Disegnare Linee Rette ed Angoli
|
|
|
- Guglielmo Berardi
- 9 anni fa
- Visualizzazioni
Transcript
1 Disegnare Linee Rette ed Angoli (a cura Prof. E. Bocca C. P.) Linea retta La retta o linea retta è uno degli enti geometrici fondamentali. Un filo di cotone o di spago ben teso tra due punti è un modello materiale che ci può aiutare a capire cosa sia la retta, un ente geometrico immateriale senza spessore e con una sola dimensione. La retta è priva di spessore e ha una sola dimensione, la lunghezza. Essa è formata da infiniti punti: non ha un inizio e non ha una fine. Quindi è illimitata. Per questa ragione la retta viene disegnata indicando una serie di puntini a sinistra e a destra ad indicare, appunto, che essa è illimitata Rette parallele Due rette sono parallele se, pur appartenendo allo stesso piano, non hanno punti in comune, ossia non si incontrano, essendo i punti delle rette sempre alla stessa distanza tra di loro.. Rette perpendicolari Si dicono rette perpendicolari se si incontrano formando angoli retti. Squadra da disegno (strumento) Squadra di plastica a 60 La squadra è uno strumento per disegnare, tracciare e progettare. Ha forma di triangolo rettangolo ed esiste in due varianti: squadra scalena, nella quale l'ipotenusa forma con i cateti un angolo di 30 e uno di 60 ; squadra isoscele, nella quale l'ipotenusa forma con i cateti due angoli di 45. È spesso utilizzata assieme alla riga per tracciare segmenti perpendicolari o incidenti secondo gli angoli di uso corrente, rette parallele, verifiche di ortogonalità, ecc. È costruita in plastica, metallo o legno. Uno dei cateti, anche detti ali, è solitamente graduato.
2 Goniometro (strumento) Goniometro Un goniometro è uno strumento che ci permette di misurare un angolo o di costruire un angolo di una data misura. Non è uno strumento difficile da utilizzare, si può imparare facilmente. Il goniometro, o disco goniometrico, misura l'ampiezza degli angoli sfruttando l'ampiezza fissa di un angolo giro, ossia l'angolo di un cerchio, ampio dunque 360, attraverso una circonferenza graduata e un foro puntatore sul centro della stessa. In commercio è possibile trovare anche goniometri a metà, ossia a semicerchio, che sfruttano l'indicazione massima dell'angolo piatto. Normalmente questi goniometri dispongono di una scala sessagesimale (0-180 o ) con risoluzione di 1. Utilizzare l'uno o l'altro non fa assolutamente differenza perché i principi da fruttare e le mosse da tenere presenti sono le stesse. Tracciamento di linee parallele. Si debba tracciare per il punto, una retta parallela al segmento AB. A questo scopo si dispongono due squadre, aderenti fra loro. Si devono mettere le due squadre in modo tale che un bordo di quella mobile coincida con il segmento dato come in figura. Con le dita della mano sinistra si tiene ben ferma la squadra guida e con la destra si sposta l'altra squadra finché lo stesso bordo di prima coincida col punto dato. ra due dita della mano sinistra (indice e anulare) si spostano sopra la squadra mobile, la bloccano e con la destra si traccia con la matita la retta voluta.
3 Esercizi: tracciare la parallela alla retta disegnata passante per il punto Tracciamento di linee perpendicolari. Si voglia tracciare per una perpendicolare ad AB. La squadra guida è quella scalena ( ) mentre l'altra è quella isoscele. Si dispongono le due squadre aderenti tra loro, in modo che un bordo di quella mobile coincida con il segmento dato. Mentre con la mano sinistra si tiene ferma la squadra guida, con la mano destra si sposta l'altra squadra finché il bordo posto a 90 rispetto al precedente raggiunge il punto dato. ra due dita della mano sinistra (indice e anulare) si spostano sopra la squadra mobile, la bloccano e con la destra si traccia con la matita la retta voluta.
