Sistemi numerici: numeri in virgola mobile Esercizi risolti
|
|
|
- Alice Annabella Pavone
- 9 anni fa
- Visualizzazioni
Transcript
1 Esercizi risolti 1 Esercizio Un numero relativo è rappresentato in virgola mobile secondo lo standard IEEE 754 su 32 bit nel seguente modo: s = 1 e = m = Ricavare il corrispondente valore decimale. Dato che: e = = Si ha: N = ( 1) s 2 (e 127) 1.m = = = = ( ) 10 = Esercizio Convertire i seguenti numeri decimali in virgola mobile in singola precisione secondo lo standard IEEE 754: c 2006 Politecnico di Torino 1
2 Procedendo in base alla definizione dello standard e indicando con N 10 in numero originale in base dieci s il segno del numero e l esponente del numero e r l esponente rappresentato in floating point m la mantissa della rappresentazione N FP il numero nella rappresentazione in floating point si ha: N 10 = = = e = 4 e r = = = m = = (con hidden bit) N FP = = C1BB N 10 = = = e = 6 e r = = = m = = (con hidden bit) N FP = = C2FE N 10 = = = s = + = 0 e = 7 e r = = 134 = m = = (conhiddenbit) N FP = = N 10 = = = e = 8 e r = = 135 = m = = (con hidden bit) N FP = = C c 2006 Politecnico di Torino 2
3 5. In questo caso il numero decimale possiede infinite cifre nella rappresentazione binaria. La conversione in binario può essere interrotta una volta ottenute 24 cifre totali (comprensive di parte intera e parte frazionaria, considerando il bit nascosto) oppure una volta ottenuta la precisione desiderata. 3 Esercizio N 10 = = = e = 1 e r = = 128 = m = = (con hidden bit) N FP = = C Siano dati i seguenti numeri binari in virgola mobile in singola precisione secondo lo standard IEEE 754, espressi in base sedici: 1. BE AA C301A C1FA Calcolare il corrispondente valore decimale. Procedendo in base alla definizione dello standard e utilizzando la stessa notazione adottata nell esercizio 2, si ha: 1. N FP = BE = m = (con hidden bit) = e r = = e = = 2 s = 1 = N 10 = = = ( )= c 2006 Politecnico di Torino 3
4 2. N FP = 438AA = m = (con hidden bit) = e r = = e = = 8 s = 0 = + N 10 = = = +( ) = N FP = C301A = m = (conhiddenbit) = e r = = e = = 7 s = 1 = N 10 = = = ( ) = N FP = C1FA = m = (con hidden bit) = e r = = e = = 4 s = 1 = N 10 = = = ( ) = Esercizio Sia dato un formato in virgola mobile definito come segue: 1bitdisegno E bit di esponente in modulo e segno M bit di mantissa in forma normalizzata con bit nascosto. Si voglia rappresentare in tale formato il numero N = con precisione pari a 1/5. Si determini il numero minimo di bit da assegnare all esponente e alla mantissa. Si rappresenti quindi il numero in tale formato. c 2006 Politecnico di Torino 4
5 Supponendo di rappresentare il numero conn cifre per la parte intera e m per la parte frazionaria, si ha che: n log 2 (266) =9 2 m m 5 m 3 Occorrono quindi 9 cifre per la parte intera e 3 per la parte frazionaria di cui uno nascosto, quindi occorrono 11 bit di mantissa. Dato che: : segue che: = = = N = = = L esponente pari a 8 richiede 5 bit per essere rappresentato in modulo e segno. La rappresentazione è la seguente: 5 Esercizio s = + = 0 e r = m = N = = Si debbano rappresentare dei numeri reali senza segno il cui valore assoluto sia sempre minore di e la precisione sia la maggiore possibile. Quanti bit si possono dedicare alla parte intera e quanti alla parte frazionaria se si adotta una rappresentazione in virgola fissa su 32 bit? Giustificare la risposta. c 2006 Politecnico di Torino 5
