B1. Monomi - Esercizi

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "B1. Monomi - Esercizi"

Transcript

1 B1. Monomi - Esercizi Scrivere le espressioni algebriche di seguito indicate: 1 Sommare al triplo di a il doppio di b e dividere il risultato per 5. Sottrarre da c il quadrato di a. Sottrarre dal doppio di a il quadrato di b sommato con x. Aggiungere al quadrato di a il quadruplo di b e moltiplicare il tutto per due. 5 Moltiplicare il doppio della somma di x ed y con il quadrato di x. Moltiplicare la somma di a e b per la differenza di a e b. 7 Il quadrato della somma di a e b. 8 Al cubo del triplo di x sottrarre il doppio del quadrato di y. Dividere per x la somma del triplo di x per il doppio di y. 10 Sommare la metà di x al doppio di y. 11 Il doppio di a per il triplo di b per il quadruplo di c. 1 Il quadrato di a per il cubo di b per la quarta potenza di c. 1 Dividere il cubo della differenza tra x e il quadrato di y per la somma del doppio di x per il quadrato di y. 1 Sommare il quadrato di a al doppio del quadrato di b. 15 Fare la radice del quadrato di a. 1 Sommare al doppio del quadrato di a il triplo del quadrato di b e dividere tutto per la differenza tra b e a. Esprimere in italiano le seguenti espressioni algebriche: 17 a+b 18 a -b 1 a-b 0 a -b 1 a +b a + b a b a+b 5 ab a + b x 7 a b a + b 8 1a + 1b a -x 0 a+b - 1 x-y x+y 1 x x a + 1b 5 1a b : 1 c a a a a a a + + a b a + c 7 x -x-1 Dire se sono o no monomi 8 a-b ; ab ; -ab :; 5a - a ; b 0 1 ; -x y z; -x y z x 1 a ax 5 ax ; + a ; b ab ; cx 1 ; a a b ; 5 c1 x y ; a 1 xy a Ridurre a forma normale i seguenti monomi e dire poi di ogni monomio il coefficiente numerico, il grado rispetto ad ogni lettera ed il grado totale. 1 c x y 5 Esercizi B1-1

2 by ax xy ab a b 5 5aa x xx a 5 ax1x5 5 a 7 10 c c b b c y 0,1 x 0,ax7 x a a b ab c a 1c c 0 a 5 5 by a 1, by xy 10x y aaxxaaxxaxa 55 tx5x t 17,x 00 x ac a 57,1 10 ax1 58 xa 5,5aa b 1 b 5 Calcolare il valore delle espressioni letterali sostituendo al posto delle lettere i valori indicati: 0 ab a= b=1 [ 1 ab a=- b=-1 [-8 ab a= b=-1 [- ab a=- b= [- 5 a x a= x=-5 [ xy x= 1 y= [ 1 a b a= b= [-7 7 x 1 x= x [ 1 8 x 1 x= 1 x [-1 a + a a= a 1 [ 70 a + a a=-a 1 15 [ x= y=-1 xy xy [ x= 1 y= [ 8 xy xy 7 1 a a 1 + a= a a a 1 + a=- a 1 [ [ a b a=- b= + [5 7 m 1n m=- n= [ 77 a b a= b=- [-5 Esercizi B1-

3 78 a 1b a= b= [ 7 x 1y x= y= [1 80 m 1n 1 m= 1 n= 5 [ 77 5 Somma e sottrazione di monomi 81 5xy-8xy+xy [xy 8 a-5a+a-a [-a 8 ab -ab [-ab 8 axy axy 1axy 7 ax y 85 1a + 1a + 1a [a 8 ab ab + 5ab ab + 1ab ab 1ab [-a b 87 1xy xy 1xy 7 xy xy 1 x y ab a b ab a b 1ab a b + + [ 1 a b 1 1x y x + x x y x y 1x [ 1xy + x ab a + a ab + ab 1a [ a a b 1 1m mn 1mn m 5 m mn 5 a b 1ab + ab a b [ ab 7 ab 1 a + a a + x a + a x [x-a x x x + x + 5xy + x xy x [x -xy 5 a + ab ab + a ab + ab ab [8a-a b+ab xyz + xyz 18xyz xyz + xyz + xyz [ 7xyz + xyz 7 a + b a b + b + a + a a + a [-b+a 8 a + + a a + 10a + a [-5a -a 1 xy 5x y xy x y x y + [ 5xy 7xy 100 Trovare A+B+C, A+B-C, A-B+C, -A-B-C con A= xz B=-xz C= 1xz [ 7xz ; 17xz ; 17xz ; 7xz 101 mn 1mn mn 5m + + n [ mn + mn Calcola A+B C con A=5xy B=-x C=y [-x y Prodotto di monomi 10 xy xy ; x + 5xy 10 xyz xy ; x x ; xy xy 105 xy + x y ; 17x 17x 10 x y; x x ; x xy a c 8 ac ; 5a5xy a5xy ; 5abc abc ab a ; 1 a 5 x y a x y 5 ; + 10a ac abc abc ab ; + ac bc 7abc 1 c 7 Esercizi B1- a c ; 5a x y ; 0a b c 7 [ a b ; a x y ; 0a c 5 [ 5 [ abc ; abc 110 a bc abc ab 1 8 ; 1 a m 1 b m+ 1 a 1 m y m 1 [ bc ;bm+ 1ym amy m 8amy n ; 1 a b 0,7a 5 ab + 7 a a a ; am bm a bm [ a 11 m m 11 m n+ 1 m [ 1amy m+ n;ab ;a b m+ m+ m a b a y ; x m y n xy n [ ambn + 1y ;xm+ 1yn 1 a b a 7ab 5 11 x x x [ 7 a 7 b;x m+ 5 ; m 5m+