4 Esercizi: tracciare la perpendicolare alla retta disegnata passante per il punto
5 La misurazione dell'angolo. Per misurare un angolo già disegnato, invece, non dovete fare altro che posizionare la linea dell'angolo piatto ( cioè come abbiamo detto il lato dritto del goniometro) con la base dell'angolo che volete misurare e guardate all'altezza di quale numero tracciato sul lato curvo del goniometro il secondo lato dell'angolo si interseca con lo strumento: quel numero corrisponde all'ampiezza dell'angolo, che dovrete ovviamente valutare in gradi Adesso non vi resta che prendere nota dell'angolazione appena calcolata oppure di sfruttare questa informazione per proseguire con i vostri calcoli, misurazioni o realizzazioni di lavori differenti. Esercizi: misura l'angolo interno ai segmenti e scrivila nel riquadro.
6 Costruzione dell'angolo. Per disegnare o costruire un angolo con l'aiuto di un goniometro non dovete far altro che prendere lo strumento e tracciare una linea seguendo la base dritta dello strumento (cioè l'unico lato dritto e non curvo del goniometro). Quella linea rappresenta l'esatta metà di un cerchio, dunque un angolo di 180, un angolo piatto insomma. La linea da voi tracciata (con matita o penna) rappresenterà un lato del triangolo. Tracciare l'altro lato darà vita all'angolo. Come? Prendete il goniometro e posizionate il foro del centro sul punto estremo della linea da voi appena tracciata. Adesso tracciate un segno accanto al numero impresso sul lato curvo del goniometro corrispondente all'ampiezza dell'angolo che volete realizzare. Esercizi: disegna due segmenti uniti ad una estremità e con un angolo interno come riportato nel riquadro
Analizziamo e costruiamo l esagono. Prof. A. Battistelli
nalizziamo e costruiamo l esagono Prof.. attistelli 1 Per diventare bravissimi in geometria e nel disegno geometrico, esaminiamo bene le figure geometriche Com'è fatto un esagono? n di lati n di angoli
IL TRIANGOLO. Teorema di Pitagora. Il triangolo è un poligono avente tre lati.
IL TRIANGOLO Il triangolo è un poligono avente tre lati. FORMULE AREA: Il triangolo è equivalente a metà parallelogramma. A = (b x h) : da cui: b= A : h e h= A : b TRIANGOLO RETTANGOLO (a, b cateti; c
1 La traslazione. 2 La composizione di traslazioni. 3 La rotazione
1 La traslazione Per poter applicare una traslazione ad una generica figura geometrica si deve: ± creare il vettore di traslazione AB mediante il comando Vettore tra due punti; ± cliccare con il mouse
Le prime regole. Definizioni misurane significa confrontare una grandezza con un campione, cui si dà il nome di unità di misura:
Le prime regole Il sistema metrico decimale misurane significa confrontare una grandezza con un campione, cui si dà il nome di unità di misura: per essere confrontate tra loro due grandezze devono essere
Costruzioni con riga e compasso. Liceo Scientifico Statale S. Cannizzaro - Palermo Prof.re E. Modica
Costruzioni con riga e compasso Liceo Scientifico Statale S. Cannizzaro - Palermo Prof.re E. Modica I 5 postulati di Euclide Si postula che: 1) Per due punti distinti qualsiasi sia possibile tracciare
A B C D E F G H I L M N O P Q R S T U V Z
IL VOCABOLARIO GEOMETRICO A B C D E F G H I L M N O P Q R S T U V Z A A: è il simbolo dell area di una figura geometrica Altezza: è la misura verticale e il segmento che parte da un vertice e cade perpendicolarmente
es. 1 Tracciare con le squadre rette parallele e perpendicolari
ESERCIZI es. 1 Tracciare con le squadre rette parallele e perpendicolari es. 2 Data una retta ed un punto A esterno alla retta, tracciare la perpendicolare passante per A es. 3 Data una semiretta con origine
COMUNICAZIONE N.4 DEL
COMUNICAZIONE N.4 DEL 7.11.2012 1 1 - PRIMO MODULO - COSTRUZIONI GEOMETRICHE (4): ESEMPI 10-12 2 - SECONDO MODULO - APPLICAZIONI DI GEOMETRIA DESCRITTIVA (4): ESEMPI 19-25 PRIMO MODULO - COSTRUZIONI GEOMETRICHE
1. IL CERCHIO COLORATO
1. IL CERCHIO COLORATO Utilizzare l icona per inserire un segmento di data lunghezza Cliccare sul punto (estremo) e scrivere quindi la lunghezza del segmento (10 per esempio) Cliccare col tasto destro
Illustrazione 1: Telaio. Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali
Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali Materiale utilizzato: Telaio (carrucole,supporto,filo), pesi, goniometro o foglio con goniometro stampato, righello Premessa
I TRIANGOLI. Geogebra l Triangoli COSTRUZIONE DEL TRIANGOLO ISOSCELE
I TRIANGOLI COSTRUZIONE DEL TRIANGOLO ISOSCELE Come sai il triangolo isoscele ha due lati della stessa lunghezza. Costruiamo il triangolo isoscele a partire dal lato disuguale. 1. Apri il programma Geogebra
C C B B. Fig. C4.1 Isometria.
