TEST NON PARAMETRICO DI MANN-WHITNEY

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "TEST NON PARAMETRICO DI MANN-WHITNEY"

Transcript

1 TEST NON PARAMETRICO DI MANN-WHITNEY Questo test viene può essere utilizzato come test di confronto tra due campioni in maniera analoga ai test ipotesi parametrici di confronto medie (test Z se la varianza è nota ed il test t di Student se la varianza non è nota). Il test di Mann-Whitney si applica solitamente quando le assunzioni per effettuare il test parametrico non sono soddisfatte, ovvero quando entrambe le condizioni 1 e 2 sono presenti: 1) le distribuzione della variabile oggetto di studio non è normale 2) le dimensioni campionarie sono ridotte ( n < di 30 casi in almeno un campione).

2 Density var Shapiro-Wilk W test for normal data Variable Obs W V z Prob>z var Esempio di variabile distribuita non normalmente con forte asimmetria positiva e n numero di casi < 30 ( 26 casi), Nelle condizioni (1+2) è possibile analizzare i dati con questa procedura che valuta ipotesi di confronto sulla mediana dei due campioni ed utilizza i ranghi delle osservazioni. Il test mann-whitney utilizzando i ranghi ed è più informativo e completo del test semplice della mediana che valuta solo il numero di casi sopra o sotto questa misura di posizione.

3 Le assunzioni che sottostanno il test sono ridotte rispetto ai test parametrici ( Z e t): i due campioni di dimensione n ed m sono casuali ed indipendenti la scala di misurazione è almeno ordinale la variabile di interesse è continua (anche se misurata sulla scala ordinale) Le ipotesi considerate dal test di Mann-Whitney: H0: le due popolazioni da cui sono estratti i campioni hanno mediana uguale. HA: la mediana della popolazione 1 è maggiore della mediana della pop 2 (test unidirezionale con valori di rifiuto della statistica test maggiori del valore critico)

4 Oppure HA: la mediana della popolazione 1 è minore della mediana della pop 2 (test unidirezionale con valori di rifiuto della statistica test minori del valore critico) Oppure HA: la mediana della popolazione 1 è diversa della mediana della pop 2 (test bidirezionale con valori di rifiuto della statistica test minori o maggiori dei 2 valori critici: minori di U alfa/2, o maggiori di +U alfa/2). Procedura: 1) E necessario ordinare i dati in maniera crescente, tenendo separati i due campioni (campione X e campione Y) di provenienza, che hanno un numero n (del campione X) ed m (del campione Y) di osservazioni. E opportuno che le due serie di valori siano riportate in colonna lasciando uno spazio accanto alla prima serie e che si lasci uno o più spazi nella elencazione dei valori della serie x (ed y rispettivamente) quando il valore successivo della elencazione sia quello della serie d confronto. Vedi esempio.

5 2) Quindi si assegnano i ranghi (vedi procedura specifica dispensa 1 trasformazione scala ranghi) che tiene conto anche dei ties, ovvero valori uguali a i quali viene attribuito il valor medio del rango. 3) La statistica viene quindi semplicemente calcolata come segue: n( n + 1) U = S - 2 Dove n è la dimensione campionaria del campione usato come riferimento (uno dei due campioni, ad es. campione X) ed S la somma dei ranghi specifica dello stesso campione. A seconda delle ipotesi del test il valore di U viene confrontato con il valore critico della tabella specifica per un alfa (es. alfa= 0.05) ed un numero n ed m di osservazioni.