6 Dato che: = 2 21 econn bit si rappresentano i numeri N il cui valore V N ètaleche 0 V N 2 n 1 in virgola fissa la parte intera deve essere rappresentata su 21 bit e, di conseguenza, alla parte frazionaria possono essere dedicati 11 bit. 6 Esercizio Siano x 1 = e x 2 = numeri rappresentati in virgola mobile nel formato IEEE 754 a 32 bit. Quale sarà il valore di y = x 1 x 2 supponendo di effettuare tale operazione nella stessa notazione? Giustificare la risposta. Poiché: x 1 = = x 1 richiede 7+20 = 27 bit per essere rappresentato in virgola fissa. Poichè in virgola mobile su 32 bit si possono rappresentare solo 24 bit di mantissa, i valori x 1 e x 2 coincidono in tale rappresentazione. La loro differenza y risulterà quindi uguale a 0 essendo y ottenuto per differenza tra due valori identici. 7 Esercizio Se si esegue l operazione sulla carta, il risultato avrà 6cifre decimali. Se si opera mediante la rappresentazione in virgola mobile IEEE 754 su 32 bit, quante cifre decimali avrà il risultato? Si osservi che non è necessario effettuare le conversioni. Il prodotto della parte intera = = 2 12 può essere rappresentato su 13 bit. Nella rappresentazione in virgola mobile si dispone di 24 bit di mantissa. Se 13 vengono utilizzati per la parte intera, alla parte frazionaria possono essere dedicti i restanti 11 bit. Questi corrispondono a circa 11/3.3 = 3 cifre decimali. c 2006 Politecnico di Torino 6
7 8 Esercizio Quanti bit occorrono per rapprentare due milioni di miliardi in binario puro? Se la stessa grandezza si rappresentasse nella notazione in virgola mobile standard IEEE 754 su 32 bit, quale sarebbe l ordine di grandezza dell errore commesso? Dato che 2 milioni di miliardi = miliardi = sono necessari 51 bit per rappresentare tale grandezza in binario puro. Per esprimere un numero di 51 bit in virgola mobile, si deve avere esponente uguale a 2 50 e la mantissa pari a 1.xxxxx (con 1 = hidden bit, x =23bitdi mantissa = 0/1). Dato che l ultimo bit della mantissa ha peso (relativo) uguale a 2 23, il suo peso assoluto sarà paria che è anche l errore commesso = 2 27 = c 2006 Politecnico di Torino 7
Codifica. Rappresentazione di numeri in memoria
Codifica Rappresentazione di numeri in memoria Rappresentazione polinomiale dei numeri Un numero decimale si rappresenta in notazione polinomiale moltiplicando ciascuna cifra a sinistra della virgola per
Utilizzata per rappresentare numeri frazionari nella. numero =(mantissa) 2 esponente. Il formato piu utilizzato e quello IEEE P754, rappresentato
Rappresentazione in oating-point Utilizzata per rappresentare numeri frazionari nella notazione esponenziale: numero =(mantissa) 2 esponente Il formato piu utilizzato e quello IEEE P754, rappresentato
Fondamenti di Informatica - 1. Esercizi A.A. 2011/2012
Fondamenti di Informatica - 1 Esercizi A.A. 2011/2012 Esercizio Esercizio Esercizio Esercizio Esercizio Dato ilnumero 11000000111100000000000000000000 rappresentato secondo lo standard floating point IEEE
Esercizi su Sistemi di Numerazione Binaria. Prof. Riccardo Torlone Università di Roma Tre
Esercizi su Sistemi di Numerazione Binaria Prof. Riccardo Torlone Università di Roma Tre Esercizio 1 Si consideri una rappresentazione binaria in virgola mobile a 16 bit, di cui (nell'ordine da sinistra
Rappresentazione in virgola mobile Barbara Masucci
Architettura degli Elaboratori Rappresentazione in virgola mobile Barbara Masucci Punto della situazione Abbiamo visto le rappresentazioni dei numeri: Ø Sistema posizionale pesato per Ø Ø Interi positivi
12BHD - Informatica - soluzioni Appendice B del quaderno di testo - v. 1.05
Esercizio 1 Effettuare i seguenti cambiamenti di codifica su numeri naturali: 123 10 = x 2 [ 1111011 2 ] 011101 2 = x 10 [ 29 10 ] 23 10 = x 5 [ 43 5 ] 123 5 = x 10 [ 38 10 ] 123 10 = x H [ 7B 16 ] A1
Lezione 3. I numeri relativi
