Caos e complessita in natura. Guido Boffetta Dipartimento di Fisica Generale Universita di Torino

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Caos e complessita in natura. Guido Boffetta Dipartimento di Fisica Generale Universita di Torino"

Transcript

1 Caos e complessita in natura Guido Boffetta Dipartimento di Fisica Generale Universita di Torino

2 Fisica e sistemi complessi La fisica si e sviluppata seguendo la linea riduzionista: lo studio di un fenomeno e riconducibile allo studio dei costituenti MOLECOLE Conseguenza: ATOMI NUCLEI QUARK? Attualmente conosciamo meglio il nucleo atomico che il moto turbolento dell acqua in un bicchiere Le equazioni della fluidodinamica viscosa sono note da 50 anni ma ancora una teoria completa della turbolenza non esiste. Sistemi complessi: il passaggio dalle equazioni costituenti alla fenomenologia non e ovvio

3 Fisica e predicibilita Una teoria fisica deve essere in grado di fare previsioni (esempio: astronomia) Per i sistemi complessi e difficile fare previsioni * Sistemi complicati (schedina totocalcio) L impredicibilita e dovuta al gran numero di cause in gioco che non riusciamo a controllare (non conosciamo le equazioni) * Sistemi caotici L impredicibilita e dovuta alla dinamica intrinsecamente instabile (conosciamo le equazioni, ma non basta)

4 PROPRIETA DEI SISTEMI CAOTICI SENSIBILITA ALLE CONDIZIONI INIZIALI (impredicibilita, effetto farfalla) ATTRATTORE DI PERIODO INFINITO (la sequenza non si ripete: es. meteorologia vs. astronomia) STRUTTURA FRATTALE DEGLI ATTRATTORI (dettagli a tutte le scale) LE SEQUENZE GENERATE DAI SISTEMI CAOTICI SONO COMPLESSE

5 PROPRIETA DEI SISTEMI CAOTICI SENSIBILITA ALLE CONDIZIONI INIZIALI (impredicibilita, effetto farfalla) Per colpa di un chiodo si perse lo zoccolo per colpa di uno zoccolo si perse il cavallo per colpa del cavallo si perse il cavaliere per colpa di un cavaliere si perse il messaggio per colpa di un messaggio si perse la battaglia per colpa di una battaglia si perse il regno (G. Herbert)

6 SISTEMI NON CAOTICI Gli attrattori (=luogo geometrico su cui avviene il moto a tempi lunghi) dei sistemi non caotici sono SEMPLICI: Pendolo smorzato PUNTO FISSO STABILE CICLO LIMITE (quasi periodico) Il moto futuro e predicibile: nel primo caso e banale, nel secondo un po meno (es. eclissi) Sistema solare

7 Nei sistemi non caotici, l impredicibilita e limitata a particolari condizioni iniziali Esempio: PUNTO FISSO INSTABILE?

8 SISTEMI CAOTICI: l impredicibilita e intrinseca, cioe per (quasi) tutte le condizioni iniziali Sistema caotico = sensibilita alle condizioni iniziali Due traiettorie, arbitrariamente vicine al tempo iniziale t=0, si separano (esponenzialmente) nel tempo futuro. Edward Lorenz ( ) Il battito d ali di una farfalla in Brasile puo provocare un tornado in Texas. FLIPPER DI LORENZ

9 CAOS: un semplice esempio meccanico Biliardo classico Biliardo caotico D(t) = D(0) + A t D(t) = D(0) eλ t

10 Sistema caotico elementare: mappa a tenda x(t+) x(t + = [ ] Esempio di evoluzione (rappresentazione binaria) x(t) 0 x(0)= x(0)= D(0)= x()= x()= D()= x(5)=0.0 x(5)=0. D(5)= D(t)=D(0) elog(2) t /2 Errore cresce esponenzialmente!

11 Sistema caotico in 2 dimensioni: la mappa del fornaio La mappa del fornaio e una trasformazione del quadrato in se stesso che mantiene l area (non si perde informazione). stiramento 2. ripiegamento Punti inizialmente vicini vengono allontanati esponenzialmente nel tempo Altri punti, inizialmente lontani, si avvicinano (mixing)

12 Esempio di applicazione della mappa del fornaio t= t=20 t=0 t=5 t=4 t=3 t=2 t= t=0

13 Il moto della Terra attorno al Sole segue orbite regolari (ellittiche) previste da Newton Se consideriamo pero piu di 2 corpi (Sole, Terra, Giove) il sistema matematicamente non e piu trattabile (Poincare ) In linea di principio il moto di 3 o piu corpi puo essere caotico. Il sistema solare e caotico?

14 Effetti caotici nel sistema solare sono osservabili nei corpi piu piccoli La distribuzione degli assi maggiori degli asteroidi nella fascia principale (tra Marte e Giove) rivela dei buchi detti intervalli di Kirkwood (867). Questi buchi corrispondono a periodi (Kepler: T2 R3) in risonanza col periodo di Giove. La teoria del caos spiega l assenza di asteroidi come conseguenza della risonanza. Simulazioni numeriche recenti del sistema solare con calcolatori dedicati han mostrato che anche il moto dei pianeti e caotico (e quindi anche la Terra) ma l impredicibilita avviene su tempi dell ordine dei 00 milioni di anni (eccentricita ) 3: 5:2 7:3 2:

15 PROPRIETA DEI SISTEMI CAOTICI ATTRATTORE DI PERIODO INFINITO (la sequenza non si ripete: es. meteorologia vs. astronomia) STRUTTURA FRATTALE DEGLI ATTRATTORI (dettagli a tutte le scale)

