STUDIO della RIFRAZIONE
|
|
|
- Lisa Franchini
- 9 anni fa
- Visualizzazioni
Transcript
1 STUDIO della RIFRAZIONE Presentazione Possiamo vedere ogni oggetto anche se non emette luce propria. I corpi, infatti, sono in grado di riflettere la luce che li "colpisce", verso i nostri occhi. Talvolta, però, la luce, prima di entrare nel nostro occhio attraverso la pupilla, subisce il fenomeno della rifrazione. L'esperienza consiste appunto nello studio di questo fenomeno, grazie a cui la luce "attraversa" i materiali cosiddetti trasparenti. Di quanto devia la luce nella rifrazione? L'ampiezza della deviazione dipende dal tipo di sostanza trasparente, mediante una proprietà ottica detta indice di rifrazione n. In questo lavoro si misura indirettamente l'indice n di un generico olio di semi, osservando un oggetto attraverso l'olio stesso. Materiale necessario Una base in polistirene su cui infiggere gli spilli Matita e pennarello a punta fine 3 fogli formato A3 con goniometro circolare Carta per asciugare eventuali spruzzi 4 spilli sottili e lunghi Riga millimetrata Vaschetta di plastica trasparente Olio di semi Preparazione Sulla base utilizzata come piano di appoggio disponi un foglio con goniometro; Prima di versare l'olio nella vaschetta, sistemala con uno dei lati lunghi di base lungo il diametro parallelo al lato corto del foglio (vedi immagine alla facciata successiva); Versa l'olio nella vaschetta, per almeno 1/3 della sua altezza; Se vuoi, traccia con la matita una linea lungo il perimetro di base della vaschetta: ti potrebbe servire per ricollocare la vaschetta nella posizione iniziale, nel caso capiti di spostarla inavvertitamente; A contatto con la parete più lunga della vaschetta e in corrispondenza del centro del cerchio infiggi 1 spillo: la sua posizione, indicata dalla lettera O, resterà fissa per tutta la durata dell'esperienza. Sulla parete laterale della vaschetta segna col pennarello la posizione di O.
2 RACCOLTA dei DATI: come é deviata la luce che entra nell'olio da diverse angolazioni a) Dalla parte della vaschetta dove é posto lo spillo fisso O, scegli un quadrante del cerchio goniometrico (nell'immagine: abbiamo scelto quello di destra). b) In un punto qualsiasi del goniometro (escludendo i punti di intersezione coi diametri del cerchio) posiziona un secondo spillo C1: l'immagine lo mostra ad un'angolazione di 50 rispetto al centro. Consiglio: non superare i 60 né scendere sotto i 20. C1 O CA1 c) Mettiti dalla parte della vaschetta opposta allo spillo fisso O e osserva i due spilli C1 e O attraverso l'olio presente nel contenitore: "aggiusta" la tua linea di visione fino a che non li vedi allineati. A questo punto prendi un altro spillo CA1 e fissalo nella base in modo che: - Esso risulti allineato (secondo il tuo occhio) con lo spillo fisso O e con C1; - Sia posizionato addosso alla parete della vaschetta; d) Togli gli spilli C1 e CA1. Poi segna sulla carta: - La loro posizione; - La sigla con cui li hai denominati; e) Senza muovere la vaschetta e lo spillo fisso O ripeti le operazioni indicate, da a d, mettendo un altro spillo C2 in un punto del quadrante diverso rispetto a quello precedente. f) Replica il procedimento fino ad avere almeno 5 coppie di punti Ci e CAi. Puoi cambiare il foglio con goniometro disponendo la vaschetta sempre nella medesima posizione rispetto al cerchio goniometrico, fissando lo spillo O in corrispondenza del segno tracciato sulla vaschetta.
3 Come ELABORARE i DATI 1. Traccia il segmento che unisce i punti O e C1 e la linea che unisce i punti O e CA1, fino ad intersecare il goniometro (vedi immagine). In questo modo hai evidenziato il "cammino ottico" di un raggio di luce che da C1 é entrato nella vaschetta per il punto O, uscendone da CA1. C1 i O r CA1 2. Proietta il punto C1 sul diametro parallelo al lato lungo del foglio, ottenendo il punto H1 (vedi immagini a lato e sotto). 3. Misura la lunghezza del segmento C1 H 1 e riportane il valore nella tabella allegata all'ultima facciata della scheda, indicando anche l'incertezza della misura.
