Diffrazione di raggi X su polveri

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Diffrazione di raggi X su polveri"

Transcript

1 Diffrazione di raggi X su polveri Cenni di cristallochimica Generazione dei raggi X Diffrazione dei raggi X da parte dei cristalli Equazioni di Laue e Legge di Bragg Metodi diffrattometrici Motodo delle Polveri (Solidi policristallini) Applicazioni e descrizione esercitazioni Testi Consigliati: A. R. West, Solid State Chemistry and its Application, John Wiley & Sons

2 Il cristallo è un corpo anisotropo omogeneo costituito da un ordine periodico tridimensionale di atomi o ioni o molecole La distribuzione di ioni atomi o molecole è periodicamente omogenea in tre dimensioni I solidi possono presentarsi in forma di: monocristalli (periodicità perfetta su tutto il solido), policristalli (grani di dimensione variabile separati da bordi di grano I solidi possono anche essere Amorfi o non-cristallini

3 Reticolo cristallino La disposizione periodica tridimensionale tipica dei cristalli può essere rappresentata attraverso un reticolo (ovvero una griglia di punti). A ciascun punto del reticolo può corrispondere un atomo, una molecola, una serie di molecole etc. a seconda della complessità del sistema. c b a Nel caso del Polonio a ciascun punto corrisponde un atomo

4 Cella Unitaria (la più piccola unità di ripetizione che mostra la simmetria completa della struttura cristallina) c b a Prendiamo un sistema di assi cristallografici a, b, c diretti come i vettori r r r a, b, c Tali vettori definiscono la cella unitaria La cella unitaria è descritta da 6 parametri reticolari lunghezze dei vettori di traslazione: r r r a = a ;b = b ;c = c b r c r a r c r a r b r angoli tra gli assi: α (angolo tra e ); β (angolo tra e ); γ (angolo tra e )

5 Sette forme differenti di cella unitaria - Sette Sistemi cristallini Sistema Lunghezze e angoli degli assi Cubico Tetragonale Ortorombico Romboedrico Esagonale Monoclino a a a a a a = b = c; α = β = γ = 90 = b c; α = β = γ = 90 b c; α = β = γ = 90 = b = c; α = β = γ 90 = b c; α = β = 90 ; γ = 10 b c; α = γ = 90 ; β > 90 Triclino a b c; α β γ 90

6 I reticoli di Bravais 14 reticoli di Bravais (7 primitivi e 7 centrati) rappresentano gli unici 14 modi in cui è possibile riempire lo spazio con un reticolo tridimensionale di punti

7 Struttura cristallina Per passare dal reticolo alla struttura i punti del reticolo devono essere occupati da atomi, ioni o molecole Molecola ABC (motivo che si ripete) con A coincidente con l origine, B e C all interno della cella unitaria A: 0,0,0 B: x 1,y 1,z 1 C: x,y,z

8 Gli esperimenti di diffrazione forniscono segnali che corrispondono a piani reticolari Piani reticolari Piano interseca gli assi a, b,c nei punti m00, 0n0, 00p Le coordinate delle intercette sui tre assi (m,n,p) definiscono completamente la posizione del piano reticolare. Però una delle intercette può essere

9 Per definire univocamente il piano e evitare indici pari a si usano i cosiddetti indici di Miller (hkl) Il piano è in realtà uno dei tanti piani di una Famiglia tra loro paralleli e equidistanti Il primo piano della famiglia a partire dall origine intercetta gli assi nei punti a/h; b/k; c/l dove h,k e l sono gli indici di Miller Gli indici di Miller (h,k,l) sono dati quindi dal rapporto tra la lunghezza di un asse e l intercetta del piano sull asse stesso

10 Distanze interplanari

11 Le distanze interplanari d hkl possono essere espresse in funzione dei paramentri di cella e degli indici di Miller La distanza tra l'origine e il piano hkl è d hkl Applicando la trigonometria possiamo vedere che valgono le seguenti relazioni: (a/h) cos α = d hkl e quindi: cos α = (h/a) d hkl analogamente valgono: cos ß = (k/b) d hkl cos γ = (l/c) d hkl Per il reticolo ortorombico (tutti angoli pari a 90 ): (cos α) +(cos ß ) +(cos γ) = 1 quindi: (h/a) d hkl + (k/b) d hkl + (l/c) d hkl = 1 Per un cristallo cubico: 1/d hkl = 1/a * (h +k +l )

12 Monoclino Esagonale Cubico Tetragonale Ortorombico 1 c l b k a h d hkl + + = 1 c l a k h d hkl + + = 1 a l k h d hkl + + = c l a l hk h d hkl = β β β β 4 sin cos sin sin 1 c a hl c l b k a h d hkl =

13 Raggi X Scoperti da Roengten nel 1895 La lunghezza d onda dei raggi X è dello stesso ordine di grandezza delle spaziature tra gli atomi in un cristallo Si tratta di radiazione ionizzante

14 I raggi X possono essere prodotti utilizzando due modi principali : Eccitazione di elettroni di core negli atomi Questo è il metodo usato nei tubi a raggi X, nei dispositivi di laboratorio Accelerazione di elettroni liberi Metodo usato nei sincrotroni

15 Tubo a raggi X W target X-rays Vacuum Come funziona: Elettroni prodotti da un filamento di tungsteno riscaldato (catodo) accelerati da una elevata ddp Colpiscono il bersaglio (anodo) costituito da un elemento metallico Vengono emessi raggi X Caratteristiche: Usato in laboratorio Costo ~ migliaia di Euro Richiede acqua e alta tensione

16 Spettro di emissione di un tubo a raggi X Radiazione bianca (Brehmsstralung) dovuta al frenamento e perdita di energia degli elettroni a seguito degli urti con gli atomi del bersaglio E max = ev = hv max = hc λ min λ hc 1400 ev V min = = λ misurato in Å V misurato in Volts L energia massima dei fotoni (e quindi la minima lunghezza d onda) dipende SOLO dall energia degli elettroni incidenti ed è indipendente dalla natura del materiale.