4 Divisione di monomi 115 ab : + ab ; ab 5 : ab 11 5ab: 15ab ; x0b : x b 117 5a5y8z 1 : 5a5bz ; a5b 5 : a5b xy 5 : xy ; 1 x 5 b c : x 5 bc xyz: 1xy ; a5bc: [ ab; ab [ 1 a ;x b [ 5a0y8b z ; 1b a bc y ;b c [ yz; 1ab [ 10 5xy : + 10xy; 1 a b: a b [ y; 1a 8 11 x5y : xy; ab 5 : ab [ x ; ab xny n : 1 xn ; xny 5n : xnyn [ xny n; xnyn 1 1 x y: x y ; xny n: xny x n+ y m+ n : 15 x n+ 1 y m+ n ; 1 xny 8n : xnyn 5 Potenze di monomi 15 + a ; a 1 a ; + ab 17 a ; a 18 axy 5 ; 5ab 1 + xy ; + xy 0 7 a 10 + axy 0 a 5 ; a 11 a ; a b ; 1 a b + ; 10 a b 5 ; a b a b a 0 b Scrivere i quadrati o i cubi di cui è dato il risultato 15 a b ; a b 1 1 a 10 b 8 x ; 100 x 8 y x y 18 ; 81 8a 10 b a b ; ambmx x y 1; 1 x y a b ; 81a b 11 ambmx1 ; 15 x 18 y 1 1 x y 1; 1 x b 1 x 15 b ; amnb 1 7 x ; 1 x 7 b xy ; 1y [ 1 n 1 x y ; x y 8 [ m+ n n Espressioni con i monomi ab 8ab a + 11a [-a b 15 Esercizi B1-

5 1 a b x 5 a b x a b x a a + [0 17 ab ab b b Esercizi B1-5 [ 5 ab 8 18 abx 1abx ab 1a b [ 5 a b x 1 7xy xy xy xy xy 1xy + a b 5ab + 5a b a b 150 xy 7x x y x + 8y a b 1 ab ab ab ab ab ab 10ab + 1a 1b a ab + 5ab 1a 15 1a 1b a ab + ab 1a xy x y 5x x y [ xy [ 5 a b 5 [ xy [ 5 a b 1 [ ab [ a b 0 + [ 7xy + xy 15 ab ab a b a b a + [ 5ab x x y x y x y 1x a x + 1ax 5 ax 5ax a a b ac b 5 c + ab a bc b c 5a b c 1 a5bc abc + 5abc 1abc 5abc abc x yz 1xy y z xy z + x z + x y z a by ab 1b a b a y a b y a b 1ab x 5x ab 1 a x a a ab 5b ab 1 a a [ x y [ 7ax [0 [ 5 a b c [ 10 x y z 8 [ aby [ a b x + + [ ab a 5 15 a b + b + 1 a b ab 1 x xy y xy xy y x + + [ xy a ab + a 1b 1a b b b a [0 [ ab + [ 8b 8a 1 10x a : a x [ 5a 170 x y 5xy 5y + + [ +17xy + 5 [-11a8c c ac ac ac a 5 x : x x b : x b xb :xb a 5: a + a8x : ax ax : ax 17 5x y + x x + 1xy 1 x 1xy x [ 1 x [ 1 a [ 5xy 1 ab a + abx b + x ab + a:a 1 [ a b 1a a a 1b abx : 1a bx 1a b : a5b ay : ay ay :a5 + 8 [ 1a + a 1b 1 [0 [ 15 ay

6 ab ab x 1x 5 5 [ x 10 1 xm 1xm + xm xm [ x m a m am am am am + + [ 5 x m x 5 x x x x + a 18 ab : a ab : a ab 18 0 ay + 5ay 7: ay ya a 0 a + ay :ay + a : 1a ay : 1ay + 10a a ab ab : a ab [ 10x8 [ ab + 1a5b5 [ 1 a y [ 5a + + [ ab + + [ ab 187 a 5ab ab : a 7 ab 188 1xb x 10x 7b xb :xb xy xy 1xy xy x5y xy + x 15xy x 1y 1xy 1x ay : 1ay 1 x 1x x 1x x 1 ab ab ab b [ 1 x b 1 [ 5 x 7 y 1 [ 1 x y 1 [ ay [ 1 x [ 7ab 10 Trova il MCD e il mcm dei seguenti gruppi di monomi 1 ab x; a 5 x y; -ax y [MCD=ax mcm=a 5 b x y 15 10ab; 0a b ; 5ab c [MCD=5ab mcm=0a b c 1 5a yz; -ay ; a [MCD=a mcm=10a y z 17 a b ; -a b ; 15a b [MCD=a b mcm=5a b 18 15x yz ; xy z; -y [MCD=y mcm=0x y z 1 5xy ; x y ; 5a c [MCD=1 mcm=50a c x y 00 a ; a b; 1a b [MCD=a mcm=1a b 01 5x ; 10ax; -15ax [MCD=5x mcm=0ax 0 1x 5 y z ; x y z; x y [MCD=x y mcm=1x 5 y z 0 5x y ; 5xy z; 0x yz [MCD=5xy mcm=100x y z 0 18xy z ; 1x yz [MCD=xyz mcm=x y z 05 1a b ; -8ab c 5 [MCD=ab mcm=a b c 5 0 a x; 8a bx [MCD=a x mcm=a bx 07 1x y ; 10a xy 5 [MCD=xy mcm=0a x y 5 08 a b ; 1 a b x ; ab xy [MCD=ab mcm=a b xy 0 7a b; -ab ; 18ab [MCD=ab mcm=5a b 10 a m y m+1 ; a m-n y m+ ; a m y m [MCD=a m-n y m mcm=a m y m+ 11 a m+ x m- ; a m+1 ; a m x m-1 [MCD=a m mcm=a m+ x m x b ; -axb 5 ; [MCD=bx mcm=ab 5 x 1 a; b ; c [MCD=1 mcm=ab c 1 a n+ y ; a n- y; 8y z [MCD=y mcm=a n+ y z Esercizi B1-