4. Isometrie 4.1 Definizione di isometria Date due figure congruenti è possibile passare da una all altra con una trasformazione. Una trasformazione geometrica in un piano è una funzione biunivoca che
La somma degli angoli interni di un triangolo è uguale a un angolo piatto (180 ).
Il triangolo (UbiLearning) - 1 Triangoli Un triangolo è un poligono formato da tre lati. Rappresenta la più semplice figura piana formata dal minimo numero di lati utili a chiudere una superficie piana.
Proprietà di un triangolo
Poligono con tre lati e tre angoli. Proprietà di un triangolo In un triangolo : I lati e i vertici sono consecutivi fra loro; La somma degli angoli interni è 180 ; La somma degli angoli esterni è 360 Ciascun
LA CIRCONFERENZA e IL CERCHIO
LA CIRCONFERENZA e IL CERCHIO La circonferenza è un poligono regolare con un numero infinito di lati Bisogna fare innanzitutto una distinzione: la circonferenza è la misura del perimetro; C (se sono più
Costruzioni geometriche. ( Teoria pag , esercizi 141 )
Costruzioni geometriche. ( Teoria pag. 81-96, esercizi 141 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda ; due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente
GEOMETRIA CLASSE IV B A.S.
GEOMETRIA CLASSE IV B A.S. 2014/15 Insegnante: Stallone Raffaella RETTA, SEMIRETTA E SEGMANTO La retta è illimitata, non ha né inizio né fine. Si indica con una lettera minuscola. La semiretta è ciascuna
Punti notevoli di un triangolo
Punti notevoli dei triangoli - 1 Punti notevoli di un triangolo Particolarmente importanti in un triangolo sono i punti dove s intersecano specifici segmenti o semirette. Questi punti sono detti punti
C6. Quadrilateri - Esercizi
C6. Quadrilateri - Esercizi DEFINIZIONI E COSTRUZIONI 1) Dato il seguente quadrilatero completa al posto dei puntini. I lati AB e BC sono I lati AB e CD sono I lati AD e sono consecutivi I lati AD e sono
C.P.I.A. CENTRO PROVINCIALE PER
C.P.I.A. CENTRO PROVINCIALE PER L ISTRUZIONE DEGLI ADULTI SEDE DI CATANZARO - Via T. Campanella n 9 DISPENSE DI GEOMETRIA PERCORSO DI ISTRUZIONE DI PRIMO LIVELLO PRIMO PERIODO DIDATTICO A.S. 2017/2018
CONGRUENZE TRA FIGURE DEL PIANO
CONGRUENZE TRA FIGURE DEL PIANO Appunti di geometria ASSIOMI 15. La congruenza tra figure è una relazione di equivalenza 16. Tutte le rette del piano sono congruenti tra loro; così come tutti i piani,
Angoli al centro e alla circonferenza
Angoli al centro e alla circonferenza angolo al centro se il vertice coincide con il centro del cerchio proprietà ad angoli uguali corrispondono archi uguali A B angolo alla circonferenza se ha il vertice
Poligoni Un poligono è la parte di piano delimitata da una linea spezzata, semplice e chiusa.
