborazione dell Informazione Regressione SCUOLA DI SPECIALIZZAZIONE IN FISICA MEDICA Corso di Sistemi di Elaborazione dell Informazione Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it

Dettagli

CP110 Probabilità: Esame 4 giugno Testo e soluzione

CP110 Probabilità: Esame 4 giugno Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 202-3, II semestre 4 giugno, 203 CP0 Probabilità: Esame 4 giugno 203 Testo e soluzione . (6 pts) Un urna contiene inizialmente pallina rossa e 0 palline

Dettagli

Computazione per l interazione naturale: processi gaussiani

Computazione per l interazione naturale: processi gaussiani Computazione per l interazione naturale: processi gaussiani Corso di Interazione uomo-macchina II Prof. Giuseppe Boccignone Dipartimento di Scienze dell Informazione Università di Milano boccignone@dsi.unimi.it

Dettagli

Corso di Perfezionamento

Corso di Perfezionamento Programmazione Dinamica 1 1 Dipartimento di Matematica e Informatica Università di Camerino 15 febbraio 2009 Tecniche di Programmazione Tecniche di progettazione di algoritmi: 1 Divide et Impera 2 Programmazione

Dettagli

Metodi di Geometria Algebrica per la ricostruzione statistica degli alberi filogenetici Luigi Biondi

Metodi di Geometria Algebrica per la ricostruzione statistica degli alberi filogenetici Luigi Biondi Metodi di Geometria Algebrica per la ricostruzione statistica degli alberi filogenetici Luigi Biondi 20 Luglio 2011 Specie 1: ACGTACTACTGCAGTCCTAGCTGATCGT... Specie 2: ACTGTCGATCATGCTAATCGATGCATCG... Specie

Dettagli

Problema del trasporto

Problema del trasporto p. 1/1 Problema del trasporto Supponiamo di avere m depositi in cui è immagazzinato un prodotto e n negozi che richiedono tale prodotto. p. 1/1 Problema del trasporto Supponiamo di avere m depositi in

Dettagli

Inferenza esatta sui parametri (I e II)

Inferenza esatta sui parametri (I e II) Modelli di computazione affettiva e comportamentale Data: 19 e 21 Maggio 2010 Inferenza esatta sui parametri (I e II) Docente: Prof. Giuseppe Boccignone Scriba: Lorenzo Genta 1 Introduzione ai diversi

Dettagli

MATEMATICA DISCRETA CLAUDIA MALVENUTO PRIMA PROVA IN ITINERE 24 APRILE 2014

MATEMATICA DISCRETA CLAUDIA MALVENUTO PRIMA PROVA IN ITINERE 24 APRILE 2014 MATEMATICA DISCRETA CLAUDIA MALVENUTO PRIMA PROVA IN ITINERE 4 APRILE 014 1. Trovare il numero di stringhe di lunghezza n che si possono formare usando le lettere A, B, C, D, E in modo che ogni stringa

Dettagli

Dai Moduli alla Teoria Bayesiana

Dai Moduli alla Teoria Bayesiana Modelli di computazione affettiva e comportamentale Data: 16 Aprile 2010 Dai Moduli alla Teoria Bayesiana Docente: Prof. Giuseppe Boccignone Scriba: Diego Russo 1 Introduzione Secondo la definizione di

Dettagli

Apprendimento Bayesiano

Apprendimento Bayesiano Apprendimento Automatico 232 Apprendimento Bayesiano [Capitolo 6, Mitchell] Teorema di Bayes Ipotesi MAP e ML algoritmi di apprendimento MAP Principio MDL (Minimum description length) Classificatore Ottimo

Dettagli

Interazione Uomo-Macchina II: Interfacce Intelligenti

Interazione Uomo-Macchina II: Interfacce Intelligenti Laurea Magistrale in Informatica a.a. 2008-2009 Interazione Uomo-Macchina II: Interfacce Intelligenti Nadja De Carolis & Valeria Carofiglio (Queste slide sono una rivisitazione di quelle prodotte dalla

Dettagli

Appunti di statistica

Appunti di statistica Appunti di statistica. Concetti generali La probabilità è una quantificazione del grado di aspettativa nei confronti di un evento. Considereremo la probabilità un concetto elementare. La quantificazione

Dettagli

Introduzione alla Teoria dei Grafi

Introduzione alla Teoria dei Grafi Sapienza Uniersità di Roma - Dipartimento di Ingegneria Informatica, Automatica e Gestionale Introduzione alla Teoria dei Grafi Docente: Renato Bruni bruni@dis.uniroma1.it Corso di: Ottimizzazione Combinatoria

Dettagli

La dualità nella Programmazione Lineare

La dualità nella Programmazione Lineare Capitolo 3 La dualità nella Programmazione Lineare 3.1 Teoria della dualità Esercizio 3.1.1 Scrivere il problema duale del seguente problema di Programmazione Lineare: min x 1 x 2 + x 3 2x 1 +3x 2 3 x

Dettagli

Progetto e Ottimizzazione di Reti 2. Nozioni base di Teoria dei Grafi

Progetto e Ottimizzazione di Reti 2. Nozioni base di Teoria dei Grafi Progetto e Ottimizzazione di Reti 2. Nozioni base di Teoria dei Grafi ANTONIO SASSANO (A-L) CARLO MANNINO(M-Z) Uniersità di Roma La Sapienza Dipartimento di Informatica e Sistemistica Corso di Larea in

Dettagli

Inferenza statistica

Inferenza statistica Inferenza statistica Un introduzione minimale Luca La Rocca 1 Dipartimento di Scienze Fisiche, Informatiche e Matematiche Università degli Studi di Modena e Reggio Emilia Insegnamento di Analisi Statistica

Dettagli

Matematica con elementi di Informatica

Matematica con elementi di Informatica Probabilità discreta Matematica con elementi di Informatica Tiziano Vargiolu Dipartimento di Matematica vargiolu@math.unipd.it Corso di Laurea Magistrale in Chimica e Tecnologie Farmaceutiche Anno Accademico

Dettagli

E (X 2 ) = E (G) + E (E 2 ) = 1, V ar (X 2 ) = V ar (G) + V ar (E 2 ) = 5, Cov(X 1, X 2 ) = Cov(G + E 1, G + E 2 ) = V ar (G) = 4,

E (X 2 ) = E (G) + E (E 2 ) = 1, V ar (X 2 ) = V ar (G) + V ar (E 2 ) = 5, Cov(X 1, X 2 ) = Cov(G + E 1, G + E 2 ) = V ar (G) = 4, Laurea Triennale in Matematica, Università La Sapienza Corso di Probabilità, AA 04/05 Prova di Esonero Maggio 05 degli esercizi proposti Siano G, E, E tre variabili aleatorie gaussiane indipendenti, rispettivamente

Dettagli

Ottimizzazione su grafi: massimo flusso (parte 1) Ottimizzazione su grafi:massimo flusso (parte 1) p. 1/33

Ottimizzazione su grafi: massimo flusso (parte 1) Ottimizzazione su grafi:massimo flusso (parte 1) p. 1/33 Ottimizzazione su grafi: massimo flusso (parte 1) Ottimizzazione su grafi:massimo flusso (parte 1) p. 1/33 Ottimizzazione su grafi:massimo flusso (parte 1) p. 2/33 Reti di flusso Una rete di flusso è una

Dettagli