16 Pendolo ideale Moto armonico (periodico) Suono puro x(t) = ω

17 Pendolo con attrito Moto armonico smorzato (punto fisso) x(t) = τ ω

18 Pendolo con attrito e forzato Moto caotico (rumore non periodico) x(t) =

19 Esempio di sistema caotico: modelli di popolazioni * Modello molto semplice senza predatori e con potere riproduttivo costante r: n(t) = numero di n(t+)=r n(t) individui nell`anno t la soluzione e semplice: n(t)=r*n(t-) = r*r*n(t-2) =... = r*r*... *r n(0) = rt n(0) t crescita esponenziale (esplosione demografica) * Modello piu realistico: dobbiamo tenere conto dei limiti ambientali (cibo, spazio):il potere riproduttivo descresce con la popolazione r r (N - n(t)) n(t+)=r n(t) (N - n(t)) N = numero massimo di individui Introduciamo le nuove variabili: x(t)=n(t)/n e λ =r*n e otteniamo la x(t+) = λ x(t) ( - x(t)) MAPPA LOGISTICA

20 Comportamento della mappa logistica al variare del parametro λ λ =2.8 Punto fisso (x=0.65) La popolazione tende ad un valore costante di equilibrio λ =3.4 Ciclo periodico (x [0.5,0.8]) Alteranza periodica di popolazione λ =3.9 Dinamica caotica (x [0,]) La popolazione e instabile ed oscilla casualmente da un anno all altro

21 Diagramma di biforcazione della mappa logistica Forma dell attrattore in funzione del parametro λ ciclo limite periodo 2 ciclo limite periodo 4 moto caotico periodo infinito x t x =3.56 λλλ =3.5 =3.6 =3.7 =3.847 =3.575 =3.4 t x t

22 Modelli piu realistici di dinamica delle popolazioni devono tenere conto della presenza di altre specie (esempio: prede-predatori) Modello di Lotka - Volterra (93) n(t+)=r n(t) - b n(t) n2(t) n2(t+)= - r2 n2(t) + b2 n(t) n2(t) equazioni di questo tipo mostrano comportamenti complessi simili a quelli osservati in natura (o in laboratorio, con batteri) prede predatori

23 PROPRIETA DEI SISTEMI CAOTICI LE SEQUENZE GENERATE DAI SISTEMI CAOTICI SONO COMPLESSE

24 Caos e complessita Le serie temporali caotiche sono complesse regolare caotica Come misurare la complessita?

25 Teoria dell'informazione Consideriamo due esempi di schedine del totocalcio: entrambe hanno la stessa probabilitá: p = (/3)3 = ma ovviamente quella a sx é inverosimile quella a dx sembra plausibile (tipica) (Shannon) 2 X X 2 X 2 X X La probabilitá di un evento non é una buona misura della sua complessitá

26 Complessita algoritmica (Kolmogorov, Chaitin) Consideriamo degli esempi di serie temporali binarie: (a) (b) (c) semplici complessa Sia K(N) la lunghezza (misurata in qualche modo) del piu corto programma (insieme di istruzioni) in grado di generare la sequenza di N simboli La complessita algoritmica e definita, per grandi N come K= (NB: non dipende dal linguaggio)

27 Complessita algoritmica degli esempi: (a) scrivi N volte K=0 (b) scrivi 00 N/3 volte K=0 (c) Se la sequenza (c) e casuale (esempio, lancio moneta), allora l unico modo e : scrivi K= Questo e il modo in cui viene usualmente trasmessa l informazione (esempio: risultati di partite di calcio, oppure tavole per p)

28 Un sistema caotico e complesso? Apparentemente no, perche basta trasmettere la regola che genera la sequenza, ad esempio: x(t+) = λ x(t) ( - x(t)) Se pero voglio generare una specifica sequenza, devo dare anche la condizione iniziale x(0) Se il sistema e caotico, la condizione iniziale deve essere molto precisa per riprodurre una sequenza lunga. In generale si trova che in un sistema caotico la condizione iniziale deve avere un numero di cifre proporzionale a N (errore cresce esponenzialmente) I sistemi caotici hanno complessita algoritmica non nulla

29 Predire e difficile, specialmente il futuro. Mark Twain

30 Bibliografia James Gleick, Caos - La nascita di una nuova scienza Rizzoli SuperBUR Scienza, 2000 Edward Lorenz, The essence of Chaos University of Washington Press, 996 Angelo Vulpiani, Determinismo e caos Carrocci editore, 2004 David Ruelle, Caso e caos Bollati Boringhieri, 992

31

32 Caos ed impredicibilita Sistema caotico: l errore con cui predico lo stato del sistema cresce esponenzialmente nel tempo: D(t) = D(0) e λ t λ : esponente di Lyapunov dato errore iniziale D0 e tolleranza Dmax, il tempo di predicibilita vale T= λ quantita intrinseca del sistema (dipende poco da D0)

33 Caos ed impredicibilita in un semplice modello atmosferico atmosfera previsione numerica QuickTime and a YUV420 codec decompressor are needed to see this picture. Integrazione numerica di semplice modello di atmosfera Due realizzazioni con D(0)=0-6

34 Frattali Gli insiemi frattali sono luoghi geometrici intermedi tra gli insiemi classici (punto, retta, piano,...) La dimensione frattale D misura il grado di frastaglietá dell insieme (per gli insiemi classici D é intera) Caratteristica fondamentale dei frattali e l autosimilarita (si ripete a tutte le scale)

35 Costruzione dell insieme di Cantor

36 Costruzione dell insieme di Koch e cosi via

37 Dimensione frattale Generalizzazione del concetto ordinario di dimensione ad insiemi di punti non lisci. Sia N(n) il numero di segmenti di lunghezza r necessari a ricoprire l insieme di punti all iterazione n. La dimensione frattale e data da D = Cantor Segmento Koch N(n)= 2n 3n D= log(2)/log(3)= n log(4)/log(3)= n r 2 /3 3 /9 n /3n