Poligoni Un poligono è la parte di piano delimitata da una linea spezzata, semplice e chiusa. Lato Vertice Angolo interno Angolo esterno I lati del poligono sono segmenti che costituiscono la linea spezzata.
POTENZIAMENTO VISUO-SPAZIALE
POTENZIAMENTO VISUO-SPAZIALE Spunti ricavati dalla bozza (fornita da Marta) per potenziare le carenze visuo-spaziali di alunni di seconda media Docente Gisella Maculan Obiettivo : Con questa sezione si
TAVOLE PER IL DISEGNO
TAVOLE PER IL DISEGNO Disegni geometrici tavv. Disegni a mano libera 1-2 Riproduzione di disegni in scala 3 Uso delle squadre 4 Inviluppi di linee 5-6 Uso del compasso 7 Costruzioni geometriche 8-11 Strutture
Il disegno sul terreno
Il disegno sul terreno A p p r o f o n d i m e n t o APPROFONDIMENTO Il disegno sul terreno Premessa Molti dei problemi di disegno geometrico trovano applicazione pratica nell attività agricola. Spesse
1) Con la riga appoggiata al bordo sinistro del foglio e la squadra appoggiata alla riga, traccia lunghe 2 linee di
9 cm 9 cm ) Con la riga appoggiata al bordo sinistro del foglio e la squadra appoggiata alla riga, traccia lunghe linee di costruzione orizzontali, con la matita H, distanti 9 cm. ) Sulle costruzioni orizzontali,
1) Con la riga appoggiata al bordo sinistro del foglio e la squadra appoggiata alla riga, traccia lunghe 2 linee di
costruzione orizzontali, con la matita H, distanti 9 cm. ) Sulle costruzioni orizzontali, traccia una linea verticale in A, poi traccia un puntino a. Con il compasso riporta la misura dello spigolo sulle
MATEMATICA Il. Lezione 6:13 marzo 03 Spazio e geometria. Verbale (a cura di Daniela Bertonasco e Claudia Celentano) h : revisione lezione 5
MATEMATICA Il Lezione 6:13 marzo 03 Spazio e geometria Verbale (a cura di Daniela Bertonasco e Claudia Celentano) h. 9.00-9.30: revisione lezione 5 L insegnante riprende le tre definizioni di rette parallele
Geometria euclidea. Alessio del Vigna
Geometria euclidea Alessio del Vigna La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione sono il punto,
LA CIRCONFERENZA DEFINIZIONI. Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro.
LA CIRCONFERENZA DEFINIZIONI Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro. Un cerchio è una figura piana formata dai punti di una circonferenza
CONOSCENZE 1. gli elementi di un triangolo 2. la classificazione dei triangoli. 3. il teorema dell'angolo esterno. 4. i punti notevoli di un triangolo
GEOMETRIA I TRIANGOLI PREREQUISITI l conoscere le caratteristiche del sistema di numerazione decimale l conoscere le proprietaá delle quattro operazioni e operare con esse l conoscere gli enti geometrici
Costruzioni geometriche. (Teoria pag , esercizi )
Costruzioni geometriche. (Teoria pag. 81-96, esercizi 141-153 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda: due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente
COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA)
COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) Nel presente documento sono elencati gli esercizi da svolgere nel corso delle vacanze estive 2017 da parte degli studenti
LA DISTANZA DA CENTRO RAPPRESENTA IL RAGGIO CISCUNA DELLE DUE PARTI IN CUI E DIVISA UNA CIRCONFERENZA SI CHIAMA ARCO
LA CIRCONFERENZA LA CIRCONFERENZA E IL LUOGO DEI PUNTI EQUIDISTANTI DA UN PUNTO FISSO DETTO CENTRO LA DISTANZA DA CENTRO RAPPRESENTA IL RAGGIO UN SEGMENTO CHE CONGIUNGE DUE PUNTI DELLA CIRCONFERENZA SI
SIMULAZIONI TEST INVALSI
SIMULAZIONI TEST INVALSI CIRCONFERENZA E CERCHIO La circonferenza in figura ha il diametro di 10 cm e le corde AD e BC uguali al raggio. a. Qual è il perimetro del quadrilatero ABCD? Risposta: cm b. Giustifica
IL PIANO CARTESIANO. Preparazione. Esercizi
IN CLASSE IL PIANO CARTESIANO Preparazione Per questi esercizi con GeoGebra dovrai utilizzare i seguenti pulsanti. Leggi le procedure di esecuzione nella zona in alto a destra, accanto alla barra degli
Dato un triangolo ABC, è il segmento che partendo dal vertice opposto al lato, incontra il lato stesso formando due angoli retti.