17 Radiazione caratteristica monocromatica prodotta quando gli elettroni hanno energia sufficiente a scalzare un elettrone da livelli di core N.B. Radiazione caratteristica compare solo se si supera una certa tensione di accelerazione

18 Simbologia usata per indicare la radiazione X prodotta in un tubo Kα Kβ p 1s 3p 1s Kα ha energia minore e intensità maggiore della Kβ

19 La lunghezza d onda della radiazione prodotta dipende dal Numero Atomico del metallo usato come bersaglio Legge di Moseley All aumentare di Z v = k( Z σ ) ν aumenta e λ diminuisce Elementi utilizzati come bersaglio e lunghezza d onda della radiazione X (Å) Anodo Kα 1 Kα Kα Cr Fe Cu Mo Ag

20 Interazione dei raggi X con la materia Emissione di fotoelettroni Fascio incidente (I 0 ) di raggi X Fluorescenza Scattering coerente e incoerente Assorbimento (I) calore Lo scattering coerente dei raggi X è responsabile degli effetti di diffrazione Gli elettroni diventano sorgenti secondarie di radiazione X avente la stessa λ della radiazione incidente

21 La radiazione Kα è quella normalmente utilizzata per gli esperimenti di diffrazione di raggi X (è la più intensa) Come eliminare la Kβ e la radiazione bianca? Il modo più semplice è utilizzare un filtro I filtri sfruttano la variazione netta del coefficiente di assorbimento dei raggi X in corrispondenza di ben precisi valori di lunghezza d onda Anodo Kα(Å) Filtro Cr Fe Cu Mo Ag V Mn Ni Zr Pd Il filtro non elimina completamente la radiazione Kβ, che può essere completamente eliminata usando un cristallo monocromatore (sfrutta la legge di Bragg

22 Il fenomeno della diffrazione La diffrazione è un complesso fenomeno di diffusione (o scattering) e interferenza originato dall interazione dei raggi X con un reticolo cristallino. Il processo di diffusione (o scattering) L interazione di un onda elettromagnetica con la materia avviene essenzialmente attraverso due processi di scattering: a) scattering elastico: i fotoni della radiazione incidente vengono deviati in ogni direzione dello spazio senza perdita di energia. b) scattering non-elastico: il fotone cede parte della sua energia. Questo fenomeno non dà luogo a processi di interferenza.

23 Interazione raggi X con: Una singola particella La particella diffonde il fascio incidente uniformemente in tutte le direzioni Un materiale cristallino I fasci diffusi si combinano construttivamente in certe direzioni

24 λ/ Interferenza Costruttiva Interferenza distruttiva

25 Diffrazione Raggi X Il fenomeno della diffrazione è analogo all interferenza della luce con un reticolo ottico. Lungo alcune direzioni (direzione 3) i fasci diffratti A e B si trovano esattamente sfasati di mezza lunghezza d onda: si ha interferenza distruttiva e lungo la direzione 3 si avrà intensità nulla. Lungo le direzioni 1 e i due fasci sono in fase e avremo un massimo di intensità lungo quelle direzioni.

26 Condizioni di Laue Max von Laue interpretò la diffrazione di raggi X da parte dei cristalli in analogia con la diffrazione della luce da parte di un reticolo ottico: la disposizione periodica tridimensionale degli atomi corrisponde a un reticolo tridimensionale di diffrazione Partiamo da un reticolo monodimensionale costituito da centri di scattering nei nodi reticolari Radiazione S 0 incide con angolo di incidenza φ su un filare monodimensionale. Radiazione diffratta S forma un angolo θ con il fascio incidente Interferenza è costruttiva solo se la differenza di cammino ottico dei raggi scatterati da due contigui è pari a un multiplo della lunghezza d onda

27 Differenza di cammino sul raggio incidente (r), e sul raggio diffratto (r'). r' - r = a cos(θ) - a cos (φ) = h λ h numero intero. In termini vettoriali: r' - r = a (S-S 0 ) = h λ I raggi diffratti giacciono su coni, detti di Laue, associati ai diversi valori di h.

28 Il reticolo è tridimensionale per cui dobbiamo scrivere relazioni analoghe per le altre due direzioni Condizioni di Laue per la diffrazione: a. (S-S0) = h λ b. (S-S0) = k λ c. (S-S0) = l λ Le tre equazioni di Laue devono essere contemporaneamente soddisfatte, la diffrazione avviene solo lungo le direzioni comuni a tre superfici coniche.

