Note introduttive alla probabilitá e alla statistica
|
|
|
- Francesco Damiani
- 8 anni fa
- Visualizzazioni
Transcript
1 Note introduttive alla probabilitá e alla statistica 1 marzo 2017 Presentiamo sinteticamente alcuni concetti introduttivi alla probabilitá e statistica 1 Probabilità e statistica Probabilità: Un modello probabilistico é una descrizione matematica di una situazione incerta. Nel ragionamento probabilistico, assumiamo un modello probabilistico (e.g., una particolare distribuzione di probabilitá e relativi parametri) ed utilizziamo tecniche matematiche per quantificare le conseguenze del modello. Statistica: In questo caso, si parte dai dati e si arriva al modello. L inferenza statistica é esattamente il processo che, partendo da dati concreti, estrae informazione relativa a variabili e parametri non noti di un modello probabilistico specificato. Nel caso piú complesso, il modello stesso potrebbe non essere noto e deve essere inferito. In tal senso, l inferenza viene anche denotata come un processo di probabilità inversa. Come ogni altro modello scientifico puó essere utilizzato per scopi esplicativi o predittivi. Per esempio, se il modello ha una qualche attinenza a un (modello di) fenomeno fisico, biologico, ecc...posso generare dati (simulazione) e confrontarli con i dati reali Il machine learning o apprendimento statistico, oggi via via più importante (si pensi all analisi o al mining di big data), puó essere considerato una prosecuzione dell inferenza statistica 2 Definizioni di probabilità Definizione classica: P = no. casi favorevoli no. casi possibili Definizione frequentistica: P f N (A) = N(A) N per N grande (N ) dove N(A) é il numero di volte (frequenza assoluta) in cui si osserva o misura il risultato A in un esperimento ripetuto N volte; f N (A) é la frequenza relativa. Definizione Bayesiana: la probabilitá quantifica un grado di credenza (degree of belief ), o confidenza, o credibilitá. Per esempio, nell interpretazione soggettiva di De Finetti, quantifica la (pre)disposizione di un agente (razionale) a scommettere sulla riuscita di un evento (ad esempio, la probabilitá che l Inter vinca
2 note introduttive alla probabilitá e alla statistica 2 il campionato, un esito chiaramente irripetibile per un numero N grande di volte, quindi intrattabile in termini frequentistici) Definizione formale: una funzione P : F [0, 1] che soddisfa certi assiomi. Si noti che nell ultimo caso a differenza dei primi tre, non si fornisce una definizione semantica del concetto di probabilitá, ma meramente formale: P úna funzione che soddisfa un insieme di assiomi (postulati da Kolmogorov), che vedremo prossimamente. E opportuno osservare che in Probabilitá, l approccio formale puó essere utilizzato indifferentemente sia in un quadro frequentistico sia Bayesiano. Una grossa differenza tra questi ultimi due approcci emerge invece quando si scende sul terreno della Statistica 3 Elementi di un modello probabilistico Gli elementi costitutivi di un modello di probabilitá sono i seguenti: 1. esperimento 2. esito 3. spazio campionario 4. evento 5. misura di probabilitá 3.1 Esperimento E Un esperimento aleatorio può essere l osservazione di un fenomeno aleatorio o un azione con un esito non deterministico, per esempio il lancio dei dadi, il lancio della moneta, il conteggio degli studenti che entrano in aula prima delle 14:00. Il tratto comune di tali osservazioni è il contare. Le caratteristiche principali di un esperimento sono: 1. essere ben definito, nel senso che riusciamo a controllare tutti gli eventi; 2. la possibilitá di contare o enumerare gli esiti dell esperimento; 3. poterlo ripetere un numero N grande di volte. 1 1 L ultima caratteristica é concettualmente legata alla definizione frequentistica della probabilitá 3.2 Esito Ogni esperimento produce un risultato o esito (outcome); in modo più specifico, un esito elementare.