4 4. Indica con R1 il punto in cui la linea che unisce i punti O e CA1 interseca la circonferenza goniometrica. 5. Proietta il punto R1 sul diametro parallelo al lato lungo del foglio, ottenendo il punto S1. ooooooooooooooooo 6. Misura la lunghezza del segmento R1S1 e riportane il valore nella tabella allegata, indicando anche l'incertezza della misura. 7. Ripeti le operazioni per le altre coppie di punti. 8. Usa il cerchio goniometrico per la misura dell'angolo di incidenza i e di rifrazione r, per ciascuna delle prove effettuate (vedi immagine alla facciata precedente): trascrivi il loro valore nella tabella. 9. In base alla costruzione eseguita, "ti verrà" spontaneo supporre che le due grandezze misurate siano linearmente correlate, vale a dire che é da studiare la seguente relazione: Ci H i = n Ri Si con i = 1, 2, 3, 4, 5,...
5 Sapendo che n é la costante di proporzionalità: 10. Usa il foglio di carta millimetrata per rappresentare il grafico dei valori di quelli di RS. CH in funzione di 11. Calcola la misura di n: (A) Come valore più probabile. (B) Mediante la scelta di un punto opportuno sul grafico. (C) Tramite il calcolo della pendenza della linea di regressione. 12. Calcola l'incertezza della misura di n e mostra come l'hai determinata. () n 10 ± 1 7,5 ± 0,5 1,33 3,7 ± 0,1 20 ± 1 15 ± 1 1,30 7,2 ± 0,1 5,5 ± 0,1 30 ± 1 22 ± 1 1,31 4 9,1 ± 0,1 6,6 ± 0,1 40 ± 1 28 ± 1 1, ,9 ± 0,1 7,2 ± 0,1 50 ± 1 31 ± 1 1, ,2 ± 0,1 9,2 ± 0,1 60 ± 1 40 ± 1 1,33 ( ) ( ) i C i Hi cm Ri Si cm 1 2,4 ± 0,1 1,8 ± 0,1 2 4,8 ± 0,1 3 Grafico su foglio di carta millimetrata () i r
6 Grafico su Foglio Elettronico Misura di n 1,33 + 1,30 + 1,31 + 1,38 + 1,51 + 1,33 (A) Come valore più probabile: n = = 1,36 6 (B) Usando la rappresentazione grafica con Excel, abbiamo scelto quale punto più opportuno il quarto, cioè quello meglio intersecato dalla retta: n = 1,38 (C) Mediante la linea di regressione "costruita" da Excel che indica n = 1,38 Incertezza nella misura di n Abbiamo utilizzato due modi: 1,51 1,30 Calcolando l'errore massimo: E n = = 0,105 ; 0,11 2 Calcolando la deviazione standard parametrica: σ = 2 ( n i n) n 1 = 0,08
I TRIANGOLI. Geogebra l Triangoli COSTRUZIONE DEL TRIANGOLO ISOSCELE
I TRIANGOLI COSTRUZIONE DEL TRIANGOLO ISOSCELE Come sai il triangolo isoscele ha due lati della stessa lunghezza. Costruiamo il triangolo isoscele a partire dal lato disuguale. 1. Apri il programma Geogebra
Test di Matematica di base
Test di Matematica di base Geometria Il rapporto tra la superficie di un quadrato e quella di un triangolo equilatero di eguale lato è a. 4 b. 4 d. [ ] Quali sono le ascisse dei punti della curva di equazione
PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi
PIANO CARTESIANO Il piano cartesiano è individuato da due rette perpendicolari (ortogonali) che si incontrano in un punto O detto origine del piano cartesiano. Si fissa sulla retta orizzontale il verso
FUNZIONI GONIOMETRICHE
FUNZIONI GONIOMETRICHE Misura degli angoli Seno, coseno e tangente di un angolo Relazioni fondamentali tra le funzioni goniometriche Angoli notevoli Grafici delle funzioni goniometriche GONIOMETRIA : scienza
Disegnare Linee Rette ed Angoli
Disegnare Linee Rette ed Angoli (a cura Prof. E. Bocca C. P.) Linea retta La retta o linea retta è uno degli enti geometrici fondamentali. Un filo di cotone o di spago ben teso tra due punti è un modello
LUNGHEZZA DELLA CIRCONFERENZA E AREA DEL CERCHIO Conoscenze. 2. Completa le seguenti formule, dirette e inverse, riguardanti la circonferenza.
LUNGHEZZA DELLA CIRCONFERENZA E AREA DEL CERCHIO Conoscenze 1. Completa. a. Si chiama circonferenza rettificata il b. Il rapporto tra la lunghezza di una circonferenza e il suo diametro è una... che si
Problemi di geometria
1 2 3 4 5 6 7 8 9 10 11 12 13 14 In un triangolo rettangolo l altezza relativa all ipotenusa è lunga 16 cm e la proiezione sull ipotenusa di un cateto è lunga 4 cm. Calcola l area del triangolo. [544 cm
3 Omotetie del piano. 4 Omotetie del piano. Fondamenti e didattica della matematica B. Geometria delle similitudini. k = 3.