B3. Scomposizione di polinomi - Esercizi

B3. Scomposizione di polinomi - Esercizi B. Scomposizione di polinomi - Esercizi RACCOGLIMENTO TOTALE 1) 15a 0 ) ax 6x ) x + 6a 4) 1a + 60a 5) 16a + 6) 18 x 7) 4a4 6a 8) ab ab 9) ab4x ab 10) ab + ab 11) abc abc4 1) xy xy + xyz 1) 5a 0b 14) xy

Dettagli

Sezione Esercizi 309. e ) a 6 + b 4 + 2a 3 b 2 Sì No f ) 25a 2 + 4b 2 20ab 2 Sì No. g ) 25a b a2 b 2 Sì No

Sezione Esercizi 309. e ) a 6 + b 4 + 2a 3 b 2 Sì No f ) 25a 2 + 4b 2 20ab 2 Sì No. g ) 25a b a2 b 2 Sì No Sezione.6. Esercizi 09.6 Esercizi.6. Esercizi dei singoli paragrafi. - Quadrato di un binomio.. Completa: x y) = x) x)y) y) =................................................ x y) = x) x)y) y) =........................................

Dettagli

U.D. N 04 I polinomi

U.D. N 04 I polinomi 8 U.D. N 04 I polinomi 0) Monomi 0) Somma algebrica di monomi simili 0) prodotto di due i più monomi 04) Quoziente di due monomi 05) Potenza di un monomio 06) Massimo comune divisore di due o più monomi

Dettagli

270 Capitolo 10. Monomi. d ) 7 2 a3 x 4 y 2 per a = 1 2, x = 2, y = 1 2 ; e ) 8 3 abc2 per a = 3, b = 1 3, c = 1 2.

270 Capitolo 10. Monomi. d ) 7 2 a3 x 4 y 2 per a = 1 2, x = 2, y = 1 2 ; e ) 8 3 abc2 per a = 3, b = 1 3, c = 1 2. 70 Capitolo 10. Monomi 10.9 Esercizi 10.9.1 Esercizi dei singoli paragrafi 10.1 - L insieme dei monomi 10.1. Individua tra le espressioni letterali di seguito elencate, quelle che sono monomi. E 1 = 5x

Dettagli

Sezione 9.9. Esercizi 189

Sezione 9.9. Esercizi 189 Sezione 9.9. Esercizi 189 9.9 Esercizi 9.9.1 Esercizi dei singoli paragrafi 9.1 - L insieme dei monomi 9.1. Individua tra le espressioni letterali di seguito elencate, quelle che sono monomi. E 1 = 5x

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. 1.6 esercizi 17 Esercizio 25. Determina MCD e mcm fra i seguenti polinomi: 8a 2 + 16ab + 8b 2 4a 4 4a 2 b 2 12a 2 + 12ab Soluzione. Scomponiamo in fattori i tre polinomi: 8a 2 + 16ab + 8b 2 = 8(a 2 + 2ab

Dettagli

CONOSCENZE 1. espressioni letterali e monomi. 2. le operazioni con i monomi 3. i polinomi 4. le operazioni con i polinomi. 5. i prodotti notevoli

CONOSCENZE 1. espressioni letterali e monomi. 2. le operazioni con i monomi 3. i polinomi 4. le operazioni con i polinomi. 5. i prodotti notevoli ALGEBRA IL CALCOLO LETTERALE PREREQUISITI l l l conoscere e operare con tutte le operazioni nell'insieme R conoscere e utilizzare le proprietaá delle operazioni conoscere e utilizzare le proprietaá delle

Dettagli

U.D. N 04 I polinomi

U.D. N 04 I polinomi Unità Didattica N 0 I polinomi U.D. N 0 I polinomi 0) Monomi 0) Somma algebrica di monomi simili 0) Prodotto di due i più monomi 0) Quoziente di due monomi 05) Potenza di un monomio 06) Massimo comune

Dettagli

U.D. N 05 La fattorizzazione dei polinomi

U.D. N 05 La fattorizzazione dei polinomi Unità Didattica N 05 La fattorizzazione dei polinomi 51 U.D. N 05 La fattorizzazione dei polinomi 01 La messa in evidenza totale 0 La messa in evidenza parziale 03 La differenza di due quadrati 04 Somma

Dettagli

Scomposizione di un polinomio in fattori

Scomposizione di un polinomio in fattori Scomposizione di un polinomio in fattori Scomporre in fattori primi un polinomio significa esprimerlo come il prodotto di due più polinomi non più scomponibili. Ad esempio x 2 9 = x 3) x + 3) }{{} fattore

Dettagli

1) Ricorda: Le lettere sostituiscono i numeri e puoi svolgere le medesime operazioni.

1) Ricorda: Le lettere sostituiscono i numeri e puoi svolgere le medesime operazioni. Il calcolo letterale. BM 2; NLM 57 ) Ricorda: Le lettere sostituiscono i numeri e puoi svolgere le medesime operazioni. a + a = a + b = a a = a b = a. a = a. b = a : a = a : b = a. a. a = a -n = a -n.

Dettagli

Monomi. 9.1 L insieme dei monomi

Monomi. 9.1 L insieme dei monomi Monomi 9 9.1 L insieme dei monomi D ora in poi quando scriveremo un espressione letterale in cui compare l operazione di moltiplicazione, tralasceremo il puntino fin qui usato per evidenziare l operazione.