Lezione 3 L artimetcia binaria: i numeri relativi i numeri frazionari I numeri relativi Si possono rappresentare i numeri negativi in due modi con modulo e segno in complemento a 2 1 Modulo e segno Si
Esercitazione n. 5. Rappresentazione dei numeri
Esercitazione n. 5 Rappresentazione dei numeri dott. Carlo Todeschini [email protected] Politecnico di Milano A.A. 2009/2010 Queste slide sono distribuite con licenza Creative Commons Attribuzione-Non
Esempio: Il formato floating point standard IEEE P754 (precisione semplice)
Esempio: Il formato floating point standard IEEE P754 (precisione semplice) Mantissa: 23 bit, prima cifra sign. alla sx, hidden bit Esponente: 8 bit, eccesso 127 Formato: (8 bit) (23 bit) 31 30 22 0 S
Rappresentazione in virgola fissa. Rappresentazione in virgola mobile (floating point)
RAPPRESENTAZIONE DI NUMERI REALI 2 modalità Rappresentazione in virgola fissa Rappresentazione in virgola mobile (floating point) M. GIACOMIN - UNIVERSITA DI BRESCIA ESERCITAZIONI DI FONDAMENTI DI INFORMATICA
Rappresentazione di Numeri Reali. Rappresentazione in virgola fissa (fixed-point) Rappresentazione in virgola fissa (fixed-point)
Rappresentazione di Numeri Reali Un numero reale è una grandezza continua Può assumere infiniti valori In una rappresentazione di lunghezza limitata, deve di solito essere approssimato. Esistono due forme
Rappresentazione dei numeri reali in un calcolatore
Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri reali in un calcolatore Lezione 3 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione di numeri
Numeri in virgola mobile
Numeri in virgola mobile PH. 3.6 1 Motivazioni virgola mobile Rappresentazione in virgola fissa per rappresentare numeri frazionari fissando la posizione della virgola su una posizione prestabilita Le
CALCOLO NUMERICO. Rappresentazione virgola mobile (Floating Point)
ASA Marzo Docente Salvatore Mosaico Introduzione al Calcolo Numerico (parte ) CALCOLO NUMERICO Obiettivo del calcolo numerico è quello di fornire algoritmi numerici che, con un numero finito di operazioni
Fondamenti di Informatica - 1. Prof. B.Buttarazzi A.A. 2011/2012
Fondamenti di Informatica - 1 Prof. B.Buttarazzi A.A. 2011/2012 I numeri reali Sommario Conversione dei numeri reali da base 10 a base B Rappresentazione dei numeri reali Virgola fissa Virgola mobile (mantissa
Rappresentazione dei Numeri
Rappresentazione dei Numeri Rappresentazione dei Numeri Il sistema numerico binario è quello che meglio si adatta alle caratteristiche del calcolatore Il problema della rappresentazione consiste nel trovare
Esercizi. Soluzioni degli esercizi. Soluzioni degli esercizi. Soluzioni degli esercizi
Esercizi Convertire in formato decimale i seguenti numeri binari: 11, 101011, 1100, 111111, 10101010 Convertire in formato decimale i seguenti numeri ottali: 12, 23, 345, 333, 560 Convertire in formato
Numeri Frazionari. Numeri Frazionari
Numeri Frazionari Conversione da decimale a binario: si convertono separatamente parte intera e parte frazionaria per la parte intera si segue la procedura di conversione già vista; per la parte frazionaria
codifica in virgola mobile (floating point)
codifica in virgola mobile (floating point) Del tutto simile a cosiddetta notazione scientifica o esponenziale Per rappresentare in modo compatto numeri molto piccoli o molto grandi e.g. massa dell elettrone
Floating-point: mantissa La mantissa e codicata in modulo e segno su 24 bit, la mantissa e sempre normalizzata nella forma 1:XXXXX si rappresenta solo
Rappresentazione in oating-point Utilizzata per rappresentare numeri frazionari nella notazione esponenziale: numero =(mantissa) 2 esponente Il formato piu utilizzato e quello IEEE P754, rappresentato