29 L approccio di Laue seppure corretto è poco pratico (tre equazioni devono essere soddisfatte contemporaneamente). Bragg (padre e figlio) immaginarono il fenomeno in termini di riflessione dei raggi X da parte di piani reticolare infinitamente estesi. Approccio dei Bragg non è corretto dal punto di vista fisico (il vero fenomeno che avviene è la diffusione e l interferenza tra onde diffuse) ma fornisce una espressione semplice (una unica equazione) e del tutto equivalente alle tre condizioni di Laue (la direzione del fascio riflesso della legge di Bragg concide con la direzione che soddisfa contemporaneamente le 3 equazioni di Laue) Nell approccio di Bragg i piani reticolari sono immaginati essere semiriflettenti I raggi X incidono su un pianoe vengono in parte riflessi, in parte trasmessi

30 La riflessione avviene anche sui piani sottostanti Interferenza è costruttiva solo se la differenza di cammino tra i raggi riflessi da piani contigui è pari a un multiplo della lunghezza d onda r + r = d hkl sin(θ) + d hkl sin(θ) = n λ d hkl sin(θ) = n λ Legge di Bragg d nh nk nl sin(θ) = λ N.B. La direzione dei fascio diffratto prevista dalle tre condizioni di Laue coincide con quella prevista dalla legge di Bragg

31 d sinθ = λ d = distanza interplanare La direzione dei raggi diffratti dipende UNICAMENTE dal reticolo di traslazione, cioè dai parametri della cella elementare, indipendentemente dagli atomi che essa contiene PROPORZIONALITÀ INVERSA TRA sinθ e d strutture con d grandi mostreranno pattern di diffrazione compressi, e viceversa per strutture con d piccoli 1/d = (/λ) sinθ 1/d sinθ

32 Esercizio Un cristallo di Fe (bcc a=.866 Å) viene sottoposto a un esperimento di diffrazione di Raggi X utilizzando la radiazione Cr Kα (λ=.91 Å) Calcolare i valori delle distanze interplanari d hkl Calcolare gli angoli di Bragg Calcolare gli angoli di Bragg usando la radiazione Mo Kα (λ= Å) N.B. in effetti si osservano solo riflessi con h+k+l=n

33 A seconda della simmetria del cristallo l intensità dei segnali è sistematicamente uguale a zero per certi valori di hkl

34 Assenze sistematiche nei reticoli centrati l set di piani P nel caso A produce onde diffratte in fase. Nel caso B dobbiamo considerare anche la famiglia di piani Q (linee tratteggiate) in posizione intermedia tra i piani P. Le onde diffratte dai piani Q saranno fuori fase con quelle riflesse dai piani P, dando interferenza completamente distruttiva poichè i piani P e Q contengono gli stessi atomi ed hanno uguale densità

35 Tecniche sperimentali L esperimento di diffrazione di raggi X richiede: Sorgente (tubo o sincrotrone) Strumenti di laboratorio usano tubo a raggi X Campione (monocristallo o polvere) Monocristallo (o cristallo singolo) più adatto per l analisi strutturale Campione policristallino più semplice usato soprattutto per analisi qualitativa e quantitativa Rivelatore (lastra fotografica o metodi a contatore) Metodi a lastra fotografica hanno solo interesse storico, ma oggi si usano anche contatori bidimensionali che forniscono pattern di diffrazione molto simili a quelli delle lastre fotografiche

36 Rivelatori per Raggi X usati in diffrazione Film fotografico: elevata accuratezza risolutiva, ma scarsa accuratezza nella misura dell'intensità. Scintillatore: Materiale che emette luce quando irradiato con raggi X. Un fotomoltiplicatore rivela la luce e emette un pulso. Accurata misura delle intensità ed delle posizioni, difetto di poter misurare una sola intensità diffratta alla volta Rivelatori CCD (Charged Couple Device) Rivelatore bidimensionale a stato solido e di tipo quantico La stessa "simultaneità" di una lastra, con migliore misura delle intensità diffratte. Peccano in potere risolutivo, a causa delle dimensioni dei chip.

37 Diffrazione di raggi X su campioni policristallini Se idealmente il numero di particelle cristalline in diffrazione è molto elevato e tutte le possibili orientazioni sono ugualmente rappresentate, allora ciascun piano cristallografico origina un insieme di linee contigue che formano la superficie di un cono di diffrazione

38 Camera di Debye Si originano contemporaneamente i fasci diffratti per diverse famiglie di piani. Per ciascuna famiglia di piani i fasci diffratti si trovano su un cono che tagliano la lastra fotografica su una coppia di archi

39

40 Diffrattometri per polveri (campioni policristallini) Si varia con continuità e sincronicamente l angolo tra fascio incidente e campione e quello tra campione e rivelatore

41 Geometria di Bragg-Brentano Con questa geometria, il campione è sempre in una precisa posizione "focalizzata", che viene preservata cambiando simultaneamente l'angolo incidente e quello di rivelazione (θ-θ, con sorgente mobile e campione fisso), oppure variando opportunamente l'orientazione del campione e l'angolo di rivelazione (ω-θ).

42 Geometria Bragg-Brentano con monocromatore su fascio diffratto

43 θ Intensità (conteggi/sec)

44 Quantità osservabili Posizione dei picchi Intensità dei picchi Forma dei picchi Fondo sottostante i picchi Posizione dei picchi: Dipende esclusivamente dalla cella elementare del materiale in esame. E possibile dai dati di polveri determinare e affinare le costanti di cella con elevata precisione. Su questo dato viene in gran parte basata il riconoscimento di fasi incognite Intensità dei picchi: L'intensità diffratta si ottiene integrando l'area di ciascun picco, dopo aver sottratto il contributo di fondo. Una misura approssimata si ottiene dal massimo valore dei conteggi di ciascun picco. Le intensità diffratte da ciascuna fase presente in una miscela di un campione polifasico sono proporzionali alla frazione di quella fase.