6 Caso HA: Mx < My La mediana del campione x è minore di quella del campione Y Si rifiuta H0 se il valore calcolato di U risulta minore del valore U critico riportato nella tabella per n, m ed alfa specificato Caso HA: Mx > My La mediana del campione x è maggiore di quella del campione Y Si rifiuta H0 se il valore calcolato di U risulta maggiore del valore U critico riportato nella tabella per n m ed alfa specificato Caso HA: Mx My La mediana del campione x diversa della mediana del campione Y Si rifiuta H0 se il valore calcolato di U risulta rispettivamente maggiore del valore +U critico alfa/2 o minore del valore - U critico alfa/2 riportato nella tabella per n m ed alfa specificato

7 Se i campioni sono più grandi (in questo caso valutare la possibilità di effettuare un t test) ovvero quando n o m sono > di 20 è possibile ricorrere ad una valutazione della statistica ricorrendo ai valori della distribuzione normale standardizzata Z come segue: U mn / 2 z= nm( n + m + 1) / 12

8 Esempio dati da analizzare Valori variabile nel Campione X Valori variabile nel Campione Y n Esempio ordinamento dati ed assegnazione ranghi Valori variabile ordinati nel Campione X Rango Campione X Valori variabile ordinati nel Campione Y Rango Campione Y n somma ranghi S= 41 ranghi S= 50

9

R 2 1 j /n j] 3(n+1)

R 2 1 j /n j] 3(n+1) L ANALISI DELLA VARIANZA A RANGHI AD UNA VIA DI KRUSKAL-WALLIS Quando le assunzioni per l analisi della varianza parametrica non sono soddisfatte si può ricorrere ad una alternativa non parametrica per

Dettagli

Il confronto fra medie

Il confronto fra medie L. Boni Obiettivo Verificare l'ipotesi che regimi alimentari differenti non producano mediamente lo stesso effetto sulla gittata cardiaca Ipotesi nulla IPOTESI NULLA La dieta non dovrebbe modificare in

Dettagli

Mann-Whitney esercizio 1 Non n esposti esposti

Mann-Whitney esercizio 1 Non n esposti esposti Mann-Whitney esercizio 1 L inalazione prolungata di ossido di cadmio riduce la concentrazione di emoglobina? E stata misurata la concentrazione di emoglobina in gr/dl in 15 soggetti esposti e 10 soggetti

Dettagli

Esercizi di statistica

Esercizi di statistica Esercizi di statistica Test a scelta multipla (la risposta corretta è la prima) [1] Il seguente campione è stato estratto da una popolazione distribuita normalmente: -.4, 5.5,, -.5, 1.1, 7.4, -1.8, -..

Dettagli

Università degli Studi di Padova. Corso di Laurea in Medicina e Chirurgia - A.A

Università degli Studi di Padova. Corso di Laurea in Medicina e Chirurgia - A.A Università degli Studi di Padova Corso di Laurea in Medicina e Chirurgia - A.A. 015-16 Corso Integrato: Statistica e Metodologia Epidemiologica Disciplina: Statistica e Metodologia Epidemiologica Docenti:

Dettagli

Statistica nelle applicazioni sanitarie

Statistica nelle applicazioni sanitarie Dipartimento di Fisica Scuola di Specializzazione in Fisica Medica A.A. 2012/2013 Statistica nelle applicazioni sanitarie Maria Roberta Monge: [email protected] Test parametrici e non parametrici

Dettagli

PROBABILITÀ ELEMENTARE

PROBABILITÀ ELEMENTARE Prefazione alla seconda edizione XI Capitolo 1 PROBABILITÀ ELEMENTARE 1 Esperimenti casuali 1 Spazi dei campioni 1 Eventi 2 Il concetto di probabilità 3 Gli assiomi della probabilità 3 Alcuni importanti

Dettagli

Università degli Studi Roma Tre Anno Accademico 2016/2017 ST410 Statistica 1

Università degli Studi Roma Tre Anno Accademico 2016/2017 ST410 Statistica 1 Università degli Studi Roma Tre Anno Accademico 2016/2017 ST410 Statistica 1 Lezione 1 - Mercoledì 28 Settembre 2016 Introduzione al corso. Richiami di probabilità: spazi di probabilità, variabili aleatorie,

Dettagli

Analisi della varianza

Analisi della varianza Università degli Studi di Padova Facoltà di Medicina e Chirurgia Facoltà di Medicina e Chirurgia - A.A. 2009-10 Scuole di specializzazione Lezioni comuni Disciplina: Statistica Docente: dott.ssa Egle PERISSINOTTO