1 2 Fondamenti e didattica della matematica B 5 marzo 2007 Geometria delle similitudini Marina Bertolini ([email protected]) Dipartimento di Matematica F.Enriques Università degli Studi di
Giochi di rifrazione. Atri, 29 maggio 2014 Sezione AIF Teramo Aprutium Physics in action. Prof.ssa Carmelita Cipollone
Giochi di rifrazione Atri, 29 maggio 2014 Sezione AIF Teramo Aprutium Physics in action Giochi di rifrazione Physics Snack : Water Sphere Lens Trasparenze Physics Snack : Water Sphere Lens Exploratorium
SCHEDA PER LO STUDENTE DETERMINAZIONE DELLA DENSITÀ DI UN LIQUIDO TRAMITE IL PRINCIPIO DI ARCHIMEDE
SCHEDA PER LO STUDENTE DETERMINAZIONE DELLA DENSITÀ DI UN LIQUIDO TRAMITE IL PRINCIPIO DI ARCHIMEDE I Titolo dell esperienza N 4 DETERMINAZIONE DELLA DENSITÀ DI UN LIQUIDO CON IL PRINCIPIO DI ARCHIMEDE
1 I solidi a superficie curva
1 I solidi a superficie curva PROPRIETÀ. Un punto che ruota attorno ad un asse determina una circonferenza. PROPRIETÀ. Una linea, un segmento o una retta che ruotano attorno ad un asse determinano una
Test di autovalutazione
Test di autovalutazione 0 10 0 30 40 50 60 70 80 90 100 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle 5 alternative. n Confronta le tue risposte con le soluzioni.
4.3 PROBLEMI TIPO. 1. Determinare l asse di simmetria, data una figura e la sua simmetrica. (scheda 2)
4.3 PROBLEMI TIPO Le situazioni descritte rappresentano alcuni problemi standard che riguardano lo studio della simmetria assiale. Considerata la potenzialità del software Cabrì Geometre e la possibilità
La regola del parallelogramma
La regola del parallelogramma PREREQUISITI Per affrontare la prova lo studente deve sapere... La definizione di vettore La regola del parallelogramma Come si utilizza un dinamometro L unità di misura della
COMUNICAZIONE N.17 DEL
COMUNICAZIONE N.17 DEL 03.04.20131 1- SECONDO MODULO - APPLICAZIONI DI GEOMETRIA DESCRITTIVA (16): ESEMPI 134-143 2 - QUARTO MODULO - CLASSICI MODERNI E CONTEMPORANEI (15): REM KOOLHAAS, VILLA DALL'AVA,
Geometria figure piane Raccolta di esercizi
Geometria figure piane Raccolta di esercizi RETTANGOLO 1. Calcola il perimetro e l area di un rettangolo le cui dimensioni misurano rispettivamente 13 cm e 22 cm. [70 cm; 286 cm 2 ] 2. Un rettangolo ha
Cosa puoi dire del quadrilatero ABCD? Come sono i lati, le diagonali, gli angoli?
Dal parallelogramma al rombo (fase 1 e 2) Fase 1 Disegna due circonferenze concentriche c e c di centro O; disegna su c un punto A e su c un punto B; traccia la retta r passante per i punti A e O, chiama
01. Se il raggio di un cerchio dimezza, la sua area diventa: a) 1/3 b) 1/4 c) 3/2 d) 1/5
GEOMETRIA 01. Se il raggio di un cerchio dimezza, la sua area diventa: 1/ b) 1/4 c) / d) 1/5 0. Quanto misura il lato di un quadrato la cui area è equivalente a quella di un triangolo che ha la base di
Occorrente per attività. Protocollo di laboratorio. Osservazione L A B O R A T O R I O D I G E O M E T R I A
Relazione di M. Cam. A. Gua. A. Gal. L A B O R A T O R I O D I G E O M E T R I A Occorrente per attività - barattoli cilindrici di varie dimensioni - metro da sarta Protocollo di laboratorio In classe
ESPERIMENTO 6: OTTICA GEOMETRICA E DIFFRAZIONE
ESPERIMENTO 6: OTTICA GEOMETRICA E DIFFRAZIONE Scopo dell esperimento: studiare l ottica geometrica e i fenomeni di diffrazione MATERIALE A DISPOSIZIONE: 1 banco ottico 1 blocco di plexiglass 2 lenti con
LA DISTANZA DA CENTRO RAPPRESENTA IL RAGGIO CISCUNA DELLE DUE PARTI IN CUI E DIVISA UNA CIRCONFERENZA SI CHIAMA ARCO
LA CIRCONFERENZA LA CIRCONFERENZA E IL LUOGO DEI PUNTI EQUIDISTANTI DA UN PUNTO FISSO DETTO CENTRO LA DISTANZA DA CENTRO RAPPRESENTA IL RAGGIO UN SEGMENTO CHE CONGIUNGE DUE PUNTI DELLA CIRCONFERENZA SI
Funzioni goniometriche
Funzioni goniometriche In questa dispensa vengono introdotte le definizioni delle funzioni goniometriche. Preliminarmente si introducono le convenzioni sull orientazione degli angoli e sulla loro rappresentazione