45 La forma del picco e fattori che la influenzano I fattori che influenzano la forma del picco sono: STRUMENTALI: divergenza del raggio incidente e/o del raggio diffratto; risoluzione del rivelatore e modalità di scansione del picco; dimensioni del campione. DEL CAMPIONE: mosaicità delle particelle cristalline e loro dimensione, oppure possibili deformazioni (stress ecc.). Per quanto riguarda la dimensione delle particelle, vale la relazione di Debye- Scherrer: dove K è una semplice costante di proporzionalità e D è la dimensione media delle particelle.

46 Procedura sperimentale selezione del campione (microcristallinità) macinazione per migliorare l omogeneità riducendo le dimensioni delle particelle (ma non troppo per evitare l allargamento dei picchi) deposizione del campione su supporto centratura del supporto nel goniometro scansione (selezionando il tipo di scansione, la velocità ecc.)

47 Analisi qualitativa L analisi qualitativa si riferisce alla identificazione di fasi presenti in miscele oppure al riconoscimento di fasi a componente singolo. co-presenza di più fasi Se in un campione policristallino esistono più fasi, la diffrazione da polveri conterrà picchi corrispondenti a distanze interplanari di tutte le fasi

48 La struttura cristallina di molte fasi solide è nota, perché identificata con metodi diffrattometrici a partire dalla introduzione di queste tecniche, cioè a partire dalla prima metà del XX secolo. La principale "risorsa" di informazioni per l identificazione di fasi ignote è il Powder Diffraction File, ossia un archivio elettronico (o cartaceo) dove sono contenute informazioni cristallografiche per più di fasi inorganiche ed organiche. La diffrazione è una informazione primaria, che combinata con l analisi elementare identifica senza ambiguità una certa fase cristallina.

49

50 Dai valori angolari a cui si osservano i riflessi di Bragg è possibile ottenere le informazioni sulla forma e dimensione della cella unitaria Occorre attribuire gli indici di Miller ai segnali di diffrazione osservati, e utilizzare le formule che legano le distanze interplanari alle alle costanti reticolari e agli indici di Miller Il caso più semplice è quello del reticolo cubico

51 ) ( sin ) ( sin ) sin( l k h l k h l k h a d d hkl hkl hkl = + + = = θ θ λ θ

52 d d hkl sin sin hkl = sin( θ ( θ) ( θ ) 1 h = hkl ) = λ a + k h 1 h + l + k + k 1 + l + l 1 Θ d hkl sen sen / sen h +k +l h +k +l hkl 8,45 3,13 0,06,00 3, ,31 1,9 0,16,66 5,33 7, ,1 1,64 0, 3,66 7,33 10, ,13 1,36 0,3 5,33 10,66 15, ,37 1,5 0,38 6,33 1,65 18, ,03 1,11 0,48 7,99 15,99 3, ,94 1,04 0,54 8,99 17,98 6,97 333

53 Esercitazioni di Laboratorio Diffrazione di Raggi X 1. Raccolta pattern di diffrazione di polveri di varie sostanze Fasi singole con struttura cubica (NaCl, KCl, Fe, Al, ): indicizzazione del pattern e determinazione delle costanti di cella e della densità Fasi singole a struttura non cubica: determinazione delle costanti di cella Miscele di più fasi: analisi qualitativa. Uso software cristallografico Analisi pattern diffrazione: software ANALYZE. Determinazione delle posizioni dei picchi, del fondo e delle intensità. Analisi qualitativa con e senza informazione chimiche Banca dati PDF-: software PCPDFWIN per recuperare le Card delle fasi desiderate.

54 Raccolta pattern di diffrazione macinazione polveri (l omogeneità) deposizione delle polveri sul portacampione (la superficie della polvere deve essere liscia e a filo con la superficie del portacampione) centratura del portacampione nel diffrattometro scansione (selezionando il tipo di scansione, l angolo iniziale e finale, la velocità ecc.)

55 Indicizzazione pattern fasi cubiche d d hkl sin sin hkl = sin( θ ( θ) ( θ ) 1 h = hkl ) = λ a + k h 1 h + l + k + k 1 + l + l 1 Θ d hkl sen sen / sen h +k +l h +k +l hkl 8,45 3,13 0,06,00 3, ,31 1,9 0,16,66 5,33 7, ,1 1,64 0, 3,66 7,33 10, ,13 1,36 0,3 5,33 10,66 15, ,37 1,5 0,38 6,33 1,65 18, ,03 1,11 0,48 7,99 15,99 3, ,94 1,04 0,54 8,99 17,98 6,97 333

56 Determinazione costante di cella a hkl + ( Å) = d (Å) h + k l Per ciascun riflesso otteniamo la costante di cella. Δd/d diminuisce con l angolo θ Determinazione densità 4 3 ( 3 n PF( g / mole) 10 (Å / cm D g / cm ) = 3 3 a (Å) ( mol 1 ) 3 )