Fisica e sistemi complessi

Fisica e sistemi complessi Fisica e sistemi complessi La fisica si e sviluppata seguendo la linea riduzionista: lo studio di un fenomeno e riconducibile allo studio dei costituenti MOLECOLE ATOMI NUCLEI QUARK? E Il percorso inverso,

Dettagli

Che cos'è il caos? Caos Dove comincia il caos si arresta la scienza classica (1987) L'aspetto irregolare della natura sono stati dei veri rompicapo

Che cos'è il caos? Caos Dove comincia il caos si arresta la scienza classica (1987) L'aspetto irregolare della natura sono stati dei veri rompicapo Che cos'è il caos? Che cos'è il caos? Poincarè nel 1903 afferma che : una causa piccolissima che sfugga alla nostra attenzione determina un effetto considerevole che non possiamo mancare di vedere, e allora

Dettagli

Ordine e caos nel sistema solare

Ordine e caos nel sistema solare Ordine e caos nel sistema solare Ugo Locatelli Dipartimento di Matematica, Università degli Studi di Roma Tor Vergata 15 febbraio 2017 Prima della formulazione della legge di gravitazione universale L

Dettagli

ATTRATTORI CAOTICI. Attrattori. Classificazione degli attrattori: equilibri, cicli, tori, caos. Esponenti di Liapunov di attrattori

ATTRATTORI CAOTICI. Attrattori. Classificazione degli attrattori: equilibri, cicli, tori, caos. Esponenti di Liapunov di attrattori ARAORI CAOICI Attrattori Classificazione degli attrattori: equilibri, cicli, tori, caos Esponenti di Liapunov di attrattori Sistemi dissipativi C. Piccardi e F. Dercole Politecnico di Milano - 06/12/2012

Dettagli

Personaggi ed Interpreti in ordine di apparizione Atto I: I Modelli Atto II: Il Caos Atto III : Il Determinismo La Fisica La Matematica La Natura La r

Personaggi ed Interpreti in ordine di apparizione Atto I: I Modelli Atto II: Il Caos Atto III : Il Determinismo La Fisica La Matematica La Natura La r IL Caos e La Natura Fausto Borgonovi Dipartimento di Matematica e Fisica, Università Cattolica Personaggi ed Interpreti in ordine di apparizione Atto I: I Modelli Atto II: Il Caos Atto III : Il Determinismo

Dettagli

16 settembre 2017 Cantalupa

16 settembre 2017 Cantalupa 16 settembre 2017 Cantalupa 16 settembre 2017 Cantalupa L imprevedibile viaggio matematico e storico che ci permette di portare l ombrello solo quando serve Gemma Gallino Matematica Matematica Talete 585

Dettagli

INSIEMI FRATTALI. Dimensione di un insieme. Insiemi frattali elementari. Dimensioni frattali. Insiemi frattali e sistemi dinamici

INSIEMI FRATTALI. Dimensione di un insieme. Insiemi frattali elementari. Dimensioni frattali. Insiemi frattali e sistemi dinamici INSIEMI FRATTALI Dimensione di un insieme Insiemi frattali elementari Dimensioni frattali Insiemi frattali e sistemi dinamici C. Piccardi e F. Dercole Politecnico di Milano - 30/11/2011 1/29 Caratteristiche

Dettagli

I FRATTALI. Chiara Mocenni. giovedì 15 dicembre 11

I FRATTALI. Chiara Mocenni. giovedì 15 dicembre 11 I FRATTALI Chiara Mocenni (mocenni@dii.unisi.it) IL CAOS DETERMINISTICO Sistema deterministico Comportamento aperiodico Sensibilità alle condizioni iniziali Attrattori strani Infiniti cicli repulsivi GLI

Dettagli

Note sul sistema di Lotka-Volterra. Prima versione. Commenti e correzioni sono benvenuti.

Note sul sistema di Lotka-Volterra. Prima versione. Commenti e correzioni sono benvenuti. Ottobre 2016 Note sul sistema di Lotka-Volterra Prima versione. Commenti e correzioni sono benvenuti. 1 Introduzione Il sistema di Lotka Volterra (LV), o sistema preda predatore è probabilmente il primo

Dettagli

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,

Dettagli

ANALISI DI SERIE TEMPORALI CAOTICHE (1)

ANALISI DI SERIE TEMPORALI CAOTICHE (1) ANALISI DI SERIE TEMPORALI CAOTICHE (1) Problematiche Ricostruzione dello stato Dimensione di embedding C. Piccardi e F. Dercole Politecnico di Milano ver. 28/12/2009 1/15 Per studiare e comprendere appieno

Dettagli

Capitolo 12. Moto oscillatorio

Capitolo 12. Moto oscillatorio Moto oscillatorio INTRODUZIONE Quando la forza che agisce su un corpo è proporzionale al suo spostamento dalla posizione di equilibrio ne risulta un particolare tipo di moto. Se la forza agisce sempre

Dettagli

Unità didattica 3. Terza unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 3. Terza unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 3 Elasticità dei materiali Deformazione di un solido..2 Legge di Hooke.. 3 Forza elastica.. 4 Deformazione elastica di una molla... 5 Accumulo di energia attraverso la deformazione elastica..6

Dettagli

STRADE AL CAOS. Sistemi parametrizzati. Cascata di raddoppi di periodo (cascata di Feigenbaum) Rottura di toro. Caos alla Shilnikov.