Percorso ottico attraverso un corpo semicircolare: osservazione. Studio del cammino dei raggi di luce attraverso un corpo semicircolare
ESPERIENZA 4 Percorso ottico attraverso un corpo semicircolare: osservazione 1 Argomenti Studio del cammino dei raggi di luce attraverso un corpo semicircolare 2 Montaggio Fig. 1 3 Note al montaggio 3.1
Risposte ai quesiti D E H D
Perugia, dic. 2009/gen. 2010 Risposte ai quesiti 1. Dati i quadrati CD e C D, come in figura, provare che la perpendicolare uscente da alla retta DD passa per il punto medio del segmento quale che sia
Conoscenze. c. è un numero irrazionale d. La misura di una circonferenza si calcola moltiplicando la lunghezza del diametro per..
Conoscenze 1. Completa. a. Si chiama circonferenza rettificata il segmento lungo quanto la circonferenza b. Il rapporto tra la lunghezza di una circonferenza e il suo diametro è una costante che si indica
POLIGONI NEL PIANO CARTESIANO (1)
POLIGONI NEL PIANO CARTESIANO (1) Ora che sai come si trova la distanza tra due punti sul piano cartesiano e sai anche determinare le coordinate dei punti medi di un segmento,imparerai ad applicare queste
CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015
CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015 Lezione del 3 NOVEMBRE 2015 GEOMETRIA CRITERI DI CONGRUENZA FRA TRIANGOLI IL SIMBOLO indica la congruenza PRIMO CRITERIO DI CONGRUENZA: Se due triangoli
ESERCIZI DI GEOMETRIA ANALITICA
ESERCIZI DI GEOMETRIA ANALITICA 0.1. EQUAZIONE DELLA CIRCONFERENZA 0.1. EQUAZIONE DELLA CIRCONFERENZA Exercise 0.1.1. Si scriva l'equazione della circonferenza che passa per i punti O 0; 0) e A 7; 0)
ANGOLO AL CENTRO ANGOLO ALLA CIRCONFERENZA
CIRCONFERENZA 1. Nella circonferenza di centro 0 il diametro è di 26 cm. le due corde AB e CD sono parallele e congruenti e misurano ciascuna 24 cm. Calcola il perimetro dei quadrilatero ABCD.[68 cm] 2.
TOPOGRAFIA: GLI STRUMENTI TAVOLETTA TOPOGRAFICA MULTIUSO
Pagina 1 di 8 TOPOGRAFIA: GLI STRUMENTI TAVOLETTA TOPOGRAFICA MULTIUSO Al giorno d oggi, quando ormai tutti gli strumenti di rilevamento sono elettronici e precisissimi, è ancora possibile recuperare,
CIRCONFERENZA E CERCHIO
CIRCONFERENZA E CERCHIO Definizione di circonferenza La circonferenza è una linea chiusa i cui punti sono tutti equidistanti da un punto fisso detto CENTRO Definizione di cerchio Si definisce CERCHIO la
Problemi di massimo e minimo
Problemi di massimo e minimo Supponiamo di avere una funzione continua in Per il teorema di Weierstrass esistono il massimo assoluto M e il minimo assoluto m I problemi di massimo e minimo sono problemi
SIMULAZIONI TEST INVALSI
SIMULAZIONI TEST INVALSI CIRCONFERENZA E CERCHIO La circonferenza in figura ha il diametro di 10 cm e le corde AD e BC uguali al raggio. a. Qual è il perimetro del quadrilatero ABCD? Risposta: cm b. Giustifica
Esperienza 2: Riflessione e Rifrazione della luce
1 Introduzione 1 Esperienza 2: Riflessione e Rifrazione della luce 1 Introduzione Assorbimento, riflessione e trasmissione sono i fenomeni che avvengono quando la luce interagisce con la materia. Quando
Quadro riassuntivo di geometria analitica
Quadro riassuntivo di geometria analitica IL PIANO CARTESIANO (detta ascissa o coordinata x) e y quella dall'asse x (detta ordinata o coordinata y). Le coordinate di un punto P sono: entrambe positive
Circonferenze e cerchi
Alunno/a... Geometria Classe... Sez.... Data... Circonferenze e cerchi 1 Definisci la circonferenza: 2 Definisci il settore circolare: 3 Definisci la figura che nel disegno è colorata in grigio: 4 Osserva
SIMULAZIONI TEST INVALSI
SIMULAZIONI TEST INVALSI CIRCONFERENZA E CERCHIO La circonferenza in figura ha il diametro di 10 cm e le corde AD e BC uguali al raggio. a. Qual è il perimetro del quadrilatero ABCD? Risposta: cm b. Giustifica
Costruzione del modello in scala (1: 20) di una stanza. Di seguito la sequenza fotografica delle operazioni per costruire il " modellino "in scala.