Interazione dei raggi X con la materia

Interazione dei raggi X con la materia Interazione dei raggi X con la materia Emissione di fotoelettroni Fascio incidente (I 0 ) di raggi X Fluorescenza Scattering coerente e incoerente Assorbimento (I) calore Lo scattering coerente dei raggi

Dettagli

Materiale didattico: dispense fornite durante il corso

Materiale didattico: dispense fornite durante il corso Struttura e Proprietà dei Materiali 6 crediti lezioni frontali+ 3 crediti di laboratorio Richiami di cristallochimica Reticolo reciproco Diffrazione di raggi X e di Neutroni Produzione Raggi X (Tubi, Sincrotroni)

Dettagli

Diffrazione di Raggi X

Diffrazione di Raggi X Diffrazione di Raggi X 1. Laue, Friedrich, Knipping (Monaco, 1912): diffrazione da reticolo tridimensionale 2. Ewald (Tesi di dottorato, Monaco, 1913): costruzione del reticolo reciproco 3. Bragg and Bragg

Dettagli

Diffrazione di Raggi-X da Monocristalli A.A Marco Nardini Dipartimento di Scienze Biomolecolari e Biotecnologie Università di Milano

Diffrazione di Raggi-X da Monocristalli A.A Marco Nardini Dipartimento di Scienze Biomolecolari e Biotecnologie Università di Milano Diffrazione di Raggi-X da Monocristalli A.A. 2009-2010 Marco Nardini Dipartimento di Scienze Biomolecolari e Biotecnologie Università di Milano Raccolta Dati di Diffrazione: Diffrazione di Raggi X Raccolta

Dettagli

Struttura e geometria cristallina

Struttura e geometria cristallina Struttura e geometria cristallina Tecnologia Meccanica RETICOLO SPAZIALE E CELLE UNITARIE Gli atomi, disposti in configurazioni ripetitive 3D, con ordine a lungo raggio (LRO), danno luogo alla struttura

Dettagli

SOLIDI. 10/05/2007 Chimica e Scienza e Tecnologia dei Materiali Elettrici L6 1

SOLIDI. 10/05/2007 Chimica e Scienza e Tecnologia dei Materiali Elettrici L6 1 SOLIDI Stato di aggregazione della materia caratterizzato da forma e volume proprio; gli atomi (ioni, molecole) si trovano in posizioni fisse e molto spesso ordinate nello spazio: Solido amorfo: ordine

Dettagli

Diffrazione di raggi X

Diffrazione di raggi X Diffrazione di raggi X Campione radiazione rivelatore tecnica monocromatica pellicole Oscillante Weissenberg Buerger Gandolfi Cristallo singolo Contatore (convenzionale, IP, CCD) Diffrattometro a 4-cerchi

Dettagli

Chimica fisica superiore Modulo 1 Esercitazione 1 Laboratorio di diffrazione Strumento e condizioni di misura Sergio Brutti

Chimica fisica superiore Modulo 1 Esercitazione 1 Laboratorio di diffrazione Strumento e condizioni di misura Sergio Brutti Chimica fisica superiore Modulo 1 Esercitazione 1 Laboratorio di diffrazione Strumento e condizioni di misura Sergio Brutti Esperimento di diffrazione Consideriamo un sistema sperimentale costituito da

Dettagli

Chimica Fisica dello Stato Solido 4 crediti lezioni frontali (32 ore) + 2 crediti (24 ore) di laboratorio/esercitazione

Chimica Fisica dello Stato Solido 4 crediti lezioni frontali (32 ore) + 2 crediti (24 ore) di laboratorio/esercitazione Chimica Fisica dello Stato Solido 4 crediti lezioni frontali (3 ore) + crediti (4 ore) di laboratorio/esercitazione Richiami di cristallochimica Reticolo reciproco Diffrazione di raggi X e di Neutroni

Dettagli

Reticoli e Diffrazione - Testi degli esercizi. Fisica della Materia Condensata

Reticoli e Diffrazione - Testi degli esercizi. Fisica della Materia Condensata Reticoli e Diffrazione - Testi degli esercizi Fisica della Materia Condensata A.A. 2015/2016 Reticoli e Diffrazione Esercizio 1 Calcolare il fattore di struttura cristallino F( G) per il reticolo cubico

Dettagli

Apparati per uso industriale e ricerca Dott.ssa Alessandra Bernardini

Apparati per uso industriale e ricerca Dott.ssa Alessandra Bernardini Apparati per uso industriale e ricerca Dott.ssa Alessandra Bernardini 1 Apparecchiature radiologiche per analisi industriali e ricerca Le apparecchiature a raggi X utilizzate nell industria utilizzano

Dettagli

Corso di Mineralogia

Corso di Mineralogia Corso di Mineralogia Scienze Geologiche A.A. 2016 / 2017 Elementi di cristallografia strutturale (pdf # 06) (2) - Mineralogia 2016/2017_cristallografia CRISTALLOGRAFIA STRUTTURALE Cristallografia morfologica

Dettagli

Simmetrie Cristallografiche A.A Marco Nardini Dipartimento di Scienze Biomolecolari e Biotecnologie Università di Milano

Simmetrie Cristallografiche A.A Marco Nardini Dipartimento di Scienze Biomolecolari e Biotecnologie Università di Milano A.A. 2009-2010 Marco Nardini Dipartimento di Scienze Biomolecolari e Biotecnologie Università di Milano Reticolo Cristallino: insieme di punti detti nodi separati da intervalli a, b, e c (reticolo di ripetizione)