STRADE AL CAOS. Sistemi parametrizzati. Cascata di raddoppi di periodo (cascata di Feigenbaum) Rottura di toro. Caos alla Shilnikov. STRADE AL CAOS Sistemi parametrizzati Cascata di raddoppi di periodo (cascata di Feigenbaum) Rottura di toro Caos alla Shilnikov Intermittenza Crisi C. Piccardi e F. Dercole Politecnico di Milano ver.

Dettagli

5. Applicazione ai dati sperimentali, un modello di previsione delle temperature

5. Applicazione ai dati sperimentali, un modello di previsione delle temperature 5. Applicazione ai dati sperimentali, un modello di previsione delle temperature 5.1 Ricostruzione dello spazio delle fasi L utilizzo del teorema di embedding per ricostruire lo spazio delle fasi relativo

Dettagli

Dinamica di sistemi non lineari

Dinamica di sistemi non lineari Dinamica di sistemi non lineari DINAMICA: ANALISI DI SISTEMI CHE EVOLVONO NEL TEMPO ( in prima battuta, determinazione della presenza di equilibri e valutazione della loro stabilità). CENNI STORICI Metà

Dettagli

COME APPARE IL CAOS DETERMINISTICO

COME APPARE IL CAOS DETERMINISTICO COME APPARE IL CAOS DETERMINISTICO Serie temporale Spettro di potenza Quadro delle traiettorie Sezione di Poincaré Auto-somiglianza Sensibilità alle condizioni iniziali C. Piccardi e F. Dercole Politecnico

Dettagli

Che cos'è il caos? Caos Dove comincia il caos si arresta la scienza classica (1987) L'aspetto irregolare della natura sono stati dei veri rompicapo

Che cos'è il caos? Caos Dove comincia il caos si arresta la scienza classica (1987) L'aspetto irregolare della natura sono stati dei veri rompicapo Poincarè nel 1903 afferma che : una causa piccolissima che sfugga alla nostra attenzione determina un effetto considerevole che non possiamo mancare di vedere, e allora diciamo che l'effetto è dovuto al

Dettagli

Dinamica del punto materiale

Dinamica del punto materiale Dinamica del punto materiale Formule fondamentali L. P. 5 Aprile 2010 N.B.: Le relazioni riportate sono valide in un sistema di riferimento inerziale. Princìpi della dinamica Secondo principio della dinamica

Dettagli

Controlli Automatici e Teoria dei Sistemi Esempi di sistemi dinamici

Controlli Automatici e Teoria dei Sistemi Esempi di sistemi dinamici Controlli Automatici e Teoria dei Sistemi Esempi di sistemi dinamici Prof. Roberto Guidorzi Dipartimento di Elettronica, Informatica e Sistemistica Università di Bologna Viale del Risorgimento 2, 40136

Dettagli

Andrea Carati Luigi Galgani. Appunti di Meccanica Analitica II

Andrea Carati Luigi Galgani. Appunti di Meccanica Analitica II Andrea Carati Luigi Galgani Appunti di Meccanica Analitica II Anno Accademico 2013 2014 ii Andrea Carati e Luigi Galgani Indice 1 Ordine e caos nei sistemi dinamici. 1 1. Introduzione. Poincaré e la rivoluzione

Dettagli

Così Mandelbrot nel suo libro The Fractal Geometry of Nature descrive l'inadeguatezza della geometria euclidea nella descrizione della natura.

Così Mandelbrot nel suo libro The Fractal Geometry of Nature descrive l'inadeguatezza della geometria euclidea nella descrizione della natura. Geometria frattale "Why is geometry often described as 'cold' and 'dry'? One reason lies in its inability to describe the shape of a cloud, a mountain, a coastiline or a tree. Clouds are not spheres, mountains

Dettagli

Richiami sulle oscillazioni smorzate

Richiami sulle oscillazioni smorzate Richiami sulle oscillazioni smorzate Il moto armonico è il moto descritto da un oscillatore armonico, cioè un sistema meccanico che, quando perturbato dalla sua posizione di equilibrio, è soggetto ad una

Dettagli

τ (O) r F è semplicemente l intensità della forza F dal polo O: = r F sinθ = bf

τ (O) r F è semplicemente l intensità della forza F dal polo O: = r F sinθ = bf 5. Momenti, forze centrali e gravitazione Definizione di momento di una forza Si definisce momento della forza F rispetto al polo O la quantità data dal prodotto vettoriale τ (O) r F il cui modulo si misura

Dettagli

Introduciamo il sistema di riferimento indicato in figura b) con F 1 = ( f, 0) ed F 2 = (f, 0). Se P = (x, y) la condizione (1) fornisce

Introduciamo il sistema di riferimento indicato in figura b) con F 1 = ( f, 0) ed F 2 = (f, 0). Se P = (x, y) la condizione (1) fornisce 1 L ellisse 1.1 Definizione Consideriamo due punti F 1 ed F 2 e sia 2f la loro distanza. L ellisse è il luogo dei punti P tali che la somma delle distanze PF 1 e PF 2 da F 1 ed F 2 è costante. Se indichiamo

Dettagli

iv Indice c

iv Indice c Indice Prefazione ix 1 Numeri 1 1 Insiemi e logica 1 1.1 Concetti di base sugli insiemi 1 1.2 Un po di logica elementare 9 2 Sommatorie e coefficienti binomiali 13 2.1 Il simbolo di sommatoria 13 2.2 Fattoriale

Dettagli

Applicazioni delle leggi della meccanica: moto armnico

Applicazioni delle leggi della meccanica: moto armnico Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di

Dettagli

CRESCITA DI POPOLAZIONI. Consideriamo una popolazione di esseri viventi e indichiamo con n(t) il numero di individui della popolazione al tempo t:

CRESCITA DI POPOLAZIONI. Consideriamo una popolazione di esseri viventi e indichiamo con n(t) il numero di individui della popolazione al tempo t: CRESCITA DI POPOLAZIONI Consideriamo una popolazione di esseri viventi e indichiamo con n(t) il numero di individui della popolazione al tempo t: n : R N Questa è una funzione costante a tratti, cioè una

Dettagli

Variabili aleatorie: parte 1. 1 Definizione di variabile aleatoria e misurabilitá

Variabili aleatorie: parte 1. 1 Definizione di variabile aleatoria e misurabilitá Statistica e analisi dei dati Data: 11 Aprile 2016 Variabili aleatorie: parte 1 Docente: Prof. Giuseppe Boccignone Scriba: Noemi Tentori 1 Definizione di variabile aleatoria e misurabilitá Informalmente,

Dettagli

La nascita di nuova scienza: dal determinismo al caos. Fausto Borgonovi

La nascita di nuova scienza: dal determinismo al caos. Fausto Borgonovi La nascita di nuova scienza: dal determinismo al caos Fausto Borgonovi Dipartimento di Matematica e Fisica, Universitá Cattolica, Brescia Istituto Nazionale di Fisica Nucleare, Sezione di Pavia Il

Dettagli

ANALISI E SIMULAZIONE DI SISTEMI DINAMICI. Lezione XI: Stabilità interna

ANALISI E SIMULAZIONE DI SISTEMI DINAMICI. Lezione XI: Stabilità interna ANALISI E SIMULAZIONE DI SISTEMI DINAMICI Lezione XI: Stabilità interna Stabilità interna e esterna Stabilità alla Lyapunov Stabilità asintotica I sistemi lineari Esempi 11-1 Tipi di Stabilità Idea intuitiva

Dettagli

Queste note (attualmente, e probabilmente per un bel po ) sono altamente provvisorie e (molto probabilmente) non prive di errori.

Queste note (attualmente, e probabilmente per un bel po ) sono altamente provvisorie e (molto probabilmente) non prive di errori. ËÁËÌ ÅÁ ÈÁ ÆÁ ½ Queste note attualmente e probabilmente per un bel po ) sono altamente provvisorie e molto probabilmente) non prive di errori 41 Sistemi 2D Come abbiamo già detto tipicamente è impossibile

Dettagli

Introduzione alla Meccanica: Cinematica

Introduzione alla Meccanica: Cinematica Introduzione alla Meccanica: Cinematica La Cinematica si occupa della descrizione geometrica del moto, senza riferimento alle sue cause. E invece compito della Dinamica mettere in relazione il moto con

Dettagli

e una frequenza = 0 /2 =1/T (misurata in Hertz). Infine è la fase, cioè un numero (radianti) che dipende dalla definizione dell istante t=0.

e una frequenza = 0 /2 =1/T (misurata in Hertz). Infine è la fase, cioè un numero (radianti) che dipende dalla definizione dell istante t=0. 8. Oscillazioni Definizione di oscillatore armonico libero Si tratta di un sistema soggetto ad un moto descrivibile secondo una funzione armonica (seno o coseno) del tipo x(t) = Acos( 0 t + ) A è l ampiezza

Dettagli

Teoria delle catastrofi

Teoria delle catastrofi Teoria delle catastrofi Il caso precedente, studiato con PPLANE. Scelta dell algoritmo di discretezzazione (qui è importante che sia adattativo perché cambia la velocità) transizione rapida (catastrofe)

Dettagli

Pendolo senza attrito

Pendolo senza attrito Pendolo senza attrito l m ϕ equazione del moto : mlϕ '' = mg sinϕ ϕ '' = y'' = k sin y, k > 0 g sinϕ l Pendolo senza attrito Trasformiamo l equazione in un sistema autonomo bidimensionale conservativo

Dettagli

CAPITOLO 9: LA GRAVITAZIONE. 9.1 Introduzione.

CAPITOLO 9: LA GRAVITAZIONE. 9.1 Introduzione. CAPITOLO 9: LA GRAVITAZIONE 9.1 Introduzione. Un altro tipo di forza piuttosto importante è la forza gravitazionale. Innanzitutto, è risaputo che nel nostro sistema di pianeti chiamato sistema solare il

Dettagli

Modelli differenziali per le scienze della vita

Modelli differenziali per le scienze della vita Modelli differenziali per le scienze della vita Andrea Susa Agenda Modelli Matematici Crescita delle popolazioni isolate crescita di una cellula Decadimento radioattivo Modello Malthus Modello a crescita

Dettagli

La Matematica nell Astronomia. Una (breve) introduzione. Roberto Ferretti

La Matematica nell Astronomia. Una (breve) introduzione. Roberto Ferretti La Matematica nell Astronomia Una (breve) introduzione Roberto Ferretti Il cielo: un fascino intramontabile Come si puó parlare di astronomia senza fermarsi un attimo a guardare il cielo? E un fascino

Dettagli

Laboratorio di Calcolo B 68

Laboratorio di Calcolo B 68 Generazione di numeri casuali Abbiamo già accennato all idea che le tecniche statistiche possano essere utili per risolvere problemi di simulazione di processi fisici e di calcoli numerici. Dobbiamo però

Dettagli

Le formule del cielo: la caotica armonia dei pianeti. Alessandra Celletti

Le formule del cielo: la caotica armonia dei pianeti. Alessandra Celletti Le formule del cielo: la caotica armonia dei pianeti Alessandra Celletti Dipartimento di Matematica Università di Roma Tor Vergata celletti@mat.uniroma2.it Immagine: CICLOPS, JPL, ESA, NASA SOMMARIO 1.

Dettagli

7. Forze elastiche. Nella figura 1 il periodo è T = 2s e corrisponde ad un moto unidimensionale limitato tra i valori x = 0 ed x = 1.

