TEST NON PARAMETRICO DI MANN-WHITNEY
|
|
|
- Edmondo Capone
- 9 anni fa
- Visualizzazioni
Transcript
1 TEST NON PARAMETRICO DI MANN-WHITNEY Questo test viene può essere utilizzato come test di confronto tra due campioni in maniera analoga ai test ipotesi parametrici di confronto medie (test Z se la varianza è nota ed il test t di Student se la varianza non è nota). Il test di Mann-Whitney si applica solitamente quando le assunzioni per effettuare il test parametrico non sono soddisfatte, ovvero quando entrambe le condizioni 1 e 2 sono presenti: 1) le distribuzione della variabile oggetto di studio non è normale 2) le dimensioni campionarie sono ridotte ( n < di 30 casi in almeno un campione).
2 Density var Shapiro-Wilk W test for normal data Variable Obs W V z Prob>z var Esempio di variabile distribuita non normalmente con forte asimmetria positiva e n numero di casi < 30 ( 26 casi), Nelle condizioni (1+2) è possibile analizzare i dati con questa procedura che valuta ipotesi di confronto sulla mediana dei due campioni ed utilizza i ranghi delle osservazioni. Il test mann-whitney utilizzando i ranghi ed è più informativo e completo del test semplice della mediana che valuta solo il numero di casi sopra o sotto questa misura di posizione.
3 Le assunzioni che sottostanno il test sono ridotte rispetto ai test parametrici ( Z e t): i due campioni di dimensione n ed m sono casuali ed indipendenti la scala di misurazione è almeno ordinale la variabile di interesse è continua (anche se misurata sulla scala ordinale) Le ipotesi considerate dal test di Mann-Whitney: H0: le due popolazioni da cui sono estratti i campioni hanno mediana uguale. HA: la mediana della popolazione 1 è maggiore della mediana della pop 2 (test unidirezionale con valori di rifiuto della statistica test maggiori del valore critico)
4 Oppure HA: la mediana della popolazione 1 è minore della mediana della pop 2 (test unidirezionale con valori di rifiuto della statistica test minori del valore critico) Oppure HA: la mediana della popolazione 1 è diversa della mediana della pop 2 (test bidirezionale con valori di rifiuto della statistica test minori o maggiori dei 2 valori critici: minori di U alfa/2, o maggiori di +U alfa/2). Procedura: 1) E necessario ordinare i dati in maniera crescente, tenendo separati i due campioni (campione X e campione Y) di provenienza, che hanno un numero n (del campione X) ed m (del campione Y) di osservazioni. E opportuno che le due serie di valori siano riportate in colonna lasciando uno spazio accanto alla prima serie e che si lasci uno o più spazi nella elencazione dei valori della serie x (ed y rispettivamente) quando il valore successivo della elencazione sia quello della serie d confronto. Vedi esempio.
5 2) Quindi si assegnano i ranghi (vedi procedura specifica dispensa 1 trasformazione scala ranghi) che tiene conto anche dei ties, ovvero valori uguali a i quali viene attribuito il valor medio del rango. 3) La statistica viene quindi semplicemente calcolata come segue: n( n + 1) U = S - 2 Dove n è la dimensione campionaria del campione usato come riferimento (uno dei due campioni, ad es. campione X) ed S la somma dei ranghi specifica dello stesso campione. A seconda delle ipotesi del test il valore di U viene confrontato con il valore critico della tabella specifica per un alfa (es. alfa= 0.05) ed un numero n ed m di osservazioni.