Dettagli

SCHEMI DI MATEMATICA

SCHEMI DI MATEMATICA SCHEMI DI MATEMATICA SCHEMA 1: somme algebriche tra numeri ( ci sono sia somme che sottrazioni) Obiettivo dello schema1: saper risolvere espressioni come : -3-6 Metodo: se il segno dei due numeri è uguale

Dettagli

Precorso di Matematica A. A. 2017/2018. Algebra

Precorso di Matematica A. A. 2017/2018. Algebra Precorso di Matematica A. A. 017/018 Algebra 1 Monomi Monomio: espressione algebrica ottenuta come prodotto di fattori sia numerici sia letterali. Grado di un monomio rispetto ad una sua lettera: esponente

Dettagli

Monomi L insieme dei monomi

Monomi L insieme dei monomi Monomi 10 10.1 L insieme dei monomi Definizione 10.1. Un espressione letterale in cui numeri e lettere sono legati dalla sola moltiplicazione si chiama monomio. Esempio 10.1. L espressione nelle due variabili

Dettagli

SCOMPOSIZIONE DI UN POLINOMIO IN FATTORI

SCOMPOSIZIONE DI UN POLINOMIO IN FATTORI SCOMPOSIZIONE DI UN POLINOMIO IN FATTORI BINOMIO RACCOGLIMENTO ax + bx = x ( a + b ) a 2 b 2 = ( a + b ) ( a b ) CUBI a 3 - b 3 = ( a - b ) ( a 2 + ab + b 2 ) SOMMA DI CUBI a 3 + b 3 = ( a + b ) ( a 2

Dettagli

Liceo Scientifico M. G. Vida - Cremona

Liceo Scientifico M. G. Vida - Cremona Liceo Scientifico M. G. Vida - Cremona Classe I as Prodotti notevoli - spiegazioni, formule, esempi Prof. Carlo Alberini 1 dicembre 2010 Abbiamo introdotto in queste lezioni i prodotti notevoli, ovvero

Dettagli

Prodotti notevoli Quadrato di un binomio

Prodotti notevoli Quadrato di un binomio Prodotti notevoli Con l espressione prodotti notevoli si indicano alcune identità che si ottengono in seguito alla moltiplicazione di polinomi aventi caratteristiche particolari facili da ricordare.. Quadrato

Dettagli

Monomi e Polinomi. Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione.

Monomi e Polinomi. Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione. Monomi e Polinomi Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione. ) Sono monomi: 5 a 3 b 2 z; 2 3 a2 c 9 ; +7; 8a b 3 a 2. Non sono monomi: a + 2; xyz

Dettagli

B3. Scomposizione di polinomi

B3. Scomposizione di polinomi B3. Scomposizione di polinomi Quando si calcola una espressione contenente solo prodotti di polinomi si ottiene un polinomio, che è il risultato dell espressione. La scomposizione in fattori di polinomi

Dettagli

( ) ( ) 2 + 3( a + b) = ( ) + b( x 1) = ( ) ( ) b( x + y) = ( ) x 2 ( a + b) y 2 + ( a + b) = ( ) + ( a b) = ( ) a( 4x + 7) = ( ) + 3a( 2 5y) =

( ) ( ) 2 + 3( a + b) = ( ) + b( x 1) = ( ) ( ) b( x + y) = ( ) x 2 ( a + b) y 2 + ( a + b) = ( ) + ( a b) = ( ) a( 4x + 7) = ( ) + 3a( 2 5y) = 1 Scomposizione in fattori di un polinomio Scomporre in fattori un polinomio significa trasformare il polinomio, che è una somma algebrica di monomi, nel prodotto di fattori con il grado più basso possibile.

Dettagli

1 Le espressioni algebriche letterali

1 Le espressioni algebriche letterali 1 Le espressioni algebriche letterali DEFINIZIONE. Chiamiamo espressione algebrica letterale un insieme di numeri, rappresentati anche da lettere, legati uno all altro da segni di operazione. ESEMPI 2a

Dettagli

I monomi Prof. Walter Pugliese

I monomi Prof. Walter Pugliese I monomi Prof. Walter Pugliese I monomi Def.: Il monomio è un espressione letterale in cui compaiono soltanto moltiplicazioni tra numeri e lettere. Gli esponenti delle lettere sono numeri naturali. Esempi:

Dettagli

B2. Polinomi - Esercizi

B2. Polinomi - Esercizi B. Polinomi Esercizi Grado dei polinomi Ordinare i polinomi rispetto alla lettera di grado più alto e poi dire il grado rispetto a ciascuna lettera ed il grado complessivo: ) a + a ) xy axy + axx ) a +

Dettagli

Polinomi Prodotti notevoli. Esempi di polinomi

Polinomi Prodotti notevoli. Esempi di polinomi Pagina 1 Polinomi Definizione: Dicesi polinomio la somma algebrica di due o più monomi. I monomi si dicono i termini del polinomio. Un polinomio formato da due termini dicesi binomio, da tre termini trinomio,

Dettagli

Le quattro operazioni

Le quattro operazioni Le quattro operazioni 1. Addizione a + b = c addendi somma Proprietà commutativa Cambiando l ordine degli addendi, la somma non cambia. a + b = b + a Proprietà associativa La somma di tre numeri non cambia,

Dettagli

Il calcolo letterale algebrico. (NLM teoria pag ; esercizi pag )

Il calcolo letterale algebrico. (NLM teoria pag ; esercizi pag ) Il calcolo letterale algebrico. (NLM teoria pag. 7 86; esercizi pag. 11 5) Il calcolo letterale, o algebrico, è quella parte della matematica che generalizza il calcolo numerico utilizzando delle lettere

Dettagli

I monomi. ITIS Feltrinelli anno scolastico R. Folgieri

I monomi. ITIS Feltrinelli anno scolastico R. Folgieri I monomi ITIS Feltrinelli anno scolastico 2007-2008 R. Folgieri 2007-2008 1 I monomi Abbiamo usato spesso le lettere al posto dei numeri quando dovevamo enunciare delle proprietà o delle regole generali.