Anno 2014 1 Sommario Altezze, mediane, bisettrici dei triangoli... 2 Altezze relativa a un vertice... 2 Mediane relative a un lato... 2 Bisettrici relativi a un lato... 2 Rette perpendicolari... 3 Teorema
Corso di Matematica - Geometria. Geometria - 0. Ing. L. Balogh
Geometria - 0 Triangoli qualunque somma degli angoli interni, calcolo del perimetro e dell area Oggetti Vertici Lati Angoli Altezza Raggio Simbolo A, B, C a, b, c,, h S, r Perimetro = + + Somma angoli
IL TEOREMA DI PITAGORA
IN CLASSE IL TEOREMA DI PITAGORA Preparazione Per questi esercizi con GeoGebra dovrai utilizzare i seguenti pulsanti. Leggi sempre le procedure di esecuzione nella zona in alto a destra, accanto alla barra
CAP.2:ITRIANGOLI GEOMETRIA 1 - AREA 3 I TRIANGOLI E LA LORO CLASSIFICAZIONE. richiami della teoria COMPRENSIONE DELLA TEORIA
GEOMETRIA 1 - AREA 3 CAP.2:ITRIANGOLI I TRIANGOLI E LA LORO CLASSIFICAZIONE richiami della teoria n In un triangolo ogni lato eá minore della somma degli altri due ed eá maggiore della loro differenza;
SCHEDA1 PARALLELISMO E PERPENDICOLARITA' FRA RETTE
SCHEDA1 PARALLELISMO E PERPENDICOLARITA' FRA RETTE Controllare la correttezza delle seguenti proprietà, controllandola su un esempio e muovendo dinamicamente gli oggetti costruiti. 1. Per due punti passa
MATEMATICA: Compiti delle vacanze Estate 2015
MATEMATICA: Compiti delle vacanze Estate 2015 Classe II a PRIMA PARTE Ecco una raccolta degli esercizi sugli argomenti svolti quest anno: risolvili sul tuo quaderno! Per algebra ho inserito anche una piccola
Poligoni. Enti geometrici fondamentali. Formati dei fogli. Squadratura del foglio
Poligoni Enti geometrici fondamentali Gli enti geometrici fondamentali sono le rette e le curve. I segmenti sono frammenti di retta, mentre gli archi sono frammenti di curva. Un angolo esprime l inclinazione
FUNZIONI GONIOMETRICHE
FUNZIONI GONIOMETRICHE Misura degli angoli Seno, coseno e tangente di un angolo Relazioni fondamentali tra le funzioni goniometriche Angoli notevoli Grafici delle funzioni goniometriche GONIOMETRIA : scienza
C7. Circonferenza e cerchio
7. irconferenza e cerchio 7.1 Introduzione ai luoghi geometrici Un luogo geometrico è l insieme dei punti del piano che godono di una proprietà detta proprietà caratteristica del luogo geometrico. Esempio
UNITÀ DIDATTICA IL CERCHIO DI APOLLONIO
Università degli Studi di Palermo Scuola Interuniversitaria Siciliana di Specializzazione per l Insegnamento Secondario Anno accademico 001/00 Laboratorio di Giochi Matematici Prof. G. E. Perez UNITÀ DIDATTICA
C5. Triangoli. C5.1 Definizioni. C5.2 Classificazione dei triangoli in base ai lati
5. Triangoli 5.1 efinizioni Un triangolo è un poligono con tre lati. In figura 5.1 i lati sono i segmenti =c, =b e =a. Gli angoli (interni) sono α = ˆ, β = ˆ e γ = ˆ. Si dice che un angolo è opposto a
N. Domanda A B C D. circonferenza in quattro parti la base del triangolo isoscele che genera il cono
1 Se in un triangolo circocentro e incentro coincidono allora esso come è? 2 Un angolo di un triangolo misura 50 gradi. Quanto misrano gli altri due angoli? 3 In un trapezio avente l'area di 320 m^2 le
A forma di... Osserva e colora seguendo le indicazioni.