3 note introduttive alla probabilitá e alla statistica Spazio dei campioni S (oppure Ω) E l insieme di tutti gli esiti possibili di un esperimento E. Sul concetto di possibilitá, si assume implicitamente una qualche forma di Esempio 3.1 Nel lancio di un dado: accordo: per esempio, nel lancio di una moneta, si esclude che la moneta possa rimanere in piedi S = {1, 2, 3, 4, 5, 6} Esempio 3.2 Nel lancio di una moneta: S = {T, C} Esempio 3.3 Nel lancio di due monete: S = {TT, CC, TC, CT} Oltre alla rappresentazione per estensione (notazione insiemistica) posso utilizzare anche una notazione tabellare. TT CT TC CC Tabella 1: Rappresentazione tabellare dello spazio S Osservazione 3.4 Lo spazio dei campioni S é a volte definito spazio degli stati. Si pensi, ad esempio al lancio di una moneta. Una sequenza ripetuta di lanci, produce una sequenza di esiti, per esempio T T T C C T T La sequenza rappresenta la successione di esiti reali. La moneta é un sistema che assume due stati; posso immaginarla astrattamente come un automa a stati finiti (due) probabilistico come illustrato in Figura 3.4 In generale, posso concettualizzare il processo come un esempio di sistema dinamico (discreto) la cui evoluzione temporale segue la legge x t = f (x t 1 ). Figura 1: La moneta come automa probabilistico a stati finiti Essa caratterizza la variazione temporale (la dinamica) della variabile di stato x t S; in altri termini x t si muove nello spazio degli stati S. Si noti che in questi termini la sequenza generata rappresenta un primo esempio di serie temporale aleatoria (discreta). Se ripeto la generazione di tale serie piu volte T C T T C C T C T C C C T C, la collezione o ensemble di tali serie rappresenta un primo semplice esempio di processo stocastico.
4 note introduttive alla probabilitá e alla statistica Evento Consideriamo l esperimento del lancio di un dado: quello che ottengo da uno spazio campionario può essere un esito elementare (chiamato anche punto campione o sample point) oppure un evento, ovvero un aggregazione di esiti elementari. Un esempio é fornito in figura 3.4 dove é rappresentato l evento E = uscita di un numero pari. Pertanto: Definizione 3.5 Un evento E é un sottoinsieme dello spazio dei campioni S, E S. Figura 2: L evento E = uscita di un numero pari come insieme degli esiti elementari {2, 4, 6} 3.5 Misura La misura di un insieme A é una funzione che associa all insieme un numero reale positivo o nullo, : A R + Per un generico insieme discreto A coincide con la cardinalitá di A, card(a), (A) = card(a) Nel caso S = {T, C}, la misura dello spazio campionario é = 2 Nel caso S = {TT, TC, CT, CC}, = 4 Nel caso dei due dadi, = 6 6 = 36 4 Misura di probabilità Dato un evento E (esito semplice), in prima battuta possiamo definire la misura di probabilitá di E, o semplicemente la probabilitá di E, come la proporzione 2 P(E) = (E Esempio 4.1 Nel lancio di un dado, per E = uscita di un numero pari, P(E) = (E) = 3 6 = 1 2. Si noti che in questo caso (si veda Figura 3.4), é come se ripartizionassi lo spazio degli eventi: S = {pari, dispari} con (S ) = 2, P(E) = 1 2. (1) 2 La probabilitá cosí definita viene anche detta a priori, perché non ho bisogno, per calcolarla, di effettuare l esperimento (a differenza della procedura frequentistica), e coincide con la definizione classica di probabilitá (proporzione tra i casi favorevoli e i casi possibili). Vedremo in seguito che é valida sotto l assunzone di un modello uniforme di probabilitá.