Fondamenti di Informatica - 1. Prof. B.Buttarazzi A.A. 2011/2012
Fondamenti di Informatica - 1 Prof. B.Buttarazzi A.A. 2011/2012 Sommario Operazioni aritmetiche tra numeri in virgola mobile Algoritmi Esempi Errore di rappresentazione (assoluto e relativo) Approssimazione
Esercitazioni su rappresentazione dei numeri e aritmetica. Interi unsigned in base 2
Esercitazioni su rappresentazione dei numeri e aritmetica Salvatore Orlando & Marta Simeoni Interi unsigned in base 2 Si utilizza un alfabeto binario A = {0,1}, dove 0 corrisponde al numero zero, e 1 corrisponde
Sistemi di Numerazione Binaria
Sistemi di Numerazione Binaria BIN.1 Numeri e numerali Numero: entità astratta Numerale : stringa di caratteri che rappresenta un numero in un dato sistema di numerazione Lo stesso numero è rappresentato
modificato da andynaz Cambiamenti di base Tecniche Informatiche di Base
Cambiamenti di base Tecniche Informatiche di Base TIB 1 Il sistema posizionale decimale L idea del sistema posizionale: ogni cifra ha un peso Esempio: 132 = 100 + 30 + 2 = 1 10 2 + 3 10 1 + 2 10 0 Un numero
Rappresentazione numeri reali
Rappresentazione numeri reali I numeri reali rappresentabili in un calcolatore sono in realtà numeri razionali che approssimano i numeri reali con un certo grado di precisione Per rappresentare un numero
Conversione binario-decimale. Interi unsigned in base 2. Esercitazioni su rappresentazione. dei numeri e aritmetica
Esercitazioni su rappresentazione dei numeri e aritmetica Salvatore Orlando & Marta Simeoni Interi unsigned in base 2 I seguenti numeri naturali sono rappresentabili usando il numero di bit specificato?
1 Esercizio. 2 Esercizio
1 Esercizio Un numero relativo è rappresentato in virgola mobile secondo lo standard IEEE 754 su 32 bit nel seguente modo: s = 1 e = 10000111 m = 11011000000000000000000 Ricavare il corrispondente valore
Calcolatori Elettronici Parte II: Sistemi di Numerazione Binaria. Prof. Riccardo Torlone Università di Roma Tre
Calcolatori Elettronici Parte II: Sistemi di Numerazione Binaria Prof. Riccardo Torlone Università di Roma Tre Unità di misura Attenzione però, se stiamo parlando di memoria: n 1Byte = 8 bit n 1K (KiB:
Esercitazione i 1 Codifica e Rappresentazione dell Informazione Claudia Raibulet [email protected] Esercizio i 1 Convertire il numero decimale 99in binario i e poi questo in esadecimale. 99 10 =
Analogico vs. Digitale. LEZIONE II La codifica binaria. Analogico vs digitale. Analogico. Digitale
Analogico vs. Digitale LEZIONE II La codifica binaria Analogico Segnale che può assumere infiniti valori con continuità Digitale Segnale che può assumere solo valori discreti Analogico vs digitale Il computer
Sistemi di Numerazione Binaria
Sistemi di Numerazione Binaria NB.1 Numeri e numerali Numero: entità astratta Numerale : stringa di caratteri che rappresenta un numero in un dato sistema di numerazione Lo stesso numero è rappresentato
Lezione 4. Sommario. L artimetica binaria: I numeri relativi e frazionari. I numeri relativi I numeri frazionari
Lezione 4 L artimetica binaria: I numeri relativi e frazionari Sommario I numeri relativi I numeri frazionari I numeri in virgola fissa I numeri in virgola mobile 1 Cosa sono inumeri relativi? I numeri
Numeri binari Conversioni numeriche: decimali-binario Operazioni algebriche con numeri binari Russo ing. Saverio
Numeri binari Conversioni numeriche: decimali-binario Operazioni algebriche con numeri binari Russo ing. Saverio Arch. Elab. - S. Orlando 1 Il trionfo dello ZERO Il trionfo dello ZERO C era una volta un