A forma di... Osserva e colora seguendo le indicazioni. Gli oggetti a forma di cilindro di verde. Gli oggetti a forma di parallelepipedo di rosa. Gli oggetti a forma di sfera di azzurro. Il cubo Costruire
4^C - Esercitazione recupero n 6
4^C - Esercitazione recupero n 6 1 Sono assegnate le parabole p' e p'' di equazioni rispettivamente: y=x e x= y y a Forniscine la rappresentazione grafica dopo aver determinato, tra l'altro, i loro punti
Vettori paralleli e complanari
Vettori paralleli e complanari Lezione n 9 1 (Composizione di vettori paralleli e complanari) Continuando lo studio delle grandezze vettoriali in questa lezione ci interesseremo ancora di vettori. In particolare
GEOMETRIA NELLO SPAZIO
pag. 1 GEOMETRIA NELLO SPAZIO 1. Sintesi geometria piana Il punto, ente privo di dimensioni La retta, ente con una sola dimensione Il piano, ente con due dimensioni a) Punto e retta sul piano Per un punto
3. Osserva attentamente il centro della corda e la distanza con il centro del cerchio M. Cosa constati?
Corde 1. Ruota la retta a attorno al punto A e leggi il testo di colore verde. a) La retta, quando è una secante? Quando una tangente? Quando la retta non è né l una né l altra? b) Quante tangenti e quante
RIPASSO FIGURE GEOMETRICHE. Prof. A. Battistelli
RIPSSO FIGURE GEOMETRIHE Prof.. attistelli TVOL 1 DI RIPSSO FOGLIO DIVISO IN 2 PRTI E IL RETRO Triangolo equilatero, lato = 9 cm Esagono, lato = 6 cm Quadrato, con le squadre, lato = 9 cm (dietro al foglio)
Misure riguardanti triangoli, parallelogrammi, poligoni regolari e cerchio
Misure riguardanti triangoli, parallelogrammi, poligoni regolari e cerchio ELEMENTI DI GEOMETRI PIN. MISURE RIGURDNTI TRINGOLI, PRLLELOGRMMI, POLIGONI REGOLRI, CERCHIO La geometria piana si occupa delle
GEOMETRIA ANALITICA. Il Piano cartesiano
GEOMETRIA ANALITICA La geometria analitica consente di studiare e rappresentare per via algebrica informazioni di tipo geometrico. Lo studio favorisce una più immediata visualizzazione di informazioni,
I Triangoli e i criteri di congruenza
I Triangoli e i criteri di congruenza 1 Le caratteristiche di un triangolo Un triangolo è un insieme di punti del piano costituito da una poligonale chiusa di tre lati e dai suoi punti interni I punti
Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre
Geometria euclidea Alessio del Vigna Lunedì 15 settembre La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione
Principali Definizioni e Teoremi di Geometria
Principali Definizioni e Teoremi di Geometria Segmento (definizione) Si dice segmento di estremi A e B l insieme costituito dai punti A e B e da tutti i punti della retta AB compresi tra A e B. Angolo
Le caratteristiche dei poligoni. La relazione tra i lati e gli angoli di un poligono. Definizioni
Le caratteristiche dei poligoni 1. Si dice poligono la parte del piano delimitata da una spezzata chiusa. 2. Il perimetro di un poligono è la somma delle misure del suoi lati, si indica cm 2p. 3. Un poligono