5 note introduttive alla probabilitá e alla statistica 5 Figura 3: Gli elementi di un modello probabilistico Osservazione 4.2 Dalla definizione (1) ponendo E = = {} (insieme vuoto): P(E) = ( = 0, (2) ovvero E é l evento impossibile. Se E = S, P(E) = (S = 1, (3) ovvero E é l evento certo. Dalla definizione (1) e dalle proprietá (2) e (3), si nota come la probabilitá di un evento E soddisfi, 0 P(E) 1 In sintesi, possiamo schematizzare gli ingredienti di un modello probabilistico come in figura 3
Introduzione alla probabilità
Introduzione alla probabilità Osservazione e studio dei fenomeni naturali: a. Caso deterministico: l osservazione fornisce sempre lo stesso risultato. b. Caso stocastico o aleatorio: l osservazione fornisce
Per capire qual è l altezza media degli italiani è stato intervistato un campione di 1523 cittadini. La media campionaria dell altezza risulta essere:
PROBABILITÀ E STATISTICA Per capire qual è l altezza media degli italiani è stato intervistato un campione di 1523 cittadini. La media campionaria dell altezza risulta essere: x = 172, 3 cm Possiamo affermare
Calcolo della probabilità
Calcolo della probabilità GLI EVENTI Un evento è un fatto che può accadere o non accadere. Se esso avviene con certezza si dice evento certo, mentre se non può mai accadere si dice evento impossibile.
Variabili aleatorie. Variabili aleatorie e variabili statistiche
Variabili aleatorie Variabili aleatorie e variabili statistiche Nelle prime lezioni, abbiamo visto il concetto di variabile statistica : Un oggetto o evento del mondo reale veniva associato a una certa
Statistica Inferenziale
Statistica Inferenziale Prof. Raffaella Folgieri Email: [email protected] aa 2009/2010 Riepilogo lezione 1 Abbiamo visto: Definizioni di statistica, statistica inferenziale, probabilità (interpretazione
Esercizi su variabili aleatorie discrete
Esercizi su variabili aleatorie discrete Esercizio 1. Data la variabile aleatoria discreta X, caratterizzata dalla seguente rappresentazione nello spazio degli stati: 1 0,25 X = { 0 0,50 1 0,25 calcolare
Calcolo delle Probabilità Soluzioni 1. Spazio campionario ed eventi
ISTITUZIONI DI STATISTICA A. A. 2007/2008 Marco Minozzo e Annamaria Guolo Laurea in Economia del Commercio Internazionale Laurea in Economia e Amministrazione delle Imprese Università degli Studi di Verona
Introduzione al Calcolo delle Probabilità
Introduzione al Calcolo delle Probabilità In tutti quei casi in cui le manifestazioni di un fenomeno (EVENTI) non possono essere determinate a priori in modo univoco, e i risultati possono essere oggetto
3.1 La probabilità: eventi e variabili casuali
Capitolo 3 Elementi di teoria della probabilità Abbiamo già notato come, per la ineliminabile presenza degli errori di misura, quello che otteniamo come risultato della stima del valore di una grandezza
Ψ PSICOMETRIA. Corso di laurea triennale (classe 34) STATISTICA INFERENZIALE
Ψ PSICOMETRIA Corso di laurea triennale (classe 34) STATISTICA INFERENZIALE STATISTICA INFERENZIALE CAMPIONE caratteristiche conosciute POPOLAZIONE caratteristiche sconosciute STATISTICA INFERENZIALE STIMA
Teoria della probabilità
Introduzione alla teoria della probabilità Teoria della probabilità Primi sviluppi nel XVII secolo (Pascal( Pascal, Fermat, Bernoulli); Nasce nell ambito dei giochi d azzardo; d La prima formalizzazione
SARA BORLENGO MARTA LUCCHINI
SARA BORLENGO MARTA LUCCHINI COINCIDENZE? In quest aula ci sono almeno due persone che compiono gli anni lo stesso giorno. COINCIDENZE? In quest aula ci sono almeno due persone che compiono gli anni lo
Il Calcolo delle Probabilità è lo strumento matematico per trattare fenomeni aleatori cioè non deterministici.
INTRODUZIONE L CLCOLO DELLE ROILIT Il Calcolo delle robabilità è lo strumento matematico per trattare fenomeni aleatori cioè non deterministici. Un fenomeno aleatorio o stocastico è un fenomeno i cui esiti
Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva
Probabilità classica Distribuzioni e leggi di probabilità La probabilità di un evento casuale è il rapporto tra il numero dei casi favorevoli ed il numero dei casi possibili, purchè siano tutti equiprobabili.