Codice binario. Codice. Codifica - numeri naturali. Codifica - numeri naturali. Alfabeto binario: costituito da due simboli
Codice La relazione che associa ad ogni successione ben formata di simboli di un alfabeto il dato corrispondente è detta codice. Un codice mette quindi in relazione le successioni di simboli con il significato
ARCHITETTURE DI ELABORAZIONE. Correzione esercizi di esame
ARCHITETTURE DI ELABORAZIONE Correzione esercizi di esame 1 Prova di esame del 14 dicembre 2006 ESERCIZIO 1 Si considerino due notazioni binarie in virgola mobile a 16 bit, con (nell ordine da sinistra
Rappresentazione di dati: numerazione binaria. Appunti per la cl. 3 Di A cura del prof. Ing. Mario Catalano
Rappresentazione di dati: numerazione binaria Appunti per la cl. 3 Di A cura del prof. Ing. Mario Catalano Rappresentazione binaria Tutta l informazione interna ad un computer è codificata con sequenze
Somma di numeri binari
Fondamenti di Informatica: Codifica Binaria dell Informazione 1 Somma di numeri binari 0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 10 Esempio: 10011011 + 00101011 = 11000110 in base e una base Fondamenti di
Calcolo numerico e programmazione Rappresentazione dei numeri
Calcolo numerico e programmazione Rappresentazione dei numeri Tullio Facchinetti 16 marzo 2012 10:54 http://robot.unipv.it/toolleeo Rappresentazione dei numeri nei calcolatori
Semplificare la seguenti espressioni: a) [(A+ A)*(B*B)]+(A XOR A) + ( B XOR F) Soluzione: [ V * B ] + F + B B + B V
Esercizio 1 Semplificare le seguenti espressioni booleane, qualora il risultato finale sia DIVERSO da V, F, A, B, C, ma sia qualcosa di più complesso del tipo A+B, A xor B disegnare la tabella di verità
Laboratorio di Informatica
per chimica industriale e chimica applicata e ambientale ESERCITAZIONE 2 Uso dell accessorio calcolatrice e conversione di numeri 1 Uso dell accessorio calcolatrice per Passaggi fra basi diverse Aritmetica
Architetture degli Elaboratori I II Compito di Esonero (A) - 16/1/1997
1 II Compito di Esonero (A) - 16/1/1997 Non è ammessa la consultazione di nessun testo, nè l utilizzo di nessun tipo di calcolatrice. Ogni esercizio riporta, fra parentesi, il suo valore in trentesimi
La codifica binaria. Fondamenti di Informatica. Daniele Loiacono
La codifica binaria Fondamenti di Informatica Introduzione q Il calcolatore usa internamente una codifica binaria (0 e 1) per rappresentare: i dati da elaborare (numeri, testi, immagini, suoni, ) le istruzioni
La codifica. dell informazione
00010010101001110101010100010110101000011100010111 00010010101001110101010100010110101000011100010111 La codifica 00010010101001110101010100010110101000011100010111 dell informazione 00010010101001110101010100010110101000011100010111
Numeri frazionari. sistema posizionale. due modi: virgola fissa virgola mobile. posizionale, decimale
Numeri frazionari sistema posizionale due modi: virgola fissa virgola mobile posizionale, decimale 0,341=tre decimi più quattro centesimi più un millesimo cifre dopo la virgola: decimi centesimi millesimi
La codifica binaria. Informatica B. Daniele Loiacono
La codifica binaria Informatica B Introduzione Il calcolatore usa internamente una codifica binaria ( e ) per rappresentare: i dati da elaborare le istruzioni dei programmi eseguibili Fondamenti di codifica
LA CODIFICA DELL INFORMAZIONE. Introduzione ai sistemi informatici D. Sciuto, G. Buonanno, L. Mari, McGraw-Hill Cap.2
LA CODIFICA DELL INFORMAZIONE Introduzione ai sistemi informatici D. Sciuto, G. Buonanno, L. Mari, McGraw-Hill Cap.2 Codifica dati e istruzioni Per scrivere un programma è necessario rappresentare istruzioni