Dettagli

Inferenza statistica Donata Rodi 04/10/2016

Inferenza statistica Donata Rodi 04/10/2016 Inferenza statistica Donata Rodi 04/10/2016 Popolazione Campionamento Campione Parametri Inferenza Statistiche µ, ϭ 2 descrittive Stima X, s 2 Quale test? Parametrico o no Scala di misura 1 gruppo 2 gruppi

Dettagli

Premessa: la dipendenza in media

Premessa: la dipendenza in media Premessa: la dipendenza in media Supponiamo di avere K diversi livelli di un fattore che potrebbero influire su una determinata variabile. Per esempio supponiamo di domandarci se la diversificazione (intesa

Dettagli

Inferenza statistica II parte

Inferenza statistica II parte Inferenza statistica II parte Marcella Montico Servizio di epidemiologia e biostatistica Test statistici II parte Variabili quantitative Caso 1 Variabile Dipendente = quantitativa Variabile Indipendente

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI I METODI PER IL CONFRONTO DI MEDIE (Campioni non indipendenti) Prof.ssa G. Serio, Prof. P. Trerotoli, Cattedra di Statistica Medica, Università di Bari

Dettagli

ESAME. 9 Gennaio 2017 COMPITO B

ESAME. 9 Gennaio 2017 COMPITO B ESAME 9 Gennaio 2017 COMPITO B Cognome Nome Numero di matricola 1) Approssimare tutti i calcoli alla quarta cifra decimale. 2) Ai fini della valutazione si terrà conto solo ed esclusivamente di quanto

Dettagli

Esercitazione 5 del corso di Statistica 2 Prof. Domenico Vistocco

Esercitazione 5 del corso di Statistica 2 Prof. Domenico Vistocco Esercitazione del corso di Statistica Prof. Domenico Vistocco Alfonso Iodice D Enza May 30, 007 1 Esercizio Si consideri una popolazione caratterizzata dai numeri, 3, 6, 8, 11. Si considerino tutti i possibili

Dettagli

tabelle grafici misure di

tabelle grafici misure di Statistica Descrittiva descrivere e riassumere un insieme di dati in maniera ordinata tabelle grafici misure di posizione dispersione associazione Misure di posizione Forniscono indicazioni sull ordine

Dettagli

Teoria e tecniche dei test. Concetti di base

Teoria e tecniche dei test. Concetti di base Teoria e tecniche dei test Lezione 2 2013/14 ALCUNE NOZIONI STATITICHE DI BASE Concetti di base Campione e popolazione (1) La popolazione è l insieme di individui o oggetti che si vogliono studiare. Questi

Dettagli

Tipi di variabili. Indici di tendenza centrale e di dispersione

Tipi di variabili. Indici di tendenza centrale e di dispersione Tipi di variabili. Indici di tendenza centrale e di dispersione L. Boni Variabile casuale In teoria della probabilità, una variabile casuale (o variabile aleatoria o variabile stocastica o random variable)

Dettagli

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 15: Metodi non parametrici

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 15: Metodi non parametrici Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 15: Metodi non parametrici 1 Metodi non parametrici Statistica classica La misurazione avviene con

Dettagli

ESERCIZI DI STATISTICA SOCIALE

ESERCIZI DI STATISTICA SOCIALE ESERCIZI DI STATISTICA SOCIALE FREQUENZA ASSOLUTA Data una distribuzione semplice di dati, ovvero una serie di microdati, si chiama frequenza assoluta di ogni modalità del carattere studiato il numero

Dettagli

Test non parametrici. Federico Plazzi. 19 Novembre 2015

Test non parametrici. Federico Plazzi. 19 Novembre 2015 Test non parametrici Federico Plazzi 19 Novembre 2015 Cos è un test non parametrico? Cos è un test non parametrico? Idea di base Distribuzione normale: è governata solo dalla sua media e dalla sua deviazione

Dettagli

COGNOME.NOME...MATR..