Dettagli

14 : : : : 3 15 : 5. 2) Fra le seguenti espressioni indica, motivando la risposta, i monomi:

14 : : : : 3 15 : 5. 2) Fra le seguenti espressioni indica, motivando la risposta, i monomi: COMPITI DELLE VACANZE DI MATEMATICA CLASSI PRIME A.F.M. A.S. 0/5 ) Calcola le seguenti espressioni: 5 0 : 7 : 8 : : 5 : 5 5 6 0 : : : : : b) 7 9 5 5 5 7 0 5 9 b) 6 66 :6 :6 :6 : : : : 5 d) 7 : 9 6 7 8

Dettagli

292 Capitolo 11. Polinomi Scrivi un polinomio di terzo grado nelle variabili a e b che sia omogeneo.

292 Capitolo 11. Polinomi Scrivi un polinomio di terzo grado nelle variabili a e b che sia omogeneo. 9 Capitolo. Polinomi.8 Esercizi.8. Esercizi dei singoli paragrafi. - Definizioni fondamentali.. Riduci in forma normale il seguente polinomio: 5a 4ab + a + ab a a. Svolgimento: Evidenziamo i termini simili

Dettagli

18.5 Esercizi. Sezione Esercizi Scomponi in fattori i seguenti trinomi particolari. e ) x 2 3x+2; a ) x 2 5x 36; f ) x 2 2x 3.

18.5 Esercizi. Sezione Esercizi Scomponi in fattori i seguenti trinomi particolari. e ) x 2 3x+2; a ) x 2 5x 36; f ) x 2 2x 3. Sezione 18.5. Esercizi 313 18.5 Esercizi 18.5.1 Esercizi dei singoli paragrafi 18.1 - Trinomi particolari 18.1. Scomponi in fattori i seguenti trinomi particolari. a ) x 2 5x 36; b ) x 2 17x+16; c ) x

Dettagli

Il calcolo letterale

Il calcolo letterale Il calcolo letterale Si dice ESPRESSIONE ALGEBRICA LETTERALE (o semplicemente espressione algebrica) un espressione in cui compaiono lettere che rappresentano numeri. Esempio: 5ab 4a b 3 + b 5a 1 ab 3

Dettagli

Riepilogo scomposizione polinomi

Riepilogo scomposizione polinomi Riepilogo scomposizione polinomi. Ci sono fattori comuni? Se sì, fai un raccoglimento totale. Esempio: ax ay a=a x y 2. Quanti sono i termini del polinomio? Due Somma di quadrati: non si scompone. Esempio:

Dettagli

Le espressioni letterali

Le espressioni letterali Calcolo letterale Le espressioni letterali Sono espressioni contenenti numeri reali e lettere. A=(B+b)h/2 A=2(b+h) Le lettere rappresentano numeri reali. La stessa lettera assume sempre lo stesso valore.

Dettagli

ALGEBRA. Monomio: In un monomio distinguiamo parte numerica (o coefficiente) e parte letterale. Es.: -7 ax 2 b 3 y. Parte letterale.

ALGEBRA. Monomio: In un monomio distinguiamo parte numerica (o coefficiente) e parte letterale. Es.: -7 ax 2 b 3 y. Parte letterale. ALGEBRA Monomio: un espressione algebrica dove non figurano operazioni (e non segni) di addizione (+) o sottrazione(-); figurano solo moltiplicazioni e potenze. In un monomio distinguiamo parte numerica

Dettagli

Definizione: Due monomi si dicono simili se hanno la stessa parte letterale.

Definizione: Due monomi si dicono simili se hanno la stessa parte letterale. CALCOLO LETTERALE Definizione: Data una formula si dicono variabili le lettere alle quali può essere sostituito qualsiasi valore numerico; i numeri si dicono, invece, costanti. Nella formula per il calcolo

Dettagli

RECUPERO LE ESPRESSIONI CON LE QUATTRO OPERAZIONI IN N

RECUPERO LE ESPRESSIONI CON LE QUATTRO OPERAZIONI IN N I NUMERI NATURALI E I NUMERI INTERI Recupero LE ESPRESSIONI CON LE QUATTRO OPERAZIONI IN N {[0 ( )] [ ( )]} ( ). {[0 ( )] [ ( )]} ( ) {[0 ( )] [ ( )]} ( ) {[ ] [ ]} { } Esegui le operazioni nelle parentesi

Dettagli

LA SCOMPOSIZIONE DEI POLINOMI

LA SCOMPOSIZIONE DEI POLINOMI LA SCOMPOSIZIONE DEI POLINOMI 8 Per rcordare H Scomporre un polnomo sgnfca scrverlo come prodotto d altr polnom. Nella scomposzone d un polnomo non devono qund comparre operazon d addzone o sottrazone

Dettagli

Precorso di Matematica Maria Margherita Obertino Università degli Studi di Torino Di.S.A.F.A.

Precorso di Matematica Maria Margherita Obertino Università degli Studi di Torino Di.S.A.F.A. Precorso di Matematica Maria Margherita Obertino Università degli Studi di Torino Di.S.A.F.A.! Divisione tra polinomi ( 2.2 del testo)! La regola di Ruffini ( 2.3 del testo)! I prodotti notevoli ( 2.3

Dettagli

Esempio B2.1: dire il grado del monomio seguente rispetto ad ogni lettera e il suo grado complessivo:

Esempio B2.1: dire il grado del monomio seguente rispetto ad ogni lettera e il suo grado complessivo: B. Polinomi B.1 Cos è un polinomio Un POLINOMIO è la somma di due o più monomi. Se ha due termini, come a+b è detto binomio Se ha tre termini, come a-3b+cx è detto trinomio, eccetera GRADO DI UN POLINOMIO

Dettagli

POLINOMI. Definizione Nomenclature Grado di un polinomio Operazioni fra polinomi Prodotti notevoli

POLINOMI. Definizione Nomenclature Grado di un polinomio Operazioni fra polinomi Prodotti notevoli POLINOMI Definizione Nomenclature Grado di un polinomio Operazioni fra polinomi Prodotti notevoli Definizione In matematica un polinomio tipico, cioè ridotto in forma normale, è dato dalla somma algebrica