Costruzione del modello in scala (1: 20) di una stanza Di seguito la sequenza fotografica delle operazioni per costruire il " modellino "in scala. Esempio di un modello finito Il cartoncino 1) un cartoncino
Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze
Test su geometria Domanda 1 Fissato nel piano un sistema di assi cartesiani ortogonali Oxy, il luogo dei punti le cui coordinate (x; y) soddisfano l equazione x y = 1 è costituita da una circonferenza.
1 L omotetia. i punti O, A e A siano allineati
1 L omotetia DEFINIZIONE. Dato un punto O ed un numero reale k, si dice omotetia di centro O e rapporto k, quella trasformazione del piano che associa ad ogni punto A il corrispondente punto A tale che
IL PIANO CARTESIANO. Preparazione. Esercizi
IN CLASSE IL PIANO CARTESIANO Preparazione Per questi esercizi con GeoGebra dovrai utilizzare i seguenti pulsanti. Leggi le procedure di esecuzione nella zona in alto a destra, accanto alla barra degli
Progetto Pilota Valutazione della scuola italiana. Anno Scolastico PROVA DI MATEMATICA. Scuola Secondaria Superiore.
Gruppo di lavoro per la predisposizione degli indirizzi per l attuazione delle disposizioni concernenti la valutazione del servizio scolastico Progetto Pilota Valutazione della scuola italiana Anno Scolastico
Elementi di Geometria euclidea
Proporzionalità tra grandezze Date quattro grandezze A, B, C e D, le prime due omogenee tra loro così come le ultime due, queste formano una proporzione se il rapporto delle prime due è uguale al rapporto
Argomenti Capitolo 1 Richiami
Argomenti Capitolo 1 Richiami L insieme dei numeri reali R si rappresenta geometricamente con l insieme dei punti di una retta orientata su cui sia stato fissato un punto 0 e un segmento unitario. L insieme
Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.
Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero
IL TEOREMA DI PITAGORA
IN CLASSE IL TEOREMA DI PITAGORA Preparazione Per questi esercizi con GeoGebra dovrai utilizzare i seguenti pulsanti. Leggi sempre le procedure di esecuzione nella zona in alto a destra, accanto alla barra
L ANGOLO (2) MISURA DELL ANGOLO Per avere la misura di un angolo, che si chiama ampiezza, si deve ricorrere ad uno strumento: il goniometro.
Geogebra L ANGOLO (2) MISURA DELL ANGOLO Per avere la misura di un angolo, che si chiama ampiezza, si deve ricorrere ad uno strumento: il goniometro. In Geogebra c è un icona che ci permette di misurare
LA CIRCONFERENZA e IL CERCHIO
LA CIRCONFERENZA e IL CERCHIO La circonferenza è un poligono regolare con un numero infinito di lati Bisogna fare innanzitutto una distinzione: la circonferenza è la misura del perimetro; C (se sono più
DISCUSSIONE DI PROBLEMI GEOMETRICI RISOLTI PER VIA TRIGONOMETRICA
DISCUSSIONE DI PROLEMI GEOMETRICI RISOLTI PER VI TRIGONOMETRIC Problema n 1 Detto il punto medio del segmento C = 4r, nello stesso semipiano disegnare la semicirconferenza di diametro ed il triangolo isoscele
Kangourou della Matematica 2012 Coppa a squadre Kangourou Semifinale turno A Cervia, 5 maggio Quesiti
Kangourou della Matematica 0 Coppa a squadre Kangourou Semifinale turno A Cervia, 5 maggio 0 Quesiti. umeri di quest anno Quanti numeri interi positivi n sono tali che entrambi i numeri n 0 e n + 0 siano
Docenti: M.Adele Giani, Luisa Pedemonte, Floriana Pelosi. Classi: prime P.N.I.
Docenti: M.Adele Giani, Luisa Pedemonte, Floriana Pelosi LABORATORIO DI FISICA Moto di un proiettile L esperienza che verrà illustrata è stata proposta e realizzata nelle prime classi dei corsi P.N.I.