7. Forze elastiche. Nella figura 1 il periodo è T = 2s e corrisponde ad un moto unidimensionale limitato tra i valori x = 0 ed x = 1. 1 Moti periodici 7. Forze elastiche Un caso particolare di moto accelerato è un moto periodico. In figura 1 è riportato un esempio di moto periodico unidimensionale. Un moto periodico si ripete identicamente

Dettagli

PROBABILITÀ - SCHEDA N. 3 VARIABILI ALEATORIE CONTINUE E SIMULAZIONE

PROBABILITÀ - SCHEDA N. 3 VARIABILI ALEATORIE CONTINUE E SIMULAZIONE PROBABILITÀ - SCHEDA N. 3 VARIABILI ALEATORIE CONTINUE E SIMULAZIONE (da un idea di M. Impedovo Variabili aleatorie continue e simulazione Progetto Alice n. 15, ) 1. La simulazione Nelle schede precedenti

Dettagli

Considerare il moto di un punto materiale di massa m = 1 soggetto ad un potenziale V (x):

Considerare il moto di un punto materiale di massa m = 1 soggetto ad un potenziale V (x): sercizio Considerare il moto di un punto materiale di massa m = soggetto ad un potenziale V (x): ẍ = V (x), dove V (x) = x x.. Scrivere esplicitamente l equazione del moto e verificare esplicitamente la

Dettagli

Risonanza magnetica nucleare

Risonanza magnetica nucleare Risonanza magnetica nucleare Università di Firenze Corso di Tecnologie Biomediche Lezione del 31 ottobre 2003 Leonardo Bocchi Principi fisici Premessa Modello classico Visualizzazione semplificata Equazione

Dettagli

TEORIA DEI SISTEMI SISTEMI LINEARI

TEORIA DEI SISTEMI SISTEMI LINEARI TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI SISTEMI LINEARI Ing. Cristian Secchi Tel.

Dettagli

Matematica che terrorizza o affascina

Matematica che terrorizza o affascina Matematica che terrorizza o affascina Emanuele Biolcati Dipartimento di Fisica dell Università di Torino Liceo Valsalice, Torino 1 febbraio 2011 Emanuele Biolcati (1/2/2011) Matematica che terrorizza o

Dettagli

OLTRE LA BOTANICA. Numero 4 La sezione aurea in astronomia. = Cerchio Altazimutale di Ramsden, Osservatorio Astronomico "G.S.

OLTRE LA BOTANICA. Numero 4 La sezione aurea in astronomia. = Cerchio Altazimutale di Ramsden, Osservatorio Astronomico G.S. LA SEZIONE AUREA DAGLI ATOMI ALLE STELLE Numero 4 La sezione aurea in astronomia = Cerchio Altazimutale di Ramsden, Osservatorio Astronomico "G.S.Vaiana", Palermo = Rubrica curata da Francesco Di Noto

Dettagli

Il programma di formalizzazione matematica della realtà

Il programma di formalizzazione matematica della realtà Angelo Vulpiani Caos deterministico Il programma di formalizzazione matematica della realtà inaugurato con la pubblicazione, nel 1687, dei Principia Mathematica di Isaac Newton è un punto di riferimento

Dettagli

CALENDARIO BOREALE 1 EUROPA 2015 QUESITO 1

CALENDARIO BOREALE 1 EUROPA 2015 QUESITO 1 www.matefilia.it Indirizzi: LI0, EA0 SCIENTIFICO; LI0 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE EUROPA 05 QUESITO La funzione f(x) è continua per x [ 4; 4] il suo grafico è la spezzata

Dettagli

Equazioni di Eulero del corpo rigido.

Equazioni di Eulero del corpo rigido. Equazioni di Eulero del corpo rigido. In questa nota vogliamo scrivere e studiare le equazioni del moto di un corpo rigido libero, sottoposto alla sola forza di gravità. Ci occuperemo in particolare delle

Dettagli

Fractals. Anna Carbone Politecnico di Torino November 2, 2016

Fractals. Anna Carbone Politecnico di Torino  November 2, 2016 Fractals Anna Carbone Politecnico di Torino www.polito.it/noiselab Caffé November 2, 2016 Fractals: Everywhere ever and ever (sempre e dovunque) Fractals: Everywhere ever and ever (sempre e dovunque) Middle

Dettagli

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo Moto armonico semplice Consideriamo il sistema presentato in figura in cui un corpo di massa m si muove lungo l asse delle x sotto l azione della molla ideale di costante elastica k ed in assenza di forze

Dettagli

Grandezze fisiche e loro misura

Grandezze fisiche e loro misura Grandezze fisiche e loro misura Cos è la fisica? e di che cosa si occupa? - Scienza sperimentale che studia i fenomeni naturali suscettibili di sperimentazione e che implicano grandezze misurabili. - Sono

Dettagli

Macchine ricorsive lineari: alcune applicazioni

Macchine ricorsive lineari: alcune applicazioni Macchine ricorsive lineari: alcune applicazioni Marcello Colozzo http://www.extrabyte.info Le macchine ricorsive lineari hanno un costo computazionale molto basso, giacchè il corrispondente sistema dinamico

Dettagli

Terza legge di Keplero, teoria e significato fisico della costante di Planck. m V p2

Terza legge di Keplero, teoria e significato fisico della costante di Planck. m V p2 estratto da : L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare Terza legge di Keplero, teoria e significato fisico della costante di Planck La relazione E p h p p ci dice che all energia

Dettagli

L ATOMO SECONDO LA MECCANICA ONDULATORIA IL DUALISMO ONDA-PARTICELLA. (Plank Einstein)