Modelli descrittivi, statistica e simulazione
Modelli descrittivi, statistica e simulazione Master per Smart Logistics specialist Roberto Cordone ([email protected]) Statistica inferenziale Cernusco S.N., giovedì 18 febbraio 2016 (9.00/13.00)
La PROBABILITA è un numero che si associa ad un evento E ed esprime il grado di aspettativa circa il suo verificarsi.
La maggior parte dei fenomeni, ai quali assistiamo quotidianamente, può manifestarsi in vari modi, ma è quasi sempre impossibile stabilire a priori quale di essi si presenterà ogni volta. La PROBABILITA
NOZIONI DI CALCOLO DELLE PROBABILITÀ
NOZIONI DI CALCOLO DELLE PROBABILITÀ ESPERIMENTO CASUALE: un esperimento si dice casuale quando gli esiti (manifestazioni o eventi) non possono essere previsti con certezza. PROVA: le ripetizioni, o occasioni
incompatibili compatibili complementari eventi composti probabilità composta
Un evento si dice casuale, o aleatorio, se il suo verificarsi dipende esclusivamente dal caso. La probabilità matematica p di un evento aleatorio è il rapporto fra il numero dei casi favorevoli f e il
Capitolo 5 Variabili aleatorie discrete notevoli Insegnamento: Statistica Applicata Corso di Laurea in "Scienze e Tecnologie Alimentari"
Levine, Krehbiel, Berenson Statistica Capitolo 5 Variabili aleatorie discrete notevoli Insegnamento: Statistica Applicata Corso di Laurea in "Scienze e Tecnologie Alimentari" Unità Integrata Organizzativa
È l insieme di tutti i possibili esiti di un esperimento aleatorio; si indica generalmente con il simbolo.
A Ripasso Terminologia DOMADE Spazio campionario Evento Evento certo Evento elementare Evento impossibile Evento unione Evento intersezione Eventi incompatibili Evento contrario RISPOSTE È l insieme di
PROBABILITA. DEFINIZIONE: Ogni singolo risultato di un esperimento casuale si chiama evento elementare
PROBABILITA La teoria della probabilità si applica ad esperimenti aleatori o casuali: ossia, esperimenti il cui risultato non è prevedibile a priori. Ad esempio, lancio di un dado, lancio di una moneta,
Esperimentazioni di Fisica 1 Elementi di Calcolo delle Probabilità
Esperimentazioni di Fisica 1 Elementi di Calcolo delle Probabilità Università Roma Tre - Dipartimento di Matematica e Fisica 3 novembre 2016 Introduzione La probabilità nel linguaggio comune I E probabile
Statistica ARGOMENTI. Calcolo combinatorio
Statistica ARGOMENTI Calcolo combinatorio Probabilità Disposizioni semplici Disposizioni con ripetizione Permutazioni semplici Permutazioni con ripetizioni Combinazioni semplici Assiomi di probabilità
Definizione frequentistica di probabilita :
Esperimenti aleatori un esperimento e l osservazione del verificarsi di qualche accadimento ( A ) che, a partire da determinate condizioni iniziali, porti ad un particolare stato delle cose finali se si
ALGEBRA DEGLI EVENTI
ALGEBRA DEGLI EVENTI Appunti introduttivi al Calcolo Combinatorio e al Calcolo delle Probabilità Classe Terza a cura di Franca Gressini Novembre 2008 1 Conosciamo tante algebre. quella letterale (gli oggetti
Esercizi/domande su spazio campionario, eventi ed insiemistica. Daniela Bertacchi
Esercizi/domande su spazio campionario, eventi ed insiemistica Daniela Bertacchi Lo spazio campionario Se Ω è uno spazio campionario, allora Ω è anche: A) l evento certo; B) un evento elementare; C) una
Campionamento La statistica media campionaria e la sua distribuzione. Paola Giacomello Dip. Scienze Sociali ed Economiche Uniroma1
Campionamento La statistica media campionaria e la sua distribuzione 1 Definisco il problema da studiare: es. tempo di percorrenza tra abitazione e università Carattere: tempo ossia v.s. continua Popolazione:
Statistica 1 A.A. 2015/2016
Corso di Laurea in Economia e Finanza Statistica 1 A.A. 2015/2016 (8 CFU, corrispondenti a 48 ore di lezione frontale e 24 ore di esercitazione) Prof. Luigi Augugliaro 1 / 51 Introduzione Il Calcolo delle
PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07
PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 006/07 Esercizio 1 Prova scritta del 16/1/006 In un ufficio postale lavorano due impiegati che svolgono lo stesso compito in maniera indipendente, sbrigando
Probabilità I Calcolo delle probabilità
Probabilità I Calcolo delle probabilità Nozioni di eventi. Definizioni di probabilità Calcolo di probabilità notevoli Probabilità condizionate Concetto di probabilità Cos'è una probabilità? Idea di massima:
NOZIONI DI CALCOLO DELLE PROBABILITÀ ALCUNE DEFINIZIONI
NOZIONI DI CALCOLO DELLE PROBABILITÀ ALCUNE DEFINIZIONI ESPERIMENTO CASUALE: un esperimento si dice casuale quando gli esiti (manifestazioni o eventi) non possono essere previsti con certezza. PROVA: le
Modulo di Statistica e Tecnologia (Dott. Giorgio Poletti
Laurea in Scienze dell Educazione Insegnamento di Pedagogia Sperimentale (Prof. Paolo Frignani) Modulo di Statistica e Tecnologia (Dott. Giorgio Poletti [email protected]) Cos è la Statistica caratterizzato
Metodi quantitativi per i mercati finanziari
Metodi quantitativi per i mercati finanziari Esercizi di probabilità Spazi di probabilità Ex. 1 Sia Ω = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. Siano A e B sottoinsiemi di Ω tali che A = {numeri pari},
Lezione 12. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 12. A. Iodice.
discrete uniforme Bernoulli Poisson Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 56 Outline discrete uniforme Bernoulli Poisson 1 2 discrete 3
Lezione 2. La probabilità oggettiva : definizione classica e frequentistica e loro problemi
Lezione 2 La probabilità oggettiva : definizione classica e frequentistica e loro problemi La definizione classica Definizione classica: La probabilità di un evento E è il rapporto tra il numero dei casi
Nozioni introduttive e notazioni
Nozioni introduttive e notazioni 1.1 Insiemi La teoria degli insiemi è alla base di tutta la matematica, in quanto ne fornisce il linguaggio base e le notazioni. Definiamo un insieme come una collezione
Costruzione di macchine. Modulo di: Progettazione probabilistica e affidabilità. Marco Beghini e Leonardo Bertini. Lezione 1: Probabilità: fondamenti
Costruzione di macchine Modulo di: Progettazione probabilistica e affidabilità Marco Beghini e Leonardo Bertini Lezione 1: Probabilità: fondamenti Progettazione probabilistica: Considerazione delle incertezze
{ } corrisponde all uscita della faccia i-esima del dado. La distribuzione di probabilità associata ( )
Università di Trento - Corsi di Laurea in Ingegneria Civile e in Ingegneria per l Ambiente e il Territorio - 2017/18 Analisi Matematica 1 - professore Alberto Valli 2 foglio di esercizi 25 settembre 2017
Tipi di variabili. Indici di tendenza centrale e di dispersione
Tipi di variabili. Indici di tendenza centrale e di dispersione L. Boni Variabile casuale In teoria della probabilità, una variabile casuale (o variabile aleatoria o variabile stocastica o random variable)
Lezione 1. La Statistica Inferenziale
Lezione 1 La Statistica Inferenziale Filosofia della scienza Secondo Aristotele, vi sono due vie attraverso le quali riusciamo a formare le nostre conoscenze: (1) la deduzione (2) l induzione. Lezione