COGNOME.NOME...MATR.. STATISTICA 29.01.15 - PROVA GENERALE (CHALLENGE) Modalità A (A) ai fini della valutazione verranno considerate solo le risposte riportate dallo studente negli appositi riquadri bianchi: in caso di necessità

Dettagli

standardizzazione dei punteggi di un test

standardizzazione dei punteggi di un test DIAGNOSTICA PSICOLOGICA lezione! Paola Magnano [email protected] standardizzazione dei punteggi di un test serve a dare significato ai punteggi che una persona ottiene ad un test, confrontando la

Dettagli

Analisi della varianza

Analisi della varianza Analisi della varianza Prof. Giuseppe Verlato Sezione di Epidemiologia e Statistica Medica, Università di Verona ANALISI DELLA VARIANZA - 1 Abbiamo k gruppi, con un numero variabile di unità statistiche.

Dettagli

BLAND-ALTMAN PLOT. + X 2i 2 la differenza ( d ) tra le due misure per ognuno degli n campioni; d i. X i. = X 1i. X 2i

BLAND-ALTMAN PLOT. + X 2i 2 la differenza ( d ) tra le due misure per ognuno degli n campioni; d i. X i. = X 1i. X 2i BLAND-ALTMAN PLOT Il metodo di J. M. Bland e D. G. Altman è finalizzato alla verifica se due tecniche di misura sono comparabili. Resta da comprendere cosa si intenda con il termine metodi comparabili

Dettagli

Analisi della varianza

Analisi della varianza 1. 2. univariata ad un solo fattore tra i soggetti (between subjects) 3. univariata: disegni fattoriali 4. univariata entro i soggetti (within subjects) 5. : disegni fattoriali «misti» L analisi della

Dettagli

Statistica applicata alla ricerca scientifica. Antonio Di Matteo Università Federico II

Statistica applicata alla ricerca scientifica. Antonio Di Matteo Università Federico II Statistica applicata alla ricerca scientifica Antonio Di Matteo Università Federico II Modulo 3 Variabili continue e metodi non parametrici I test non parametrici Quando la forma della distribuzione dei

Dettagli

DESCRITTIVE, TEST T PER IL CONFRONTO DELLE MEDIE DI CAMPIONI INDIPENDENTI.

DESCRITTIVE, TEST T PER IL CONFRONTO DELLE MEDIE DI CAMPIONI INDIPENDENTI. Corso di Laurea Specialistica in Biologia Sanitaria, Universita' di Padova C.I. di Metodi statistici per la Biologia, Informatica e Laboratorio di Informatica (Mod. B) Docente: Dr. Stefania Bortoluzzi

Dettagli

INDICATORI DI TENDENZA CENTRALE

INDICATORI DI TENDENZA CENTRALE Psicometria (8 CFU) Corso di laurea triennale INDICATORI DI TENDENZA CENTRALE Torna alla pri ma pagina INDICATORI DI TENDENZA CENTRALE Consentono di sintetizzare un insieme di misure tramite un unico valore

Dettagli

1.1 Obiettivi della statistica Struttura del testo 2

1.1 Obiettivi della statistica Struttura del testo 2 Prefazione XV 1 Introduzione 1.1 Obiettivi della statistica 1 1.2 Struttura del testo 2 2 Distribuzioni di frequenza 2.1 Informazione statistica e rilevazione dei dati 5 2.2 Distribuzioni di frequenza

Dettagli

N.B. Per la risoluzione dei seguenti esercizi, si fa riferimento alle Tabelle riportate alla fine del documento.