punti uniti rette di punti uniti rette unite qual è la trasformazione inversa
3) Dì quali sono i punti uniti, le rette di punti uniti, le rette unite di una a) simmetria centrale b) simmetria assiale c) traslazione d) rotazione e) omotetia Simmetria centrale: si ha un solo punto
RETTE PARALLELE E RETTE PERPENDICOLARI
RETTE PARALLELE E RETTE PERPENDICOLARI Rette perpendicolari Due rette si dicono perpendicolari se incontrandosi formano 4 angoli retti. In simboli, per indicare che a è perpendicolare ad b si scrive: a
LE ALTEZZE. Sandra Taccetti, Antonio Moro, Classe quarta o quinta delle scuola primaria
LE ALTEZZE Sandra Taccetti, Antonio Moro, 2013 Classe quarta o quinta delle scuola primaria 1. Oggi misuriamo le nostre altezze: esperienza in classe con l uso del metro e dei grafici (già fatta lo scorso
COME COSTRUIRE UNA TSUBA PER BOKEN
COME COSTRUIRE UNA TSUBA PER BOKEN di Martina Scillieri MATERIALE E STRUMENTI - due pezzi di cuoio: è difficile trovare un pezzo di cuoio che sia spesso almeno 1 cm, per questo occorre unire due pezzi
Elementi di Euclide (Gela; 323 a.c. 285 a.c) Il libro I degli Elementi di Euclide. L'opera consiste in 13 libri, che trattano:
Elementi di Euclide (Gela; 323 a.c. 285 a.c) L'opera consiste in 13 libri, che trattano: Libro I la teoria dei triangoli, delle parallele e delle aree (ciò che oggi chiamiamo equivalenza di figure piane);
Equivalenza delle figure piane
Capitolo Equivalenza Poligoni equivalenti - erifica per la classe seconda Teoremi di Pitagora ed Euclide COGNOME............................... NOME............................. Classe....................................
I TRIANGOLI. Esistono vari tipi di triangoli che vengono classificati in base ai lati e agli angoli.
I TRIANGOLI Il triangolo è un poligono formato da tre angoli o vertici e da tre lati. Il triangolo è la forma geometrica con il minor numero di lati perché tre è il numero minimo di lati con cui si può
Proprietà dei triangoli e criteri di congruenza
www.matematicamente.it Proprietà dei triangoli 1 Proprietà dei triangoli e criteri di congruenza Nome: classe: data: 1. Relativamente al triangolo ABC in figura, quali affermazioni sono vere? A. AH è altezza
FONDAMENTI DI GEOMETRIA
1 FONDAMENTI DI GEOMETRIA (Fundamental geometrical concepts) La geometria [ghè (terra) metron (misura)] è una parte della matematica che studia lo spazio, la forma, l estensione, la trasformazione delle
Risposte ai quesiti D E H D
Perugia, dic. 2009/gen. 2010 Risposte ai quesiti 1. Dati i quadrati CD e C D, come in figura, provare che la perpendicolare uscente da alla retta DD passa per il punto medio del segmento quale che sia
ISTITUTO SAN GABRIELE CLASSI 4 S - 4 SA PROF. ANDREA PUGLIESE GEOMETRIA EUCLIDEA NELLO SPAZIO
ISTITUTO SAN GABRIELE CLASSI 4 S - 4 SA PROF. ANDREA PUGLIESE GEOMETRIA EUCLIDEA NELLO SPAZIO GEOMETRIA NELLO SPAZIO Gli enti fondamentali sono punto, retta, piano, e spazio. Con le lettere maiuscole (A,B,C,...)