6 Caso HA: Mx < My La mediana del campione x è minore di quella del campione Y Si rifiuta H0 se il valore calcolato di U risulta minore del valore U critico riportato nella tabella per n, m ed alfa specificato Caso HA: Mx > My La mediana del campione x è maggiore di quella del campione Y Si rifiuta H0 se il valore calcolato di U risulta maggiore del valore U critico riportato nella tabella per n m ed alfa specificato Caso HA: Mx My La mediana del campione x diversa della mediana del campione Y Si rifiuta H0 se il valore calcolato di U risulta rispettivamente maggiore del valore +U critico alfa/2 o minore del valore - U critico alfa/2 riportato nella tabella per n m ed alfa specificato
7 Se i campioni sono più grandi (in questo caso valutare la possibilità di effettuare un t test) ovvero quando n o m sono > di 20 è possibile ricorrere ad una valutazione della statistica ricorrendo ai valori della distribuzione normale standardizzata Z come segue: U mn / 2 z= nm( n + m + 1) / 12
8 Esempio dati da analizzare Valori variabile nel Campione X Valori variabile nel Campione Y n Esempio ordinamento dati ed assegnazione ranghi Valori variabile ordinati nel Campione X Rango Campione X Valori variabile ordinati nel Campione Y Rango Campione Y n somma ranghi S= 41 ranghi S= 50
9
R 2 1 j /n j] 3(n+1)
L ANALISI DELLA VARIANZA A RANGHI AD UNA VIA DI KRUSKAL-WALLIS Quando le assunzioni per l analisi della varianza parametrica non sono soddisfatte si può ricorrere ad una alternativa non parametrica per
Il confronto fra medie
L. Boni Obiettivo Verificare l'ipotesi che regimi alimentari differenti non producano mediamente lo stesso effetto sulla gittata cardiaca Ipotesi nulla IPOTESI NULLA La dieta non dovrebbe modificare in
Mann-Whitney esercizio 1 Non n esposti esposti
Mann-Whitney esercizio 1 L inalazione prolungata di ossido di cadmio riduce la concentrazione di emoglobina? E stata misurata la concentrazione di emoglobina in gr/dl in 15 soggetti esposti e 10 soggetti
Esercizi di statistica
Esercizi di statistica Test a scelta multipla (la risposta corretta è la prima) [1] Il seguente campione è stato estratto da una popolazione distribuita normalmente: -.4, 5.5,, -.5, 1.1, 7.4, -1.8, -..
Università degli Studi di Padova. Corso di Laurea in Medicina e Chirurgia - A.A
Università degli Studi di Padova Corso di Laurea in Medicina e Chirurgia - A.A. 015-16 Corso Integrato: Statistica e Metodologia Epidemiologica Disciplina: Statistica e Metodologia Epidemiologica Docenti:
Statistica nelle applicazioni sanitarie
Dipartimento di Fisica Scuola di Specializzazione in Fisica Medica A.A. 2012/2013 Statistica nelle applicazioni sanitarie Maria Roberta Monge: [email protected] Test parametrici e non parametrici
PROBABILITÀ ELEMENTARE
Prefazione alla seconda edizione XI Capitolo 1 PROBABILITÀ ELEMENTARE 1 Esperimenti casuali 1 Spazi dei campioni 1 Eventi 2 Il concetto di probabilità 3 Gli assiomi della probabilità 3 Alcuni importanti
Università degli Studi Roma Tre Anno Accademico 2016/2017 ST410 Statistica 1
Università degli Studi Roma Tre Anno Accademico 2016/2017 ST410 Statistica 1 Lezione 1 - Mercoledì 28 Settembre 2016 Introduzione al corso. Richiami di probabilità: spazi di probabilità, variabili aleatorie,
Analisi della varianza
Università degli Studi di Padova Facoltà di Medicina e Chirurgia Facoltà di Medicina e Chirurgia - A.A. 2009-10 Scuole di specializzazione Lezioni comuni Disciplina: Statistica Docente: dott.ssa Egle PERISSINOTTO
Inferenza statistica Donata Rodi 04/10/2016
Inferenza statistica Donata Rodi 04/10/2016 Popolazione Campionamento Campione Parametri Inferenza Statistiche µ, ϭ 2 descrittive Stima X, s 2 Quale test? Parametrico o no Scala di misura 1 gruppo 2 gruppi
Premessa: la dipendenza in media
Premessa: la dipendenza in media Supponiamo di avere K diversi livelli di un fattore che potrebbero influire su una determinata variabile. Per esempio supponiamo di domandarci se la diversificazione (intesa
Inferenza statistica II parte
Inferenza statistica II parte Marcella Montico Servizio di epidemiologia e biostatistica Test statistici II parte Variabili quantitative Caso 1 Variabile Dipendente = quantitativa Variabile Indipendente
NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI
NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI I METODI PER IL CONFRONTO DI MEDIE (Campioni non indipendenti) Prof.ssa G. Serio, Prof. P. Trerotoli, Cattedra di Statistica Medica, Università di Bari