L ATOMO SECONDO LA MECCANICA ONDULATORIA IL DUALISMO ONDA-PARTICELLA. (Plank Einstein) L ATOMO SECONDO LA MECCANICA ONDULATORIA IL DUALISMO ONDA-PARTICELLA POSTULATO DI DE BROGLIÈ Se alla luce, che è un fenomeno ondulatorio, sono associate anche le caratteristiche corpuscolari della materia

Dettagli

Modellistica e Simulazione: il sistema di Rossler a.a Chiara Mocenni

Modellistica e Simulazione: il sistema di Rossler a.a Chiara Mocenni Modellistica e Simulazione: il sistema di Rossler a.a. 007-008 Chiara Mocenni Il sistema di Rossler è il più semplice sistema di terzo ordine capace di manifestare comportamenti di tipo caotico. x = y

Dettagli

Esperimentazioni di Fisica 1 Tracce delle lezioni di TERMOLOGIA

Esperimentazioni di Fisica 1 Tracce delle lezioni di TERMOLOGIA Esperimentazioni di Fisica 1 Tracce delle lezioni di TERMOLOGIA AA 2015-2016 Temperatura Temperatura misura oggettiva della sensazione di caldo e freddo Grandezza intensiva Misura la direzione del trasferimento

Dettagli

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema

Dettagli

SCHEDA N 8 DEL LABORATORIO DI FISICA

SCHEDA N 8 DEL LABORATORIO DI FISICA SCHEDA N 1 IL PENDOLO SEMPLICE SCHEDA N 8 DEL LABORATORIO DI FISICA Scopo dell'esperimento. Determinare il periodo di oscillazione di un pendolo semplice. Applicare le nozioni sugli errori di una grandezza

Dettagli

PREFAZIONE pag. 15 Capitolo 1 I NUMERI E LE FUNZIONI REALI 1. Premessa Gli assiomi dei numeri reali Alcune conseguenze degli assiomi dei

PREFAZIONE pag. 15 Capitolo 1 I NUMERI E LE FUNZIONI REALI 1. Premessa Gli assiomi dei numeri reali Alcune conseguenze degli assiomi dei PREFAZIONE pag. 15 Capitolo 1 I NUMERI E LE FUNZIONI REALI 1. Premessa 23 2. Gli assiomi dei numeri reali 24 3. Alcune conseguenze degli assiomi dei numeri reali 25 4. Cenni di teoria degli insiemi 30

Dettagli

Indice slides. 1 Oscillatore semplice 5. 2 Equazione caratteristica 6. 3 Radici complesse 7. 4 Integrale generale 8. 5 Forza Peso 9.

Indice slides. 1 Oscillatore semplice 5. 2 Equazione caratteristica 6. 3 Radici complesse 7. 4 Integrale generale 8. 5 Forza Peso 9. Moto di Oscillatori Pietro Pantano Dipartimento di Matematica Università della Calabria Slides 1 di 27 Slides 2 di 27 1 Oscillatore semplice 5 2 Equazione caratteristica 6 3 Radici complesse 7 4 Integrale

Dettagli

Limiti di funzioni I. Limiti per x che tende all infinito

Limiti di funzioni I. Limiti per x che tende all infinito Limiti di funzioni I. Limiti per x che tende all infinito 1 La crescita della popolazione mondiale La crescita della popolazione umana mondiale e il suo impatto sull ambiente: discussioni e studi matematici

Dettagli

Proprietà dei sistemi dinamici lineari

Proprietà dei sistemi dinamici lineari Proprietà dei sistemi dinamici lineari Vediamo se le proprietà dei sistemi lineari ci possono essere utili per chiarire qualcosa sulla stabilità. Partiamo dal sistema dinamico lineare più semplice possibile:

Dettagli

OSCILLAZIONI SMORZATE E FORZATE

OSCILLAZIONI SMORZATE E FORZATE OSCILLAZIONI SMORZATE E FORZATE Questo esperimento permette di studiare le oscillazioni armoniche di un pendolo e le oscillazioni smorzate e smorzate-forzate. Studiando il variare dell ampiezza dell oscillazione

Dettagli

5.4 Larghezza naturale di una riga

5.4 Larghezza naturale di una riga 5.4 Larghezza naturale di una riga Un modello classico più soddisfacente del processo di emissione è il seguente. Si considera una carica elettrica puntiforme in moto armonico di pulsazione ω 0 ; la carica,

Dettagli

Meccanica del punto materiale

Meccanica del punto materiale Meccanica del punto materiale Princìpi della dinamica. Forze. Momento angolare. Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_) Per consigli, suggerimenti, eventuali errori o altro

Dettagli

Fenomeni Oscillatori: Equazioni di Base della Meccanica del Punto Materiale

Fenomeni Oscillatori: Equazioni di Base della Meccanica del Punto Materiale Fenomeni Oscillatori: Equazioni di Base della Meccanica del Punto Materiale Lezione del Corso di Esercitazioni di Laboratorio di Meccanica, Roma, 5 Maggio, 2014 Roberto Bonciani 1, Diparto di Fisica dell

Dettagli

Indice. Capitolo 1 Richiami di calcolo numerico 1. Capitolo 2 Rappresentazioni di dati 13

Indice. Capitolo 1 Richiami di calcolo numerico 1. Capitolo 2 Rappresentazioni di dati 13 Autori Prefazione Nota dell Editore e istruzioni per l uso Guida alla lettura XI XIII XV XVII Richiami di calcolo numerico 1 1.1 Unità di misura e fattori di conversione; potenze del 10; notazioni scientifiche