Fondamenti di Informatica. Codifiche per numeri decimali: virgola fissa e mobile
Corso di per il corso di Laurea di Ingegneria Meccanica Codifiche per numeri decimali: virgola fissa e mobile Università degli Studi di Udine - A.A. 2010-2011 Docente Ing. Sandro Di Giusto Ph.D. 1 Rappresentazioni
Esercitazione del 2/3/2010- Numeri binari e conversione
Esercitazione del 2/3/2010- Numeri binari e conversione 1. Conversione binario decimale a. 1101 2? 10 1 1 2 Base 2 La posizione della cifra all interno del numero indica il peso della cifra stessa, cioè
Calcolatori Elettronici Parte II: Sistemi di Numerazione Binaria. Prof. Riccardo Torlone Università di Roma Tre
Calcolatori Elettronici Parte II: Sistemi di Numerazione Binaria Prof. Riccardo Torlone Università di Roma Tre Unità di misura Attenzione però, se stiamo parlando di memoria: 1Byte = 8 bit 1K (KiB: KibiByte)
Numeri reali. Notazione scientifica (decimale) Floating Point. Normalizzazione. Esempi. Aritmetica del calcolatore (virgola mobile)
Numeri reali Aritmetica del calcolatore (virgola mobile) Capitolo 9 1 Numeri con frazioni Posso essere rappresentati anche in binario Es.: 1001.1010 = 2 4 + 2 0 +2-1 + 2-3 =9.625 Quante cifre dopo la virgola?
Conversione di base. Conversione decimale binario. Si calcolano i resti delle divisioni per due
Conversione di base Dato N>0 intero convertirlo in base b dividiamo N per b, otteniamo un quoto Q 0 ed un resto R 0 dividiamo Q 0 per b, otteniamo un quoto Q 1 ed un resto R 1 ripetiamo finché Q n < b
04 Aritmetica del calcolatore
Aritmetica del calcolatore Numeri a precisione finita - con un numero finito di cifre - non godono della proprietà di chiusura - le violazioni creano due situazioni distinte: - overflow - underflow Pagina
FONDAMENTI DI INFORMATICA. Prof. Alfredo Accattatis Slide (rielaborate) del prof. Emiliano Casalicchio
FONDAMENTI DI INFORMATICA Prof. Alfredo Accattatis Slide (rielaborate) del prof. Emiliano Casalicchio 2 Caratteri e codifica Un carattere in MATLAB è rappresentato usando le virgolette singole 'a', 'x',
Informatica. Rappresentazione dei numeri Numerazione binaria
Informatica Rappresentazione dei numeri Numerazione binaria Sistemi di numerazione Non posizionali: numerazione romana Posizionali: viene associato un peso a ciascuna posizione all interno della rappresentazione
Esercizi sulla rappresentazione dell informazione
Esercizi sulla rappresentazione dell informazione Esercizio 1A Trovare la rappresentazione binaria di 56,83 in virgola fissa quattro bit di precisione. Soluzione 1A: La rappresentazione binaria di 56,83
Rappresentazione. Notazione in complemento a 2. Complemento a due su 3 e 4 bit Complemento a due
Rappresentazione degli interi Notazione in complemento a 2 n bit per la notazione Nella realta n=32 Per comodita noi supponiamo n=4 Numeri positivi 0 si rappresenta con 4 zeri 0000 1 0001, 2 0010 e cosi
Rappresentazione e Codifica dell Informazione
Rappresentazione e Codifica dell Informazione Capitolo 1 Chianese, Moscato, Picariello, Alla scoperta dei fondamenti dell informatica un viaggio nel mondo dei BIT, Liguori editore. Sistema di numerazione
Aritmetica dei Calcolatori Elettronici
Aritmetica dei Calcolatori Elettronici Prof. Orazio Mirabella L informazione Analogica Segnale analogico: variabile continua assume un numero infinito di valori entro l intervallo di variazione intervallo
I sistemi di numerazione. Informatica - Classe 3ª, Modulo 1
I sistemi di numerazione Informatica - Classe 3ª, Modulo 1 1 La rappresentazione interna delle informazioni ELABORATORE = macchina binaria Informazione esterna Sequenza di bit Spett. Ditta Rossi Via Roma