Allenamenti di Matematica
rescia, 3-4 febbraio 2006 llenamenti di Matematica Geometria 1. Il trapezio rettangolo contiene una circonferenza di raggio 1 metro, tangente a tutti i suoi lati. Sapendo che il lato obliquo è lungo 7
Le caratteristiche dei poligoni. La relazione tra i lati e gli angoli di un poligono. Definizioni
Le caratteristiche dei poligoni 1. Si dice poligono la parte del piano delimitata da una spezzata chiusa. 2. Il perimetro di un poligono è la somma delle misure del suoi lati, si indica cm 2p. 3. Un poligono
Costruzioni geometriche. (Teoria pag , esercizi )
Costruzioni geometriche. (Teoria pag. 81-96, esercizi 141-153 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda: due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente
Geometria Analitica Domande e Risposte
Geometria Analitica Domande e Risposte A. Il Piano Cartesiano. Qual è la formula della distanza tra due punti nel piano cartesiano? Per calcolare la formula della distanza tra due punti nel piano cartesiano
PROIEZIONI ORTOGONALI: SEZIONI CONICHE
www.aliceappunti.altervista.org PROIEZIONI ORTOGONALI: SEZIONI CONICHE 1) PREMESSA: Il cono è una superficie generata da una retta con un estremo fisso e l altro che ruota. La retta prende il nome di GENERATRICE.
LAVORO ESTIVO di MATEMATICA Classi Terze Scientifico Moderno N.B. DA CONSEGNARE ALLA PRIMA LEZIONE DI MATEMATICA DI SETTEMBRE
LAVORO ETIVO di MATEMATICA Classi Terze cientifico Moderno N.B. A CONEGNARE ALLA PRIMA LEZIONE I MATEMATICA I ETTEMBRE PROBLEMI I ALGEBRA APPLICATA ALLA GEOMETRIA ) In un cerchio di raggio r si determini
ESPERIENZA 6 La legge della riflessione
ESPERIENZA 6 La legge della riflessione 1. Argomenti Determinare la direzione del raggio riflesso sulla superficie di uno specchio piano a diversi angoli di incidenza. Confrontare gli angoli di incidenza
OTTICA GEOMETRICA. Ovvero la retta perpendicolare alla superficie riflettente. Figura 1. Figura 2
OTTICA GEOMETRICA L ottica geometrica si occupa di tutta quella branca della fisica che ha a che fare con lenti, specchi, vetri e cose simili. Viene chiamata geometrica in quanto non interessa la natura
Esperimento sull ottica
Esperimento sull ottica Gruppo: Valentina Sotgiu, Irene Sini, Giorgia Canetto, Federica Pitzalis, Federica Schirru, Jessica Atzeni, Martina Putzu, Veronica, Orgiu e Deborah Pilleri. Teoria di riferimento:
SOLUZIONI DEI QUESITI PROPOSTI
SOLUZIONI DEI QUESITI PROPOSTI Manca di mentalità matematica tanto chi non sa riconoscere rapidamente ciò che è evidente, quanto chi si attarda nei calcoli con una precisione superiore alla necessità QUESITO
COMUNICAZIONE N.4 DEL
COMUNICAZIONE N.4 DEL 7.11.2012 1 1 - PRIMO MODULO - COSTRUZIONI GEOMETRICHE (4): ESEMPI 10-12 2 - SECONDO MODULO - APPLICAZIONI DI GEOMETRIA DESCRITTIVA (4): ESEMPI 19-25 PRIMO MODULO - COSTRUZIONI GEOMETRICHE
Geogebra. a. La lancetta è ruotata? SI NO. Se sì attorno a quale punto?
Geogebra L ANGOLO 1. Nel programma Geogebra, fai doppio clic sull icona e scegli Circonferenza dati centro e raggio. 2. Posizionati al centro della finestra di geometria e fai clic. Nella finestra che
CONOSCENZE 1. le proprietaá dei poligoni inscritti. 2. le proprietaá dei quadrilateri inscritti e circoscritti 3. le proprietaá dei poligoni regolari
GEOMETRIA I POLIGONI INSCRITTI E CIRCOSCRITTI PREREQUISITI l l l l conoscere le proprietaá delle quattro operazioni e operare con esse conoscere gli enti fondamentali della geometria e le loro proprietaá
SCUOLA SECONDARIA DI PRIMO GRADO Salvemini - La Pira A.S QUANDO I SENSI CI INGANNANO MA LA GEOMETRIA NO!