N.B. Per la risoluzione dei seguenti esercizi, si fa riferimento alle Tabelle riportate alla fine del documento. N.B. Per la risoluzione dei seguenti esercizi, si fa riferimento alle Tabelle riportate alla fine del documento. Esercizio 1 Un chimico che lavora per una fabbrica di batterie, sta cercando una batteria

Dettagli

SCHEDA DIDATTICA N 7

SCHEDA DIDATTICA N 7 FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA CIVILE CORSO DI IDROLOGIA PROF. PASQUALE VERSACE SCHEDA DIDATTICA N 7 LA DISTRIBUZIONE NORMALE A.A. 01-13 La distribuzione NORMALE Uno dei più importanti

Dettagli

Scale di Misurazione Lezione 2

Scale di Misurazione Lezione 2 Last updated April 26, 2016 Scale di Misurazione Lezione 2 G. Bacaro Statistica CdL in Scienze e Tecnologie per l'ambiente e la Natura II anno, II semestre Tipi di Variabili 1 Scale di Misurazione 1. Variabile

Dettagli

Esercitazione: La distribuzione NORMALE

Esercitazione: La distribuzione NORMALE Esercitazione: La distribuzione NORMALE Uno dei più importanti esempi di distribuzione di probabilità continua è dato dalla distribuzione Normale (curva normale o distribuzione Gaussiana); è una delle

Dettagli

Confronto tra più di due campioni

Confronto tra più di due campioni Confronto tra più di due campioni La matrice dei dati Quando si esaminano più di due popolazioni, le informazioni sono u- sualmente organizzate sotto forma di matrice.,,, n ( ω ω ω ) 1 2 Pino, Maria,,Giacomo

Dettagli

Statistica Elementare

Statistica Elementare Statistica Elementare 1. Frequenza assoluta Per popolazione si intende l insieme degli elementi che sono oggetto di una indagine statistica, ovvero l insieme delle unità, dette unità statistiche o individui

Dettagli

Contenuti: Capitolo 14 del libro di testo

Contenuti: Capitolo 14 del libro di testo Test d Ipotesi / TIPICI PROBLEMI DI VERIFICA DI IPOTESI SONO Test per la media Test per una proporzione Test per la varianza Test per due campioni indipendenti Test di indipendenza Contenuti Capitolo 4

Dettagli

Verifica delle ipotesi

Verifica delle ipotesi Statistica inferenziale Stima dei parametri Verifica delle ipotesi Concetti fondamentali POPOLAZIONE o UNIVERSO Insieme degli elementi cui si rivolge il ricercatore per la sua indagine CAMPIONE Un sottoinsieme

Dettagli

INDICATORI DI TENDENZA CENTRALE

INDICATORI DI TENDENZA CENTRALE INDICATORI DI TENDENZA CENTRALE INDICATORI DI TENDENZA CENTRALE Consentono di sintetizzare un insieme di misure tramite un unico valore rappresentativo indice che riassume o descrive i dati e dipende dalla

Dettagli

Confronto tra due popolazioni Lezione 6

Confronto tra due popolazioni Lezione 6 Last updated May 9, 06 Confronto tra due popolazioni Lezione 6 G. Bacaro Statistica CdL in Scienze e Tecnologie per l'ambiente e la Natura I anno, II semestre Concetti visti nell ultima lezione Le media

Dettagli

Prova scritta di Statistica

Prova scritta di Statistica Prova scritta di Statistica 5 Febbraio 2016 1. Da un indagine riguardante l utilizzo del telefono cellulare si sono ottenuti i seguenti risultati: Età No.telefonini Chiamate Spesa sett. Bluetooth 20 2

Dettagli

Prof. Anna Paola Ercolani (Università di Roma) Lez Indicatori di tendenza centrale

Prof. Anna Paola Ercolani (Università di Roma) Lez Indicatori di tendenza centrale INDICATORI DI TENDENZA CENTRALE Consentono di sintetizzare un insieme di misure tramite un unico valore rappresentativo indice che riassume o descrive i dati e dipende dalla scala di misura dei dati in

Dettagli

Il campionamento e l inferenza. Il campionamento e l inferenza

Il campionamento e l inferenza. Il campionamento e l inferenza Il campionamento e l inferenza Popolazione Campione Dai dati osservati mediante scelta campionaria si giunge ad affermazioni che riguardano la popolazione da cui essi sono stati prescelti Il campionamento

Dettagli

Il coefficiente di correlazione di Spearman per ranghi

Il coefficiente di correlazione di Spearman per ranghi Il coefficiente di correlazione di Spearman per ranghi Questo indice di correlazione non parametrico viene indicato con r s o Spearman rho e permette di valutare la forza del rapporto tra due variabili

Dettagli

N.B. Per la risoluzione dei seguenti esercizi, si fa riferimento alle Tabelle riportate alla fine del documento.