Dettagli

Calcolo algebrico. Maria Simonetta Bernabei & Horst Thaler

Calcolo algebrico. Maria Simonetta Bernabei & Horst Thaler Calcolo algebrico Maria Simonetta Bernabei & Horst Thaler CALCOLO LETTERALE Perché? E opportuno rappresentare i numeri con lettere dell alfabeto per fare affermazioni che valgono indipendentemente dal

Dettagli

Monomi e polinomi. MATEMATICAperTUTTI. Monomi 1 ESERCIZIO SVOLTO

Monomi e polinomi. MATEMATICAperTUTTI. Monomi 1 ESERCIZIO SVOLTO MATEMATICAperTUTTI Monomi ESERCIZIO SVOLTO I monomi. Un espressione letterale come a b si dice monomia perché in essa non compaiono operazioni di addizione o sottrazione; in un monomio le lettere che compaiono

Dettagli

CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni MONOMI E POLINOMI Prof. Erasmo Modica

CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni MONOMI E POLINOMI Prof. Erasmo Modica CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni MONOMI E POLINOMI Prof. Erasmo Modica [email protected] MONOMI In una formula si dicono variabili le lettere alle quali può essere

Dettagli

Quadrato di un Binomio

Quadrato di un Binomio PRODOTTI NOTEVOLI 1 Quadrato di un Binomio Cerchiamo la regola La regola Il significato geometrico Esempi Esercizi proposti prof.ssa Giuseppa Chirico 2 Quadrato di binomio: significato algebrico (a+b)

Dettagli

1. ESPRESSIONE LETTERALE Si dice espressione letterale una espressione formata da numeri, lettere e segni.

1. ESPRESSIONE LETTERALE Si dice espressione letterale una espressione formata da numeri, lettere e segni. 1. ESPRESSIONE LETTERALE Si dice espressione letterale una espressione formata da numeri, lettere e segni. 2. MONOMIO 2a + b -3 due a più b meno tre 3x 2 x + 5 3 ics al quadrato ics + 5 MONOMI Si dice

Dettagli

Introduzione all algebra

Introduzione all algebra Introduzione all algebra E. Modica http://dida.orizzontescuola.it Didattica OrizzonteScuola Espressioni letterali come modelli nei problemi Espressioni come modello di calcolo Esempio di decodifica Premessa

Dettagli

espressione letterale valore numerico Monomio: forma normale coefficiente parte letterale Monomi simili: Monomi opposti: Grado di un monomio:

espressione letterale valore numerico Monomio: forma normale coefficiente parte letterale Monomi simili: Monomi opposti: Grado di un monomio: Calcolo letterale Espressione letterale Un espressione letterale è un insieme di numeri e lettere legati dai simboli delle operazioni. Il valore numerico di un espressione letterale è il risultato numerico

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA CALCOLO LETTERALE Dr. Erasmo Modica [email protected] MONOMI In una formula si dicono variabili le lettere alle quali può

Dettagli

IL CALCOLO LETTERALE. La «traduzione» del linguaggio comune in linguaggio matematico

IL CALCOLO LETTERALE. La «traduzione» del linguaggio comune in linguaggio matematico IL CALCOLO LETTERALE La «traduzione» del linguaggio comune in linguaggio matematico BREVE STORIA DELL ALGEBRA Dall algebra sincopata all algebra simbolica L algebra è una disciplina antichissima ma il

Dettagli

Mappa concettuale del modulo

Mappa concettuale del modulo Modulo 2 L algebra dei polinomi Mappe, schemi riassuntivi ed esercitazioni Prof. E. Castello Introduzione Fino ad ora abbiamo operato prevalentemente con i numeri interi o razionali, utilizzando operazioni

Dettagli

Prodotti Notevoli. 1. Prodotto della somma di due monomi per la loro differenza

Prodotti Notevoli. 1. Prodotto della somma di due monomi per la loro differenza Prodotti Notevoli I prodotti notevoli sono particolari prodotti o potenze di polinomi, che si sviluppano secondo formule facilmente memorizzabili. Questi consentono di effettuare i calcoli in maniera più

Dettagli

I POLINOMI. Si chiama POLINOMIO la somma algebrica di più monomi interi. Ad esempio sono polinomi: 3 x 2 +2x; 4 a 2 b 2 +b 3 ; ab+xy;

I POLINOMI. Si chiama POLINOMIO la somma algebrica di più monomi interi. Ad esempio sono polinomi: 3 x 2 +2x; 4 a 2 b 2 +b 3 ; ab+xy; I POLINOMI Si chiama POLINOMIO la somma algebrica di più monomi interi Ad esempio sono polinomi: 3 x 2 +2x; 4 a 2 b 2 +b 3 ; ab+xy; 8x 2 +11x+4 a 2 b 2 +4 b 3 I POLINOMI Ogni monomio che compone il polinomio

Dettagli

1.4 PRODOTTI NOTEVOLI

1.4 PRODOTTI NOTEVOLI Matematica C Algebra. Le basi del calcolo letterale.4 Prodotti notevoli.4 PRODOTTI NOTEVOLI Il prodotto fra due polinomi si calcola moltiplicando ciascun termine del primo polinomio per ciascun termine

Dettagli

Calcolo algebrico. Erica Boatto I.T.I.S. V.Volterra San Donà di Piave. Piero Fantuzzi I.T.I.S. V.Volterra

Calcolo algebrico. Erica Boatto I.T.I.S. V.Volterra San Donà di Piave. Piero Fantuzzi I.T.I.S. V.Volterra Calcolo algebrico Erica Boatto I.T.I.S. V.Volterra San Donà di Piave Piero Fantuzzi I.T.I.S. V.Volterra San Donà di Piave 7 aprile 2008 Sommario Questo articolo si occupa del Calcolo algebrico Indice MONOMI

Dettagli

ITCS R. LUXEMBURG - BO AS 2010\2011. Compiti estivi classe prima su parti di programma svolto. semplificare le espressioni con i prodotti notevoli.