Dettagli

I SOLIDI CRISTALLINI ED IL RETICOLO CRISTALLINO

I SOLIDI CRISTALLINI ED IL RETICOLO CRISTALLINO I SOLIDI CRISTALLINI ED IL RETICOLO CRISTALLINO A differenza dei solidi amorfi, caratterizzati da disordine spaziale delle particelle (atomi o molecole) e isotropia delle proprietà fisiche, il solido cristallino

Dettagli

DIFFRAZIONE DI ONDE NEI CRISTALLI

DIFFRAZIONE DI ONDE NEI CRISTALLI DIFFRAZIONE DI ONDE NEI CRISTALLI Quando in cristallo si propaga un onda con λ a,b,c si verifica diffrazione dal suo studio è possibile ottenere informazioni su: Simmetria del cristallo (tipo di reticolo)

Dettagli

Diffusione dei raggi X da parte di un elettrone

Diffusione dei raggi X da parte di un elettrone Diffusione dei raggi X da parte di un elettrone Consideriamo un onda elettro-magnetica piana polarizzata lungo x che si propaga lungo z L onda interagisce con un singolo elettrone (libero) inducendo un

Dettagli

ESPERIMENTO DI YOUNG DOPPIA FENDITURA

ESPERIMENTO DI YOUNG DOPPIA FENDITURA ESPERIMENTO DI YOUNG DOPPIA FENDITURA Larghezza fenditure a > d (L = distanza fenditure - schermo; d = distanza tra le fenditure) Evidenza della natura ondulatoria della luce Luce monocromatica

Dettagli

La diffrazione. Prof. F. Soramel Fisica Generale II - A.A. 2004/05 1

La diffrazione. Prof. F. Soramel Fisica Generale II - A.A. 2004/05 1 La diffrazione Il fenomeno della diffrazione si incontra ogni volta che la luce incontra un ostacolo o un apertura di dimensioni paragonabili alla sua lunghezza d onda. L effetto della diffrazione è quello

Dettagli

Sistemi cristallini 1

Sistemi cristallini 1 Sistemi cristallini Esercizio Calcolare la densità atomica definita come il rapporto tra il numero di atomi e il volume unitario per ) il litio sapendo che la distanza tra i centri dei primi vicini è R

Dettagli

Corso di Mineralogia

Corso di Mineralogia Corso di Mineralogia Scienze Geologiche A.A. 2017 / 2018 Elementi di cristallografia strutturale (pdf # 06) (2) - Mineralogia 2017/2018_cristallografia CRISTALLOGRAFIA STRUTTURALE Cristallografia morfologica

Dettagli

Corso di Mineralogia

Corso di Mineralogia Corso di Mineralogia Scienze Geologiche A.A. 2016 / 2017 I raggi-x in mineralogia (pdf # 07) (2) - Mineralogia_2016/2017_Raggi X Raggi X: cosa sono e perché sono così importanti La scoperta dei RX ha rappresentato

Dettagli

STRUTTURA DEI SOLIDI

STRUTTURA DEI SOLIDI STRUTTURA DEI SOLIDI I solidi possono essere classificati in funzione della regolarità con cui gli atomi o gli ioni si dispongono nello spazio. Un materiale è detto cristallino se caratterizzato da configuarazioni

Dettagli

Università degli Studi dell Aquila Corso di Laurea in Scienze e Tecnologie Chimiche e dei Materiali Corso di Fisica della Materia Prof. L.

Università degli Studi dell Aquila Corso di Laurea in Scienze e Tecnologie Chimiche e dei Materiali Corso di Fisica della Materia Prof. L. Università degli Studi dell Aquila Corso di Laurea in Scienze e Tecnologie Chimiche e dei Materiali Corso di Fisica della Materia Prof. L. Lozzi Testi degli esercizi svolti in aula Corpo Nero 1. Il corpo

Dettagli

Spettroscopia di assorbimento UV-Vis

Spettroscopia di assorbimento UV-Vis Spettroscopia di assorbimento UV-Vis Metodi spettroscopici La spettroscopia studia i fenomeni alla base delle interazioni della radiazione con la materia Le tecniche spettroscopiche sono tutte quelle tecniche

Dettagli

Produzione dei raggi X

Produzione dei raggi X I RAGGI X Produzione dei raggi X Tubo a raggi X Emissione per frenamento Emissione per transizione Spettro di emissione pag.1 Lunghezza d onda, frequenza, energia (fm) λ (m) 10 14 RAGGI GAMMA ν 10 12 (Å)

Dettagli

Reticoli di Bravais e sistemi cristallini

Reticoli di Bravais e sistemi cristallini Reticoli di Bravais e sistemi cristallini Come in 2D, anche in 3D si individuano un motivo, che si ripete in modo periodico nello spazio e un reticolo (disposizione di punti, ciscuno che possiede lo stesso

Dettagli

Spettro elettromagnetico

Spettro elettromagnetico Spettro elettromagnetico Sorgenti Finestre Tipo Oggetti rilevabili Raggi γ ev Raggi X Lunghezza d onda E hc = hν = = λ 12. 39 λ( A o ) Visibile Infrarosso icro onde Onde-radio Dimensione degli oggetti