ESAME. 9 Gennaio 2017 COMPITO B
ESAME 9 Gennaio 2017 COMPITO B Cognome Nome Numero di matricola 1) Approssimare tutti i calcoli alla quarta cifra decimale. 2) Ai fini della valutazione si terrà conto solo ed esclusivamente di quanto
Esercitazione 5 del corso di Statistica 2 Prof. Domenico Vistocco
Esercitazione del corso di Statistica Prof. Domenico Vistocco Alfonso Iodice D Enza May 30, 007 1 Esercizio Si consideri una popolazione caratterizzata dai numeri, 3, 6, 8, 11. Si considerino tutti i possibili
tabelle grafici misure di
Statistica Descrittiva descrivere e riassumere un insieme di dati in maniera ordinata tabelle grafici misure di posizione dispersione associazione Misure di posizione Forniscono indicazioni sull ordine
Teoria e tecniche dei test. Concetti di base
Teoria e tecniche dei test Lezione 2 2013/14 ALCUNE NOZIONI STATITICHE DI BASE Concetti di base Campione e popolazione (1) La popolazione è l insieme di individui o oggetti che si vogliono studiare. Questi
Tipi di variabili. Indici di tendenza centrale e di dispersione
Tipi di variabili. Indici di tendenza centrale e di dispersione L. Boni Variabile casuale In teoria della probabilità, una variabile casuale (o variabile aleatoria o variabile stocastica o random variable)
Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 15: Metodi non parametrici
Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 15: Metodi non parametrici 1 Metodi non parametrici Statistica classica La misurazione avviene con
ESERCIZI DI STATISTICA SOCIALE
ESERCIZI DI STATISTICA SOCIALE FREQUENZA ASSOLUTA Data una distribuzione semplice di dati, ovvero una serie di microdati, si chiama frequenza assoluta di ogni modalità del carattere studiato il numero
Test non parametrici. Federico Plazzi. 19 Novembre 2015
Test non parametrici Federico Plazzi 19 Novembre 2015 Cos è un test non parametrico? Cos è un test non parametrico? Idea di base Distribuzione normale: è governata solo dalla sua media e dalla sua deviazione
COGNOME.NOME...MATR..
STATISTICA 29.01.15 - PROVA GENERALE (CHALLENGE) Modalità A (A) ai fini della valutazione verranno considerate solo le risposte riportate dallo studente negli appositi riquadri bianchi: in caso di necessità
standardizzazione dei punteggi di un test
DIAGNOSTICA PSICOLOGICA lezione! Paola Magnano [email protected] standardizzazione dei punteggi di un test serve a dare significato ai punteggi che una persona ottiene ad un test, confrontando la
Analisi della varianza
Analisi della varianza Prof. Giuseppe Verlato Sezione di Epidemiologia e Statistica Medica, Università di Verona ANALISI DELLA VARIANZA - 1 Abbiamo k gruppi, con un numero variabile di unità statistiche.
BLAND-ALTMAN PLOT. + X 2i 2 la differenza ( d ) tra le due misure per ognuno degli n campioni; d i. X i. = X 1i. X 2i
BLAND-ALTMAN PLOT Il metodo di J. M. Bland e D. G. Altman è finalizzato alla verifica se due tecniche di misura sono comparabili. Resta da comprendere cosa si intenda con il termine metodi comparabili
Analisi della varianza
1. 2. univariata ad un solo fattore tra i soggetti (between subjects) 3. univariata: disegni fattoriali 4. univariata entro i soggetti (within subjects) 5. : disegni fattoriali «misti» L analisi della
Statistica applicata alla ricerca scientifica. Antonio Di Matteo Università Federico II
Statistica applicata alla ricerca scientifica Antonio Di Matteo Università Federico II Modulo 3 Variabili continue e metodi non parametrici I test non parametrici Quando la forma della distribuzione dei
DESCRITTIVE, TEST T PER IL CONFRONTO DELLE MEDIE DI CAMPIONI INDIPENDENTI.
Corso di Laurea Specialistica in Biologia Sanitaria, Universita' di Padova C.I. di Metodi statistici per la Biologia, Informatica e Laboratorio di Informatica (Mod. B) Docente: Dr. Stefania Bortoluzzi
INDICATORI DI TENDENZA CENTRALE
Psicometria (8 CFU) Corso di laurea triennale INDICATORI DI TENDENZA CENTRALE Torna alla pri ma pagina INDICATORI DI TENDENZA CENTRALE Consentono di sintetizzare un insieme di misure tramite un unico valore
1.1 Obiettivi della statistica Struttura del testo 2
Prefazione XV 1 Introduzione 1.1 Obiettivi della statistica 1 1.2 Struttura del testo 2 2 Distribuzioni di frequenza 2.1 Informazione statistica e rilevazione dei dati 5 2.2 Distribuzioni di frequenza
N.B. Per la risoluzione dei seguenti esercizi, si fa riferimento alle Tabelle riportate alla fine del documento.