ITCS R. LUXEMBURG - BO AS 2010\2011. Compiti estivi classe prima su parti di programma svolto. semplificare le espressioni con i prodotti notevoli. ITCS LUXEMBURG - BO AS 00\0 Compiti estivi classe prima su parti di programma svolto ALGEBRA Monomi e polinomi: semplificare le espressioni con i prodotti notevoli. 9 A) a + b b a a + b ( ) a ( a + b)

Dettagli

2 xab ; a2 x 3 y. 3a; 4b 2 ; 0,75y 3 z

2 xab ; a2 x 3 y. 3a; 4b 2 ; 0,75y 3 z 1 Premessa. In questa sezione verranno richiamati alcuni concetti fondamentali dell algebra, quella parte della matematica che si occupa dello studio del cosiddetto calcolo letterale, utili ai fini della

Dettagli

CALCOLO LETTERALE I MONOMI. Il primo tipo di oggetto che incontriamo nel calcolo letterale è il MONOMIO.

CALCOLO LETTERALE I MONOMI. Il primo tipo di oggetto che incontriamo nel calcolo letterale è il MONOMIO. CALCOLO LETTERALE Il calcolo letterale è importante perchè ci consente di realizzare un meccanismo di astrazione fondamentale per l'apprendimento in generale. Scrivere, ad esempio, che l'area di un rettangolo

Dettagli

Calcolo algebrico. Maria Simonetta Bernabei & Horst Thaler

Calcolo algebrico. Maria Simonetta Bernabei & Horst Thaler Calcolo algebrico Maria Simonetta Bernabei & Horst Thaler CALCOLO LETTERALE Perché? E opportuno rappresentare i numeri con lettere dell alfabeto per fare affermazioni che valgono indipendentemente dal

Dettagli

Anno 1. Divisione fra polinomi

Anno 1. Divisione fra polinomi Anno 1 Divisione fra polinomi 1 Introduzione In questa lezione impareremo a eseguire la divisione fra polinomi. In questo modo completiamo il quadro delle 4 operazioni con i polinomi. Al termine di questa

Dettagli

IL Calcolo letterale (o algebrico). (teoria pag ;esercizi pag , es.59 66) 1) Premessa: Al posto dei numeri posso utilizzare delle..

IL Calcolo letterale (o algebrico). (teoria pag ;esercizi pag , es.59 66) 1) Premessa: Al posto dei numeri posso utilizzare delle.. IL Calcolo letterale (o algebrico). (teoria pag. 29 31;esercizi pag. 100 103, es.59 66) 1) Premessa: Al posto dei numeri posso utilizzare delle.. Esempi:. 2) Introduzione. a) Un numero qualsiasi: b) Il

Dettagli

COORDINAMENTO DI MATEMATICA COMPITI ESTIVI CLASSE PRIMA 1^ CAM

COORDINAMENTO DI MATEMATICA COMPITI ESTIVI CLASSE PRIMA 1^ CAM COORDINAMENTO DI MATEMATICA COMPITI ESTIVI CLASSE PRIMA 1^ CAM E meglio non concentrare lo svolgimento degli esercizi in un solo periodo (inizio o fine delle vacanze) ma cercare di distribuire il lavoro

Dettagli

Quando compare un solo fattore numerico e ogni lettera compare una sola volta.

Quando compare un solo fattore numerico e ogni lettera compare una sola volta. A Ripasso Scheda per il recupero Terminologia sui monomi DOMANDE RISPOSTE ESEMPI Che cos è un monomio? Quando un monomio si dice in forma normale? Che cosa sono il coefficiente elaparte letterale di un

Dettagli

Un polinomio è un espressione algebrica data dalla somma di più monomi.

Un polinomio è un espressione algebrica data dalla somma di più monomi. 1 I polinomi 1.1 Terminologia sui polinomi Un polinomio è un espressione algebrica data dalla somma di più monomi. I termini di un polinomio sono i monomi che compaiono come addendi nel polinomio. Il termine

Dettagli

Scomposizione di polinomi. Scomporre un polinomio significa riscriverlo nel PRODOTTO di due o più polinomi di grado inferiore

Scomposizione di polinomi. Scomporre un polinomio significa riscriverlo nel PRODOTTO di due o più polinomi di grado inferiore Scomposizione di polinomi Scomporre un polinomio significa riscriverlo nel PRODOTTO di due o più polinomi di grado inferiore Raccoglimento a fattor comune Il raccoglimento a fattor comune consiste nel

Dettagli

Potenze - Monomi - Polinomi - Operazioni tra Polinomi - Quadrato e Cubo del Binomio - Quadrato del Trinomio

Potenze - Monomi - Polinomi - Operazioni tra Polinomi - Quadrato e Cubo del Binomio - Quadrato del Trinomio Potenze - Monomi - Polinomi - Operazioni tra Polinomi - Quadrato e Cubo del Binomio - Quadrato del Trinomio Francesco Zumbo www.francescozumbo.it http://it.geocities.com/zumbof/ Questi appunti vogliono

Dettagli

1) Premessa: Al posto dei numeri posso utilizzare delle.. m) La differenza tra due numeri qualsiasi:...

1) Premessa: Al posto dei numeri posso utilizzare delle.. m) La differenza tra due numeri qualsiasi:... IL Calcolo letterale ( o algebrico ). 1) Premessa: Al posto dei numeri posso utilizzare delle.. Esempi:. 2) Introduzione. a) Un numero qualsiasi: b) Il doppio di un numero qualsiasi:. c) Il triplo di un

Dettagli

MONOMI. Donatella Candelo 13/11/2004 1

MONOMI. Donatella Candelo 13/11/2004 1 Donatella Candelo 1/11/00 1 MONOMI Un monomio è una qualunque espressione algebrica intera data dal prodotto di fattori qualsiasi, numerici o letterali. Praticamente in ogni monomio si può distinguere

Dettagli

Frazioni algebriche. Osserviamo che un espressione di questo tipo si ottiene talvolta quando ci si propone di ottenere il quoziente di due monomi.