Concetti di teoria dei campioni ad uso degli studenti di Statistica Economica e Finanziaria, A.A. 2016/2017. Giovanni Lafratta
Concetti di teoria dei campioni ad uso degli studenti di Statistica Economica e Finanziaria, A.A. 2016/2017 Giovanni Lafratta ii Indice 1 Spazi, Disegni e Strategie Campionarie 1 2 Campionamento casuale
Matematica e Statistica per Scienze Ambientali
per Scienze Ambientali Insiemi e Combinatoria - Appunti 1 1 Dipartimento di Matematica Sapienza, Università di Roma Roma, 23 - Ottobre 2012 Il concetto di insieme Non tratterò la teoria assiomatica degli
prima urna seconda urna
Un po di fortuna Considera il seguente gioco: ci sono due urne contenenti delle palline perfettamente uguali tra loro, ma colorate diversamente, alcune bianche, altre nere. Nella prima urna ci sono una
UNIVERSITÀ di ROMA TOR VERGATA
UNIVERSITÀ di ROMA TOR VERGATA Corso di Laurea Magistrale in Scienze della Nutrizione Umana Corso di Statistica Medica, anno 05-6 P.Baldi Lista di esercizi, 8 gennaio 06. Esercizio Si sa che in una schedina
esperimento casuale: è un esperimento condotto sotto l effetto del caso; evento elementare: ciascuno dei possibili esiti di un esperimento casuale;
Capitolo 15 Suggerimenti agli esercizi a cura di Elena Siletti Esercizio 15.1: Suggerimento Si ricordi che: esperimento casuale: è un esperimento condotto sotto l effetto del caso; evento elementare: ciascuno
2. I numeri reali e le funzioni di variabile reale
. I numeri reali e le funzioni di variabile reale Introduzione Il metodo comunemente usato in Matematica consiste nel precisare senza ambiguità i presupposti, da non cambiare durante l elaborazione dei
Variabili aleatorie Parte I
Variabili aleatorie Parte I Variabili aleatorie Scalari - Definizione Funzioni di distribuzione di una VA Funzioni densità di probabilità di una VA Indici di posizione di una distribuzione Indici di dispersione
STATISTICA 1 ESERCITAZIONE 8
STATISTICA 1 ESERCITAZIONE 8 Dott. Giuseppe Pandolfo 18 Novembre 2013 CALCOLO DELLE PROBABILITA Elementi del calcolo delle probabilità: 1) Esperimento: fenomeno caratterizzato da incertezza 2) Evento:
CORSO INTEGRATO DI STATISTICA E INFORMATICA MEDICA
CORSO INTEGRATO DI STATISTICA E INFORMATICA MEDICA Settore Scientifico-Disciplinare: MED/01 Statistica Medica; INF/01 Informatica CFU Tot.: 5 Coordinatore: Prof. Dario Bruzzese Dip.: Sanità Pubblica.,
IL CALCOLO DELLE PROBABILITA
IL CALCOLO DELLE PROBABILITA INTRODUZIONE Già 3000 anni fa gli Egizi praticavano un antenato del gioco dei dadi, che si svolgeva lanciando una pietra. Il gioco dei dadi era diffuso anche nell antica Roma,
1 4 Esempio 2. Si determini la distribuzione di probabilità della variabile casuale X = punteggio ottenuto lanciando un dado. Si ha immediatamente:
CAPITOLO TERZO VARIABILI CASUALI. Le variabili casuali e la loro distribuzione di probabilità In molte situazioni, dato uno spazio di probabilità S, si è interessati non tanto agli eventi elementari (o
Modelli e Metodi per la Simulazione (MMS)
Modelli e Metodi per la Simulazione (MMS) [email protected] Programma La simulazione ad eventi discreti, è una metodologia fondamentale per la valutazione delle prestazioni di sistemi complessi (di
01 - Elementi di Teoria degli Insiemi
Università degli Studi di Palermo Scuola Politecnica Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 01 - Elementi di Teoria degli Insiemi Anno Accademico 2015/2016
Appunti del Corso Analisi 1
Appunti del Corso Analisi 1 Anno Accademico 2011-2012 Roberto Monti Versione del 5 Ottobre 2011 1 Contents Chapter 1. Cardinalità 5 1. Insiemi e funzioni. Introduzione informale 5 2. Cardinalità 7 3.