N.B. Per la risoluzione dei seguenti esercizi, si fa riferimento alle Tabelle riportate alla fine del documento. Esercizio 1 Un chimico che lavora per una fabbrica di batterie, sta cercando una batteria
SCHEDA DIDATTICA N 7
FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA CIVILE CORSO DI IDROLOGIA PROF. PASQUALE VERSACE SCHEDA DIDATTICA N 7 LA DISTRIBUZIONE NORMALE A.A. 01-13 La distribuzione NORMALE Uno dei più importanti
Scale di Misurazione Lezione 2
Last updated April 26, 2016 Scale di Misurazione Lezione 2 G. Bacaro Statistica CdL in Scienze e Tecnologie per l'ambiente e la Natura II anno, II semestre Tipi di Variabili 1 Scale di Misurazione 1. Variabile
Esercitazione: La distribuzione NORMALE
Esercitazione: La distribuzione NORMALE Uno dei più importanti esempi di distribuzione di probabilità continua è dato dalla distribuzione Normale (curva normale o distribuzione Gaussiana); è una delle
Confronto tra più di due campioni
Confronto tra più di due campioni La matrice dei dati Quando si esaminano più di due popolazioni, le informazioni sono u- sualmente organizzate sotto forma di matrice.,,, n ( ω ω ω ) 1 2 Pino, Maria,,Giacomo
Statistica Elementare
Statistica Elementare 1. Frequenza assoluta Per popolazione si intende l insieme degli elementi che sono oggetto di una indagine statistica, ovvero l insieme delle unità, dette unità statistiche o individui
Contenuti: Capitolo 14 del libro di testo
Test d Ipotesi / TIPICI PROBLEMI DI VERIFICA DI IPOTESI SONO Test per la media Test per una proporzione Test per la varianza Test per due campioni indipendenti Test di indipendenza Contenuti Capitolo 4
Verifica delle ipotesi
Statistica inferenziale Stima dei parametri Verifica delle ipotesi Concetti fondamentali POPOLAZIONE o UNIVERSO Insieme degli elementi cui si rivolge il ricercatore per la sua indagine CAMPIONE Un sottoinsieme
INDICATORI DI TENDENZA CENTRALE
INDICATORI DI TENDENZA CENTRALE INDICATORI DI TENDENZA CENTRALE Consentono di sintetizzare un insieme di misure tramite un unico valore rappresentativo indice che riassume o descrive i dati e dipende dalla
Confronto tra due popolazioni Lezione 6
Last updated May 9, 06 Confronto tra due popolazioni Lezione 6 G. Bacaro Statistica CdL in Scienze e Tecnologie per l'ambiente e la Natura I anno, II semestre Concetti visti nell ultima lezione Le media
Prova scritta di Statistica
Prova scritta di Statistica 5 Febbraio 2016 1. Da un indagine riguardante l utilizzo del telefono cellulare si sono ottenuti i seguenti risultati: Età No.telefonini Chiamate Spesa sett. Bluetooth 20 2
Prof. Anna Paola Ercolani (Università di Roma) Lez Indicatori di tendenza centrale
INDICATORI DI TENDENZA CENTRALE Consentono di sintetizzare un insieme di misure tramite un unico valore rappresentativo indice che riassume o descrive i dati e dipende dalla scala di misura dei dati in
Il campionamento e l inferenza. Il campionamento e l inferenza
Il campionamento e l inferenza Popolazione Campione Dai dati osservati mediante scelta campionaria si giunge ad affermazioni che riguardano la popolazione da cui essi sono stati prescelti Il campionamento
Il coefficiente di correlazione di Spearman per ranghi
Il coefficiente di correlazione di Spearman per ranghi Questo indice di correlazione non parametrico viene indicato con r s o Spearman rho e permette di valutare la forza del rapporto tra due variabili
N.B. Per la risoluzione dei seguenti esercizi, si fa riferimento alle Tabelle riportate alla fine del documento.