SCUOLA SECONDARIA DI PRIMO GRADO Salvemini - La Pira A.S. 2007-2008 QUANDO I SENSI CI INGANNANO MA LA GEOMETRIA NO! 1 CLASSE IG Insegnante Marta Del Rosso FASE 1: Lezione introduttiva sui concetti di perpendicolarità
Costruzioni geometriche. ( Teoria pag , esercizi 141 )
Costruzioni geometriche. ( Teoria pag. 81-96, esercizi 141 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda ; due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente
Prospettiva a quadro verticale
Prospettiva a quadro verticale Tr 1 P 2 P 1 Rappresentiamo una retta r, posta su π 1 nelle proiezioni ortogonali, un punto P (punto di vista) ed il quadro verticale α. Vogliamo proiettare la retta r sul
Anna Montemurro. 3Geometria. e misura
Anna Montemurro Destinazione Matematica 3Geometria e misura ... verifico 1 Come si definisce il cerchio? Che cosa s intende per raggio e per diametro di un cerchio? Disegna tre cerchi, rispettivamente
Repetitorium trigonometriae - per immagini
Repetitorium trigonometriae - per immagini Regole di base Ipotenusa Opposto Adiacente Tenendo a mente la seguente nomenclatura di un triangolo rettangolo si ha: sin = Opposto Ipotenusa cos = Adiacente
Base giacca classica tipo uomo
PREMESSA INDICAZIONI GENERALI Il tessuto con cui sarà realizzato questo modello, come sempre, condiziona in modo determinante il calcolo delle vestibilità. Per la costruzione di questa base viene considerato
ESPERIENZE CON GLI SPECCHI PIANI
1. Qual è la posizione dell immagine fornita da uno specchio piano? Di che tipo di immagine si tratta? Disponi il cilindro giallo dietro lo specchio, in modo che coincida con l immagine riflessa del cilindro
Misura di lunghezze d'onda mediante reticolo di diffrazione
U n i v e r s i t à d e g l i S t u d i d i U d i n e - Facoltà di Ingegneria Laboratorio di Fisica Generale 2 1 Misura di lunghezze d'onda: Misura di lunghezze d'onda mediante reticolo di diffrazione
Kangourou Italia Gara del 28 marzo 2008 Categoria Student Per studenti di quarta o quinta della secondaria di secondo grado
Testi_08.qxp 9-0-008 :6 Pagina 8 Kangourou Italia Gara del 8 marzo 008 ategoria Per studenti di quarta o quinta della secondaria di secondo grado I quesiti dal N. al N. 0 valgono punti ciascuno. Nelle
Dispensa di Disegno Tecnico
Dispensa di Disegno Tecnico Modulo 1 Primo Quadrimestre Scuola Bottega Artigiani di San Polo Onlus Ed. 2016-2017 Docente: Carlo Colombini DISPENSA DI DISEGNO TECNICO 1 È più facile fare bene un lavoro
GLI ERRORI DI MISURA
Revisione del 26/10/15 ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO Valdagno (VI) Corso di Fisica prof. Nardon GLI ERRORI DI MISURA Richiami di teoria Caratteristiche degli strumenti di misura Portata: massimo
LA GEOMETRIA DELLO SPAZIO
LA GEOMETRIA ELLO SPAZIO 1 alcola l area e il perimetro del triangolo individuato dai punti A ; 0; 4, ; 1; 5 e 0; ;. ( ) ( ) ( ) 9 ; + 6 Stabilisci se il punto A ( 1;1; ) appartiene all intersezione dei
CORSO DI FONDAMENTI DI DISEGNO TECNICO LEZIONE 5 MATERIALE DI BASE COSTRUZIONI ELEMENTARI MISURE E QUOTE
PERCORSI ABILITANTI SPECIALI (PAS) - A.A. 2013-2014 UNIVERSITÀ DI PISA DIPARTIMENTO DI INGEGNERIA CIVILE E INDUSTRIALE (DICI) CORSO DI FONDAMENTI DI DISEGNO TECNICO LEZIONE 5 MATERIALE DI BASE COSTRUZIONI
Si chiamano poligoni regolari quei poligoni che sono equilateri ed equiangoli.