6. PROBABILITÀ. Definizione Due eventi A e B si dicono incompatibili se il verificarsi di uno esclude il verificarsi dell altro,
6. PROBABILITÀ L introduzione alla teoria della probabilità può essere vista come un applicazione della teoria degli insiemi. Essa si occupa degli esperimenti il cui esito è incerto. Ebbe origine a metà
01 - Elementi di Teoria degli Insiemi
Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 01 - Elementi di Teoria degli Insiemi Anno Accademico 2013/2014
Il Corso di Fisica per Scienze Biologiche
Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 75-585 278 Ø E-mail: [email protected] Ø Web: http://www.fisica.unipg.it/~attilio.santocchia/
Storia della Probabilità
Storia della Probabilità Il calcolo delle probabilità nasce nel Seicento (1654) per risolvere alcuni problemi sui giochi d azzardo (dadi) posti da un giocatore, il cavaliere de Méré, al matematico e filosofo
STATISTICA e PROBABILITA'
STATISTICA e PROBABILITA' Il problema della misura si pone in termini probabilistici, determinando un intervallo di valori aventi una certa probabilità di essere osservati. E' necessario quindi introdurre
FENOMENI CASUALI. fenomeni casuali
PROBABILITÀ 94 FENOMENI CASUALI La probabilità si occupa di fenomeni casuali fenomeni di cui, a priori, non si sa quale esito si verificherà. Esempio Lancio di una moneta Testa o Croce? 95 DEFINIZIONI
Probabilità. Ing. Ivano Coccorullo
Ing. Ivano Coccorullo PROBABILITA Teoria della Eventi certi, impossibili e casuali Nella scienza e nella tecnologia è fondamentale il principio secondo il quale ogni volta che si realizza un insieme di
Gli insiemi N, Z e Q. I numeri naturali
Università Roma Tre L. Chierchia 1 Gli insiemi N, Z e Q Il sistema dei numeri reali (R, +,, ) può essere definito tramite sedici assiomi: quindici assiomi algebrici (si veda ad esempio 2.3 in [Giusti,
Prefazione Ringraziamenti dell'editore Il sito web dedicato al libro Test online: la piattaforma McGraw-Hill Education Guida alla lettura
INDICE GENERALE Prefazione Ringraziamenti dell'editore Il sito web dedicato al libro Test online: la piattaforma McGraw-Hill Education Guida alla lettura XI XIV XV XVII XVIII 1 LA RILEVAZIONE DEI FENOMENI
1. Descrivere gli spazi campionari dei seguenti esperimenti casuali: 1. lancio di un dado 2. lancio di due dadi 3.
Corso di Laurea INTERFACOLTÀ - Esercitazione di Statistica n 6 ESERCIZIO 1: 1. Descrivere gli spazi campionari dei seguenti esperimenti casuali: 1. lancio di un dado 2. lancio di due dadi 3. lancio di
STATISTICA ESERCITAZIONE 9
STATISTICA ESERCITAZIONE 9 Dott. Giuseppe Pandolfo 19 Gennaio 2015 REGOLE DI CONTEGGIO Sequenze ordinate Sequenze non ordinate Estrazioni con ripetizione Estrazioni senza ripetizione Estrazioni con ripetizione
Processi di Markov. Processi di Markov
Processi Stocastici Processi Stocastici Processi Stocastici Catene o Catene o Catene di M Processi Stocastici Processi Stocastici Processi Stocastici Catene o Catene o Catene di M Processi Stocastici Un
22/07/2013 PRECORSO Dipartimento di Scienze Biomediche, Sperimentali e Cliniche. Numeri, frazioni, operazioni fondamentali
PRECORSO 2013 Problemi di Matematica Alessandro Passeri Dipartimento di Scienze Biomediche, Sperimentali e Cliniche PRECORSO 2013: ciclo formativo di orientamento alle prove di ammissione ai Corsi di studio
PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado)
L esito della prossima estrazione del lotto L esito del lancio di una moneta o di un dado Il sesso di un nascituro, così come il suo peso alla nascita o la sua altezza.. Il tempo di attesa ad uno sportello