Frazioni algebriche. Osserviamo che un espressione di questo tipo si ottiene talvolta quando ci si propone di ottenere il quoziente di due monomi. Frazioni algebriche 14 14.1 Definizione di frazione algebrica Diamo la seguente definizione: Definizione 14.1. Si definisce frazione algebrica un espressione del tipo A B polinomi. dove A e B sono Osserviamo

Dettagli

Scomposizione in fattori

Scomposizione in fattori Scomposizione in fattori 13 Scomporre un polinomio in fattori significa scrivere il polinomio come il prodotto di polinomi e monomi che moltiplicati tra loro danno come risultato il polinomio stesso. Si

Dettagli

I POLINOMI. La forma normale di un polinomio. Un polinomio è detto in FORMA NORMALE se in esso non compaiono monomi simili.

I POLINOMI. La forma normale di un polinomio. Un polinomio è detto in FORMA NORMALE se in esso non compaiono monomi simili. I POLINOMI Un polinomio è una somma algebrica tra monomi Sono polinomi le seguenti espressioni 2ab + 4bc -5a 2 b + 2ab - 5c 5x + 2y + 8x in esse infatti troviamo somme o differenze tra monomi La forma

Dettagli

6y y = p 2z = q² : q² = 4z 6z = 8c + 6c = a 9 = 8n : 4n = m : m = y + y² = m + 3m = q : 9 = a a = n 7n = z ( 3n) = p + p = q² + q² = b b² = 5 + z =

6y y = p 2z = q² : q² = 4z 6z = 8c + 6c = a 9 = 8n : 4n = m : m = y + y² = m + 3m = q : 9 = a a = n 7n = z ( 3n) = p + p = q² + q² = b b² = 5 + z = Verifica n 1 Alunno Data 6y y = p 2z = q² : q² = 4z 6z = 8c + 6c = a 9 = 8n : 4n = m : m = y + y² = m + 3m = q : 9 = a a = n 7n = z ( 3n) = p + p = q² + q² = b b² = 5 + z = m a = n b = 10b³ : 7b = pq pq

Dettagli

Calcola il valore della seguente espressione, assegnando alle lettere i valori indicati a fianco.

Calcola il valore della seguente espressione, assegnando alle lettere i valori indicati a fianco. Calcola il valore delle espressioni. I NUMERI RAZIONALI 5 : 7 4 6 4 4 6 5 4 : 0 4 9 4 : 7 5 7 5 5 7 5 4 : : 5 5 5 5 6 8 7 4 6 4 : : : 4 7 7 4 4 4 Calcola il valore della seguente espressione, assegnando

Dettagli

Scomposizione in fattori di un polinomio. Prof. Walter Pugliese

Scomposizione in fattori di un polinomio. Prof. Walter Pugliese Scomposizione in fattori di un polinomio Prof. Walter Pugliese La scomposizione in fattori dei polinomi Scomporre in fattori un polinomio significa scriverlo sotto forma di prodotto di polinomi di grado

Dettagli

DIVISIONE TRA POLINOMI E SCOMPOSIZIONI

DIVISIONE TRA POLINOMI E SCOMPOSIZIONI DIVISIONE TRA POLINOMI E SCOMPOSIZIONI Esegui la seguente divisione fra polinomi e scrivi quoziente e resto.. b b 8b b 5 : b 5 5. x x x : x. 6 x x x : x x Q b b R 5; Q x x x ; R x 7 9 Q x x x ; R x Esegui

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. . esercizi 85 Esercizio 50. Senza utilizzare la calcolatrice, calcola il prodotto 8. Soluzione. 8 = 0 )0 + ) = 0 = 900 = 896 Espressioni con i prodotti notevoli Esercizio 5. Calcola l espressione + ) +

Dettagli

SCHEDA DI LAVORO: CALCOLO LETTERALE

SCHEDA DI LAVORO: CALCOLO LETTERALE SCHEDA DI LAVORO: CALCOLO LETTERALE ALUNNO:...CLASSE... CALCOLO LETTERALE...PERCHE? GUARDATI INTORNO E DESCRIVI IL NUMERO DI CIO' CHE VEDI: 1 COMPUTER 1 LIM 23 SEDIE... IN PRATICA QUANDO PARLI DI NUMERI

Dettagli

Esercizio. Sia a R non nullo e siano m, n numeri interi non nulli con m n. Allora a m /a n è uguale a. [1] 1/a n m [2] 1/a m n [3] 1/a n m [4] a n m

Esercizio. Sia a R non nullo e siano m, n numeri interi non nulli con m n. Allora a m /a n è uguale a. [1] 1/a n m [2] 1/a m n [3] 1/a n m [4] a n m Sia a R non nullo e siano m, n numeri interi non nulli con m n. Allora a m /a n è uguale a [1] 1/a n m [2] 1/a m n [3] 1/a n m [4] a n m Vale la [1] perché per le proprietà delle potenze risulta a m a

Dettagli

Anno 1. M.C.D. e m.c.m. fra monomi

Anno 1. M.C.D. e m.c.m. fra monomi Anno 1 M.C.D. e m.c.m. fra monomi 1 Introduzione In questa lezione impareremo come calcolare il massimo comune divisore (M.C.D.) e il minimo comune multiplo (m.c.m.) di due o più monomi. Infine introdurremo

Dettagli

5) 1 2 essendo x1 e x2 due

5) 1 2 essendo x1 e x2 due SCOMPOSIZIONE IN FATTORI 1) Raccoglimento a fattore comune ( Applicabile ad un polinomio di un numero qualunque di termini purchè i termini presentino almeno una lettera o un numero che si ripete in tutti)

Dettagli