6.4 I poligoni regolari Si chiamano poligoni regolari quei poligoni che sono equilateri ed equiangoli. Poligoni regolari: triangolo equilatero; quadrato; pentagono regolare; esagono regolare; ettagono
Problemi di geometria
criteri di similitudine sui triangoli 1 Dimostra che le altezze di un triangolo sono inversamente proporzionali ai relativi lati. 2 Dimostra che due triangoli rettangoli sono simili se hanno ordinatamente
LE CONICHE IN LABORATORIO Attività per osservare la matematica prima parte A cura di Silvia Defrancesco
LE CONICHE IN LABORATORIO Attività per osservare la matematica prima parte A cura di Silvia Defrancesco Le coniche con la luce 1)Visualizzare un cono di luce con la macchina per la nebbia e intercettare
Corso di preparazione ai Giochi di Archimede Geometria e Logica
Corso di preparazione ai Giochi di Archimede Geometria e Logica 1) Claudia ha disegnato sul quaderno l iniziale del suo nome, una C. Il disegno è stato fatto tagliando esattamente a metà una corona circolare
prof.a.battistelli PROIEZIONI ORTOGONALI
PROIEZIONI ORTOGONALI PROIEZIONI ORTOGONALI È il disegno delle viste, da davanti, da sopra e di fianco di un oggetto tridimensionale disegnate in un foglio bidimensionale. Trasformiamoci in designer Per
LA CIRCONFERENZA E IL CERCHIO
GEOMETRIA LA CIRCONERENZA E IL CERCHIO PREREQUISITI l conoscere le proprietaá delle quattro operazioni e operare con esse l conoscere gli enti fondamentali della geometria e le loro proprietaá l possedere
[ RITORNA ALLE DOMANDE] 2) Definisci la parabola come luogo geometrico. 1) Che cos è una conica?
Matematica 1) Che cos è una conica? 2) Definisci la parabola come luogo geometrico. 3) Qual è l equazione di una parabola con asse di simmetria parallelo all asse delle y? 4) Qual è l equazione di una
La circonferenza e il cerchio
La circonferenza e il cerchio Def. Circonferenza Si dice circonferenza una linea piana chiusa formata dall insieme dei punti che hanno la stessa distanza da un punto detto centro. Si dice raggio di una
Liceo Scientifico Cassini Esercizi di matematica, classe 5F, foglio3, soluzioni. normale parallelo a quello direzionale della retta sarà quindi
Liceo Scientifico Cassini Esercizi di matematica, classe 5F, foglio3, soluzioni Problema1 x = y Dato il punto P(0,1,2), la retta r: y = z 2 ed il piano α: x 3y + z = 0 a) Trova il piano passante per P
Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre
Geometria euclidea Alessio del Vigna Lunedì 15 settembre La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione
Come si rappresentano?
DISEGNO TECNICO Come si rappresentano? COSA È? È uno tra i PROIEZIONE ORTOGONALE S I S T E M A di R A P P R E S E N TA Z I O N E G R A F I C A = Insieme di regole Chi disegna deve essere sicuro che anche
ARCHI ASSOCIATI EQUAZIONI E DISEQUAZIONI GONIOMETRICHE
ARCHI ASSOCIATI Si tratta di angoli in cui le funzioni goniometriche mantengono lo stesso valore assoluto, cambiando al più il segno. Per questo motivo, le tavole goniometriche riportano soltanto i valori
LE TRASFORMAZIONI GEOMETRICHE
LE TRASFORMAZIONI GEOMETRICHE LA SIMMETRIA ASSIALE Definizione: il simmetrico P di un punto P, rispetto alla simmetria assiale di asse r gode delle seguenti proprietà: P e P sono equidistanti da r e il
1 Nozioni utili sul piano cartesiano
Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Il piano cartesiano è un sistema di riferimento costituito da due rette perpendicolari (una orizzontale detta asse delle ascisse x
CAPITOLO 1. Archi e Angoli. 1. Gradi sessaggesimali. 2. Angoli radianti. 3. Formule di trasformazione
TRIGONOMETRIA CAPITOLO 1 Archi e Angoli 1. Gradi sessaggesimali La misura dell'ampiezza di un angolo è ottenuta solitamente ponendo l'ampiezza di un angolo giro uguale a 360, e quindi l'unità, 1 grado,
L errore percentuale di una misura è l errore relativo moltiplicato per 100 ed espresso in percentuale. Si indica con e p e risulta: e ( e 100)%
UNITÀ L ELBORZIONE DEI DTI IN FISIC 1. Gli errori di misura.. Errori di sensibilità, errori casuali, errori sistematici. 3. La stima dell errore. 4. La media, la semidispersione e lo scarto quadratico
LABORATORIO DI CIRCUITI ELETTRICI Nozioni generali e guida agli esperimenti. Rappresentazione grafica dei risultati sperimentali
LABORATORIO DI CIRCUITI ELETTRICI Nozioni generali e guida agli esperimenti Rappresentazione grafica dei risultati sperimentali Uno strumento molto utile per comunicare e leggere risultati sperimentali
Unità 9. I raggi luminosi
Unità 9 I raggi luminosi 1. La luce La luce è un'onda elettromagnetica, ma per studiare alcuni fenomeni ottici basta considerarla un insieme di raggi luminosi. Un raggio luminoso è un fascio di luce molto