N.B. Per la risoluzione dei seguenti esercizi, si fa riferimento alle Tabelle riportate alla fine del documento. N.B. Per la risoluzione dei seguenti esercizi, si fa riferimento alle abelle riportate alla fine del documento. Esercizio 1 La concentrazione media di sostanze inquinanti osservata nelle acque di un fiume

Dettagli

MISURE DI SINTESI 54

MISURE DI SINTESI 54 MISURE DI SINTESI 54 MISURE DESCRITTIVE DI SINTESI 1. MISURE DI TENDENZA CENTRALE 2. MISURE DI VARIABILITÀ 30 0 µ Le due distribuzioni hanno uguale tendenza centrale, ma diversa variabilità. 30 0 Le due

Dettagli

Capitolo 10. Test basati su due campioni e ANOVA a una via. Statistica II ed. Levine, Krehbiel, Berenson Apogeo

Capitolo 10. Test basati su due campioni e ANOVA a una via. Statistica II ed. Levine, Krehbiel, Berenson Apogeo Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 10 Test basati su due campioni e ANOVA a una via Insegnamento: Statistica Applicata Corsi di Laurea in "Scienze e tecnologie Alimentari"

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale a) L Intervallo di Confidenza b) La distribuzione t di Student c) La differenza delle medie d) L intervallo di confidenza della differenza Prof Paolo Chiodini Dalla Popolazione

Dettagli

INDICATORI DI TENDENZA CENTRALE

INDICATORI DI TENDENZA CENTRALE INDICATORI DI TENDENZA CENTRALE INDICATORI DI TENDENZA CENTRALE Consentono di sintetizzare un insieme di misure tramite un unico valore rappresentativo è indice che riassume o descrive i dati e dipende

Dettagli

Σ (x i - x) 2 = Σ x i 2 - (Σ x i ) 2 / n Σ (y i - y) 2 = Σ y i 2 - (Σ y i ) 2 / n. 13. Regressione lineare parametrica

Σ (x i - x) 2 = Σ x i 2 - (Σ x i ) 2 / n Σ (y i - y) 2 = Σ y i 2 - (Σ y i ) 2 / n. 13. Regressione lineare parametrica 13. Regressione lineare parametrica Esistono numerose occasioni nelle quali quello che interessa è ricostruire la relazione di funzione che lega due variabili, la variabile y (variabile dipendente, in

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 13-Il t-test per campioni indipendenti vers. 1.1 (12 novembre 2014) Germano Rossi 1 [email protected] 1 Dipartimento di Psicologia, Università di

Dettagli

Capitolo 10. Test basati su due campioni e ANOVA a una via. Statistica II ed. Levine, Krehbiel, Berenson. Casa editrice: Pearson

Capitolo 10. Test basati su due campioni e ANOVA a una via. Statistica II ed. Levine, Krehbiel, Berenson. Casa editrice: Pearson Levine, Krehbiel, Berenson Statistica II ed. Casa editrice: Pearson Capitolo 10 Test basati su due campioni e ANOVA a una via Insegnamento: Statistica Corsi di Laurea Triennale in Economia Dipartimento

Dettagli

Statistica. POPOLAZIONE: serie di dati, che rappresenta linsieme che si vuole indagare (reali, sperimentali, matematici)