Dettagli

Crisi della Fisica Classica & Fisica Quantistica

Crisi della Fisica Classica & Fisica Quantistica Crisi della Fisica Classica & Fisica Quantistica Guido Montagna Dipartimento di Fisica, Università di Pavia & INFN, Sezione di Pavia February 8, 2018 G. Montagna, Università di Pavia & INFN (Dipartimento

Dettagli

TECNICHE DI CARATTERIZZAZIONE DELLE SOSTANZE ALLO STATO SOLIDO

TECNICHE DI CARATTERIZZAZIONE DELLE SOSTANZE ALLO STATO SOLIDO TECNICHE DI CARATTERIZZAZIONE DELLE SOSTANZE ALLO STATO SOLIDO DIFFRAZIONE DI RAGGI X CALORIMETRIA A SCANSIONE DIFFERENZIALE (DSC) TERMOGRAVIMETRIA (TGA).. e molte altre: spettroscopia nell infrarosso

Dettagli

Cristalli fotonici e loro applicazioni

Cristalli fotonici e loro applicazioni Dipartimento di fisica A. Volta, Università degli studi di Pavia 8 maggio 2009 solidi cristallini = reticolo + base Figura: alcuni reticoli di Bravais 3D con 3 vettori primitivi a,b,c; Figura: alcuni reticoli

Dettagli

Fononi e calori reticolari - Testi degli esercizi. Fisica della Materia Condensata

Fononi e calori reticolari - Testi degli esercizi. Fisica della Materia Condensata Fononi e calori reticolari - Testi degli esercizi Fisica della Materia Condensata A.A. 015/016 Fononi e calori reticolari Esercizio 1 Si consideri una catena lineare biatomica. Calcolare le relazioni di

Dettagli

Sistemi cristallini - Soluzioni degli esercizi

Sistemi cristallini - Soluzioni degli esercizi Sistemi cristallini - Soluzioni degli esercizi Fisica della Materia Condensata Dipartimento di Matematica e Fisica Università degli Studi Roma Tre A.A. 06/07 Sistemi cristallini Esercizio.........................................

Dettagli

Sistemi cristallini - Soluzioni degli esercizi. Fisica della Materia Condensata

Sistemi cristallini - Soluzioni degli esercizi. Fisica della Materia Condensata Sistemi cristallini - Soluzioni degli esercizi Fisica della Materia Condensata A.A. 05/06 Indice Esercizio Esercizio Esercizio 6 Esercizio 9 Esercizio 5 Esercizio 6 Esercizio 7 Esercizio 8 6 Esercizio

Dettagli

Atomi a più elettroni

Atomi a più elettroni Atomi a più elettroni L atomo di elio è il più semplice sistema di atomo a più elettroni. Due sistemi di livelli tra i quali non si osservano transizioni Sistema di singoletto->paraelio Righe singole,

Dettagli

Teoria Atomica di Dalton

Teoria Atomica di Dalton Teoria Atomica di Dalton Il concetto moderno della materia si origina nel 1806 con la teoria atomica di John Dalton: Ogni elementoè composto di atomi. Gli atomi di un dato elemento sono uguali. Gli atomi

Dettagli

L'intensità misurata per ogni segnale di diffrazione dipende:

L'intensità misurata per ogni segnale di diffrazione dipende: L'intensità misurata per ogni segnale di diffrazione dipende: dall'intensità incidente (I 0 ) da fattori strumentali e geometrici Fattore polarizzazione, se il raggio incidente non è polarizzato, la polarizzazione

Dettagli

L energia assorbita dall atomo durante l urto iniziale è la stessa del fotone che sarebbe emesso nel passaggio inverso, e quindi vale: m

L energia assorbita dall atomo durante l urto iniziale è la stessa del fotone che sarebbe emesso nel passaggio inverso, e quindi vale: m QUESITI 1 Quesito Nell esperimento di Rutherford, una sottile lamina d oro fu bombardata con particelle alfa (positive) emesse da una sorgente radioattiva. Secondo il modello atomico di Thompson le particelle

Dettagli

Posizioni Atomiche nelle Celle Unitarie Cubiche

Posizioni Atomiche nelle Celle Unitarie Cubiche Posizioni Atomiche nelle Celle Unitarie Cubiche Il sistema di coordinate cartesiane è usato per individuare gli atomi. In una cella unitaria cubica l asse x è la direzione che esce dal foglio. l asse y

Dettagli

La Cristallografia. 1: la traslazione

La Cristallografia. 1: la traslazione La Cristallografia 1: la traslazione Spiega: Perché i cristalli hanno le facce Come le chiamiamo Come si dividono le celle elementari (e i cristalli macroscopici) La traslazione Reticolo unidimensionale

Dettagli

I rivelatori. Osservare il microcosmo. EEE- Cosmic Box proff.: M.Cottino, P.Porta

I rivelatori. Osservare il microcosmo. EEE- Cosmic Box proff.: M.Cottino, P.Porta I rivelatori Osservare il microcosmo Cose prima mai viste L occhio umano non riesce a distinguere oggetti con dimensioni inferiori a 0,1 mm (10-4 m). I primi microscopi vennero prodotti in Olanda alla

Dettagli

La scoperta dei raggi X

La scoperta dei raggi X La scoperta dei raggi X 1 8 Novembre 1895 Wilhelm Konrad Röntgen (1845-1923) e il suo laboratorio all Università di Würzburg La sera dell 8 Novembre 1895 Röntgen scopre un nuovo tipo di radiazione, che

Dettagli

Fisica della Materia Condensata

Fisica della Materia Condensata Fisica della Materia Condensata Prof. Paola Gallo Soluzioni della prova di esame del II appello - 13 Febbraio 2017 Esercizio 1 Considerare un cristallo con reticolo monoclino semplice con base monoatomica.