N.B. Per la risoluzione dei seguenti esercizi, si fa riferimento alle abelle riportate alla fine del documento. Esercizio 1 La concentrazione media di sostanze inquinanti osservata nelle acque di un fiume
MISURE DI SINTESI 54
MISURE DI SINTESI 54 MISURE DESCRITTIVE DI SINTESI 1. MISURE DI TENDENZA CENTRALE 2. MISURE DI VARIABILITÀ 30 0 µ Le due distribuzioni hanno uguale tendenza centrale, ma diversa variabilità. 30 0 Le due
Capitolo 10. Test basati su due campioni e ANOVA a una via. Statistica II ed. Levine, Krehbiel, Berenson Apogeo
Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 10 Test basati su due campioni e ANOVA a una via Insegnamento: Statistica Applicata Corsi di Laurea in "Scienze e tecnologie Alimentari"
Statistica Inferenziale
Statistica Inferenziale a) L Intervallo di Confidenza b) La distribuzione t di Student c) La differenza delle medie d) L intervallo di confidenza della differenza Prof Paolo Chiodini Dalla Popolazione
INDICATORI DI TENDENZA CENTRALE
INDICATORI DI TENDENZA CENTRALE INDICATORI DI TENDENZA CENTRALE Consentono di sintetizzare un insieme di misure tramite un unico valore rappresentativo è indice che riassume o descrive i dati e dipende
Σ (x i - x) 2 = Σ x i 2 - (Σ x i ) 2 / n Σ (y i - y) 2 = Σ y i 2 - (Σ y i ) 2 / n. 13. Regressione lineare parametrica
13. Regressione lineare parametrica Esistono numerose occasioni nelle quali quello che interessa è ricostruire la relazione di funzione che lega due variabili, la variabile y (variabile dipendente, in
Elementi di Psicometria con Laboratorio di SPSS 1
Elementi di Psicometria con Laboratorio di SPSS 1 13-Il t-test per campioni indipendenti vers. 1.1 (12 novembre 2014) Germano Rossi 1 [email protected] 1 Dipartimento di Psicologia, Università di
Capitolo 10. Test basati su due campioni e ANOVA a una via. Statistica II ed. Levine, Krehbiel, Berenson. Casa editrice: Pearson
Levine, Krehbiel, Berenson Statistica II ed. Casa editrice: Pearson Capitolo 10 Test basati su due campioni e ANOVA a una via Insegnamento: Statistica Corsi di Laurea Triennale in Economia Dipartimento
Statistica. POPOLAZIONE: serie di dati, che rappresenta linsieme che si vuole indagare (reali, sperimentali, matematici)
Statistica La statistica può essere vista come la scienza che organizza ed analizza dati numerici per fini descrittivi o per permettere di prendere delle decisioni e fare previsioni. Statistica descrittiva:
Prof. Anna Paola Ercolani (Università di Roma) Lez Indicatori di dispersione
Consentono di descrivere la variabilità all interno della distribuzione di requenza tramite un unico valore che ne sintetizza le caratteristiche CAMPO DI VARIAZIONE DIFFERENZA INTERQUARTILE SCOSTAMENTO
Statistica Descrittiva Soluzioni 6. Indici di variabilità, asimmetria e curtosi
ISTITUZIONI DI STATISTICA A A 2007/2008 Marco Minozzo e Annamaria Guolo Laurea in Economia del Commercio Internazionale Laurea in Economia e Amministrazione delle Imprese Università degli Studi di Verona
Indice. Prefazione. 4 Sintesi della distribuzione di un carattere La variabilità Introduzione La variabilità di una distribuzione 75
00PrPag:I-XIV_prefazione_IAS 8-05-2008 17:56 Pagina V Prefazione XI 1 La rilevazione dei fenomeni statistici 1 1.1 Introduzione 1 1.2 Caratteri, unità statistiche e collettivo 1 1.3 Classificazione dei
Indicatori compositi. Dott. Cazzaniga Paolo. Dip. di Scienze Umane e Sociali
Dip. di Scienze Umane e Sociali [email protected] Indicatori [1/4] Gli indicatori: sintetizzano le caratteristiche di un fenomeno colgono aspetti e problemi del fenomeno che non hanno una immediata
Campionamento La statistica media campionaria e la sua distribuzione. Paola Giacomello Dip. Scienze Sociali ed Economiche Uniroma1
Campionamento La statistica media campionaria e la sua distribuzione 1 Definisco il problema da studiare: es. tempo di percorrenza tra abitazione e università Carattere: tempo ossia v.s. continua Popolazione:
Misure di dispersione (o di variabilità)
08/04/014 Misure di dispersione (o di variabilità) Range Distanza interquartile Deviazione standard Coefficiente di variazione Misure di dispersione 7 8 9 30 31 9 18 3 45 50 x 9 range31-74 x 9 range50-941
Distribuzioni campionarie. Antonello Maruotti
Distribuzioni campionarie Antonello Maruotti Outline 1 Introduzione 2 Concetti base Si riprendano le considerazioni fatte nella parte di statistica descrittiva. Si vuole studiare una popolazione con riferimento
Esame di Statistica (10 o 12 CFU) CLEF 11 febbraio 2016
Esame di Statistica 0 o CFU) CLEF febbraio 06 Esercizio Si considerino i seguenti dati, relativi a 00 clienti di una banca a cui è stato concesso un prestito, classificati per età e per esito dell operazione
Statistica di base per l analisi socio-economica
Laurea Magistrale in Management e comunicazione d impresa Statistica di base per l analisi socio-economica Giovanni Di Bartolomeo [email protected] Definizioni di base Una popolazione è l insieme