LA CIRCONFERENZA E IL CERCHIO
GEOMETRIA LA CIRCONERENZA E IL CERCHIO PREREQUISITI l conoscere le proprietaá delle quattro operazioni e operare con esse l conoscere gli enti fondamentali della geometria e le loro proprietaá l possedere
Un po di GEOMETRIA. Le LINEE
Un po di GEOMETRIA Le LINEE 1) Quante e quali sono le ESTENSIONI o DIMENSIONI delle figure? 1) Le ESTENSIONI o DIMENSIONI delle figure sono tre: LUNGHEZZA, LARGHEZZA, ALTEZZA 2) Quante ESTENSIONI o DIMENSIONI
Costruzione delle coniche con riga e compasso
Costruzione delle coniche con riga e compasso Quando in matematica è possibile dare diverse definizioni, tutte equivalenti, di uno stesso oggetto, allora significa che quell oggetto può essere caratterizzato
GEOMETRIA EUCLIDEA. segno lasciato dalla punta di una matita appena appoggiata sul foglio. P
GEOMETRIA EUCLIDEA 1) GLI ENTI FONDAMENTALI: PUNTO, RETTA E PIANO Il punto, la retta e il piano sono gli ELEMENTI ( o ENTI ) GEOMETRICI FONDAMENTALI della geometria euclidea; come enti fondamentali non
PREREQUISITI. Rette e piani (parallelismo, perpendicolarità, incidenza) Proiezioni ortogonali Componenti Direzione Seno, coseno e tangente Glossario
Appunti corso di Fisica, Facoltà di Agraria, Docente Ing. Francesca Todisco REREQUISITI Rette e piani (parallelismo, perpendicolarità, incidenza) roiezioni ortogonali Componenti Direzione Seno, coseno
AREE DEI POLIGONI. b = A h
AREE DEI POLIGONI 1. RETTANGOLO E un parallelogramma avente quattro angoli retti, i lati opposti uguali e paralleli, le diagonali uguali non perpendicolari che si scambiano vicendevolmente a metà. Def.
Applicazioni dei teoremi di Pitagora ed Euclide
Utilizzando le misure di segmenti e superfici si possono riscrivere i teoremi di Pitagora ed Euclide per il triangolo rettangolo: Teorema di Pitagora: 1 + c i c = 1 Teorema di Euclide: c p i 1 = 1 c =
1 Congruenza diretta e inversa
1 Congruenza diretta e inversa PROPRIETÀ. La congruenza tra due figure piane mantiene inalterata la lunghezza dei segmenti e l ampiezza degli angoli; ciò che cambia è la posizione delle figure nel piano.
La circonferenza e il cerchio
La circonferenza e il cerchio Def. Circonferenza Si dice circonferenza una linea piana chiusa formata dall insieme dei punti che hanno la stessa distanza da un punto detto centro. Si dice raggio di una
LE TRASFORMAZIONI GEOMETRICHE
pag. 1 LE TRASFORMAZIONI GEOMETRICHE Trasformazione geometrica Movimento rigido Traslazione Simmetria Costruzione di due punti simmetrici rispetto ad una retta Poligoni aventi assi di simmetria Rotazione
Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.
Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero
Le figure solide. Due rette nello spaio si dicono sghembe se non sono complanari e non hanno alcun punto in comune.
Le figure solide Nozioni generali Un piano nello spazio può essere individuato da: 1. tre punti A, B e C non allineati. 2. una retta r e un punto A non appartenente ad essa. 3. due rette r e s incidenti.
LA RETTA
EQUAZIONE DEL Ogni equazione di I grado in due variabili x e y rappresenta nel piano cartesiano una retta, per cui si dice che a x + b y + c = 0 è l equazione di una retta in forma implicita. OSSERVAZIONE:
POLIGONI NEL PIANO CARTESIANO (1)
POLIGONI NEL PIANO CARTESIANO (1) Ora che sai come si trova la distanza tra due punti sul piano cartesiano e sai anche determinare le coordinate dei punti medi di un segmento,imparerai ad applicare queste
LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI
LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI 1. La circonferenza e il cerchio ESERCIZI 1 A Disegna un triangolo ABC di altezza CH relativa ad AB. Fissa un segmento ED minore di CH. Determina il
Costruzioni geometriche elementari Esercitazioni
Costruzioni geometriche elementari Esercitazioni Università Mediterranea di Reggio Calabria Facoltà di Architettura Corso di DISEGNO 1 Prof. Franco Prampolini Unità didattica n. 3 Alcune brevi esercitazioni
Anno 1. Quadrilateri
Anno 1 Quadrilateri 1 Introduzione In questa lezione impareremo a risolvere i problemi legati all utilizzo dei quadrilateri. Forniremo la definizione di quadrilatero e ne analizzeremo le proprietà e le