Dettagli

Scienza dei Materiali 1 Esercitazioni

Scienza dei Materiali 1 Esercitazioni Scienza dei Materiali 1 Esercitazioni 2. Cristallografia dei materiali ver. 1.1 Reticoli cristallini Reticolo è una griglia tridimensionale di punti possiamo individuare un insieme minimo di punti (cella)

Dettagli

Metodo di Rietveld. Metodo di affinamento di una struttura che utilizza l intero profilo di diffrazione misurato con un diffrattometro per polveri

Metodo di Rietveld. Metodo di affinamento di una struttura che utilizza l intero profilo di diffrazione misurato con un diffrattometro per polveri Metodo di Rietveld Metodo di affinamento di una struttura che utilizza l intero profilo di diffrazione misurato con un diffrattometro per polveri E il migliore metodo per ottenere il maggior numero di

Dettagli

XRD: X-RAY DIFFRACTION

XRD: X-RAY DIFFRACTION XRD: X-RAY DIFFRACTION La XRD è una tecnica di diffrazione che utilizza i raggi X per sondare la struttura cristallina Identification of crystallographic phases, strain state, grain size, phase composition,

Dettagli

INTERFERENZA - DIFFRAZIONE

INTERFERENZA - DIFFRAZIONE INTERFERENZA - F. Due onde luminose in aria, di lunghezza d onda = 600 nm, sono inizialmente in fase. Si muovono poi attraverso degli strati di plastica trasparente di lunghezza L = 4 m, ma indice di rifrazione

Dettagli

Quando lungo il percorso della luce vi sono fenditure ed ostacoli con dimensioni dello stesso ordine di grandezza della lunghezza d'onda incidente

Quando lungo il percorso della luce vi sono fenditure ed ostacoli con dimensioni dello stesso ordine di grandezza della lunghezza d'onda incidente OTTICA FISICA Quando lungo il percorso della luce vi sono fenditure ed ostacoli con dimensioni dello stesso ordine di grandezza della lunghezza d'onda incidente gli effetti sperimentali non sono spiegabili

Dettagli

Scienza dei Materiali 1 Esercitazioni

Scienza dei Materiali 1 Esercitazioni Scienza dei Materiali 1 Esercitazioni 3. Difetti reticolari ver. 1.4 Condizioni per diffrazione In base alla struttura cristallina possiamo prevedere quali riflessi nello spettro di diffrazione saranno

Dettagli

La diffrazione della luce

La diffrazione della luce La diffrazione della luce Diffrazione: combinazione di scattering (diffusione) ed interferenza. E facilmente interpretabile utilizzando le proprietà ondulatorie della radiazione (e della materia!) e la

Dettagli

STRUTTURA E GEOMETRIA CRISTALLINA

STRUTTURA E GEOMETRIA CRISTALLINA STRUTTURA E GEOMETRIA CRISTALLINA La struttura fisica dei materiali solidi dipende dalla disposizione degli atomi, ioni o molecole che compongono il solido e dalle forze che li legano fra loro. Quando

Dettagli

Introduzione alla Meccanica Quantistica (MQ):

Introduzione alla Meccanica Quantistica (MQ): Introduzione alla Meccanica Quantistica (MQ): 1 MECCANICA QUANTISTICA ELETTRONI MATERIA MOLECOLE ATOMI NUCLEI La nostra attuale comprensione della struttura atomica e molecolare si basa sui principi della

Dettagli

Fenomeni quantistici

Fenomeni quantistici Fenomeni quantistici 1. Radiazione di corpo nero Leggi di Wien e di Stefan-Boltzman Equipartizione dell energia classica Correzione quantistica di Planck 2. Effetto fotoelettrico XIII - 0 Radiazione da

Dettagli

Introduzione. Cosa sono i dispositivi a semiconduttore?

Introduzione. Cosa sono i dispositivi a semiconduttore? Introduzione Cosa sono i dispositivi a semiconduttore? con poche eccezioni, qualunque cosa che abbia una risposta corrente-tensione non-lineare è un dispositivo a semiconduttore i semiconduttori possono

Dettagli

SECONDA LEZIONE: interazioni della radiazione con la materia e statistica delle misure sperimentali

SECONDA LEZIONE: interazioni della radiazione con la materia e statistica delle misure sperimentali SECONDA LEZIONE: interazioni della radiazione con la materia e statistica delle misure sperimentali RADIAZIONI E MATERIA lunghezza d onda λ (m) 10-11 10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1

Dettagli

Lo Spettro Elettromagnetico

Lo Spettro Elettromagnetico Spettroscopia 1 Lo Spettro Elettromagnetico Lo spettro elettromagnetico è costituito da un insieme continuo di radiazioni (campi elettrici e magnetici che variano nel tempo, autogenerandosi) che va dai

Dettagli

Ottica fisica - Interferenza

Ottica fisica - Interferenza Ottica fisica - Interferenza 1. Principi di sovrapposizione e di Huygens 2. Interferenza 3. Riflessione e trasmissione della luce VIII - 0 Principio di sovrapposizione In un sistema meccanico in cui si

Dettagli