Statistica. POPOLAZIONE: serie di dati, che rappresenta linsieme che si vuole indagare (reali, sperimentali, matematici) Statistica La statistica può essere vista come la scienza che organizza ed analizza dati numerici per fini descrittivi o per permettere di prendere delle decisioni e fare previsioni. Statistica descrittiva:

Dettagli

Prof. Anna Paola Ercolani (Università di Roma) Lez Indicatori di dispersione

Prof. Anna Paola Ercolani (Università di Roma) Lez Indicatori di dispersione Consentono di descrivere la variabilità all interno della distribuzione di requenza tramite un unico valore che ne sintetizza le caratteristiche CAMPO DI VARIAZIONE DIFFERENZA INTERQUARTILE SCOSTAMENTO

Dettagli

Statistica Descrittiva Soluzioni 6. Indici di variabilità, asimmetria e curtosi

Statistica Descrittiva Soluzioni 6. Indici di variabilità, asimmetria e curtosi ISTITUZIONI DI STATISTICA A A 2007/2008 Marco Minozzo e Annamaria Guolo Laurea in Economia del Commercio Internazionale Laurea in Economia e Amministrazione delle Imprese Università degli Studi di Verona

Dettagli

Indice. Prefazione. 4 Sintesi della distribuzione di un carattere La variabilità Introduzione La variabilità di una distribuzione 75

Indice. Prefazione. 4 Sintesi della distribuzione di un carattere La variabilità Introduzione La variabilità di una distribuzione 75 00PrPag:I-XIV_prefazione_IAS 8-05-2008 17:56 Pagina V Prefazione XI 1 La rilevazione dei fenomeni statistici 1 1.1 Introduzione 1 1.2 Caratteri, unità statistiche e collettivo 1 1.3 Classificazione dei

Dettagli

Indicatori compositi. Dott. Cazzaniga Paolo. Dip. di Scienze Umane e Sociali

Indicatori compositi. Dott. Cazzaniga Paolo. Dip. di Scienze Umane e Sociali Dip. di Scienze Umane e Sociali [email protected] Indicatori [1/4] Gli indicatori: sintetizzano le caratteristiche di un fenomeno colgono aspetti e problemi del fenomeno che non hanno una immediata

Dettagli

Campionamento La statistica media campionaria e la sua distribuzione. Paola Giacomello Dip. Scienze Sociali ed Economiche Uniroma1

Campionamento La statistica media campionaria e la sua distribuzione. Paola Giacomello Dip. Scienze Sociali ed Economiche Uniroma1 Campionamento La statistica media campionaria e la sua distribuzione 1 Definisco il problema da studiare: es. tempo di percorrenza tra abitazione e università Carattere: tempo ossia v.s. continua Popolazione:

Dettagli

Misure di dispersione (o di variabilità)

Misure di dispersione (o di variabilità) 08/04/014 Misure di dispersione (o di variabilità) Range Distanza interquartile Deviazione standard Coefficiente di variazione Misure di dispersione 7 8 9 30 31 9 18 3 45 50 x 9 range31-74 x 9 range50-941

Dettagli

Distribuzioni campionarie. Antonello Maruotti

Distribuzioni campionarie. Antonello Maruotti Distribuzioni campionarie Antonello Maruotti Outline 1 Introduzione 2 Concetti base Si riprendano le considerazioni fatte nella parte di statistica descrittiva. Si vuole studiare una popolazione con riferimento

Dettagli

Esame di Statistica (10 o 12 CFU) CLEF 11 febbraio 2016

Esame di Statistica (10 o 12 CFU) CLEF 11 febbraio 2016 Esame di Statistica 0 o CFU) CLEF febbraio 06 Esercizio Si considerino i seguenti dati, relativi a 00 clienti di una banca a cui è stato concesso un prestito, classificati per età e per esito dell operazione

Dettagli

Statistica di base per l analisi socio-economica

Statistica di base per l analisi socio-economica Laurea Magistrale in Management e comunicazione d impresa Statistica di base per l analisi socio-economica Giovanni Di Bartolomeo [email protected] Definizioni di base Una popolazione è l insieme

Dettagli