Dettagli

DOCENTE: Lucio De Marcellis

DOCENTE: Lucio De Marcellis DOCENTE: CLASSE: 1 B PROGRAMMA svolto in MATEMATICA GLI INSIEMI NUMERICI I numeri naturali. I numeri relativi. L ordinamento dei numeri. I numeri frazionari e le relative operazioni. Le operazioni con

Dettagli

Fisica per scienze ed ingegneria

Fisica per scienze ed ingegneria Serway, Jewett Fisica per scienze ed ingegneria Capitolo 15 Blocchetto legato ad una molla in moto su un piano orizzontale privo di attrito. Forza elastica di richiamo: F x =-Kx (Legge di Hooke). Per x>0,

Dettagli

UNIVERSITA' DEGLI STUDI DI CATANIA Facoltà di Scienze Matematiche, Fisiche, Naturali Corso di Laurea Specialistica in Fisica

UNIVERSITA' DEGLI STUDI DI CATANIA Facoltà di Scienze Matematiche, Fisiche, Naturali Corso di Laurea Specialistica in Fisica UNIVERSITA' DEGLI STUDI DI CATANIA Facoltà di Scienze Matematiche, Fisiche, Naturali Corso di Laurea Specialistica in Fisica CURRICULUM ASTROFISICA E FISICA DELLO SPAZIO Anno Accademico 2011-2012 PROGRAMMA

Dettagli

Liceo Artistico R. Cottini Torino

Liceo Artistico R. Cottini Torino INSIEMI NUMERICI Liceo Artistico R. Cottini Torino Programma di 1 a per l IDONEITÀ ALLA CLASSE 2 A L insieme dei numeri naturali le quattro operazioni in N multipli e divisori potenze espressioni con i

Dettagli

Il metodo scientifico

Il metodo scientifico La Fisica è una scienza grazie a Galileo che a suo fondamento pose il metodo scientifico 1 Il metodo scientifico La Natura è complessa: non basta osservarla per capirla Intuizione di Galileo: bisogna porre

Dettagli

Struttura Elettronica degli Atomi Meccanica quantistica

Struttura Elettronica degli Atomi Meccanica quantistica Prof. A. Martinelli Struttura Elettronica degli Atomi Meccanica quantistica Dipartimento di Farmacia 1 Il comportamento ondulatorio della materia 2 1 Il comportamento ondulatorio della materia La diffrazione

Dettagli

Analisi dei Dati Tabelle e Grafici

Analisi dei Dati Tabelle e Grafici Analisi dei Dati Tabelle e Grafici Spesso una misurazione consiste nello studio di una grandezza,y i in funzione di un altra, x i. Esempi: o lo spazio percorso da un oggetto in funzione di un intervallo

Dettagli

La statistica. Elaborazione e rappresentazione dei dati Gli indicatori statistici. Prof. Giuseppe Carucci

La statistica. Elaborazione e rappresentazione dei dati Gli indicatori statistici. Prof. Giuseppe Carucci La statistica Elaborazione e rappresentazione dei dati Gli indicatori statistici Introduzione La statistica raccoglie ed analizza gruppi di dati (su cose o persone) per trarne conclusioni e fare previsioni

Dettagli

Iterando s impara. Modelli dinamici discreti

Iterando s impara. Modelli dinamici discreti Iterando s impara. Modelli dinamici discreti Scuola Estiva A (6 settembre 2017) Dipartimento di Matematica, Sapienza Università di Roma Stefano Finzi Vita Collaborano: R. Dalla Volta, A. Perrotta Finzi

Dettagli

La Bussola Magnetica di V. Croquette Dipartimento di Fisica, Università di Bologna Ghirardini Stefano Strumento reale:

La Bussola Magnetica di V. Croquette Dipartimento di Fisica, Università di Bologna Ghirardini Stefano Strumento reale: La Bussola Magnetica di V. Croquette Dipartimento di Fisica, Università di Bologna Ghirardini Stefano 01/06/2009 stefano.ghirardini@live.it Strumento reale: La bussola magnetica di Croquette consta di

Dettagli

IL PROBLEMA DEI TRE CORPI

IL PROBLEMA DEI TRE CORPI IL PROBLEMA DEI TRE CORPI Il problema dei tre corpi consiste nel calcolare il moto di tre corpi soggetti alla loro reciproca attrazione. Il problema appassionò gli astronomi di tutta Europa tanto che il

Dettagli

Processi di Markov. Processi di Markov

Processi di Markov. Processi di Markov Processi Stocastici Processi Stocastici Processi Stocastici Catene o Catene o Catene di M Processi Stocastici Processi Stocastici Processi Stocastici Catene o Catene o Catene di M Processi Stocastici Un

Dettagli

Esercitazioni di Meccanica Quantistica I

Esercitazioni di Meccanica Quantistica I Esercitazioni di Meccanica Quantistica I Sistema a due stati Consideriamo come esempio di sistema a due stati l ammoniaca. La struttura del composto è tetraedrico : alla sommità di una piramide con base

Dettagli

ISTITUTO PROFESSIONALE DI STATO PER L INDUSTRIA E L ARTIGIANATO I.P.S.I.A. L. B. ALBERTI

ISTITUTO PROFESSIONALE DI STATO PER L INDUSTRIA E L ARTIGIANATO I.P.S.I.A. L. B. ALBERTI ISTITUTO PROFESSIONALE DI STATO PER L INDUSTRIA E L ARTIGIANATO I.P.S.I.A. L. B. ALBERTI Via Clotilde Tambroni, RIMINI ( RN ) Anno scolastico 2016-2017 Classe I A Materia: FISICA Insegnante : Prof. GIUSEPPE

Dettagli

Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà Prof. Adolfo Santini - Dinamica delle Strutture 1 Vibrazioni libere non smorzate 1/6 Le equazioni del moto di un sistema

Dettagli

EQUAZIONI DIFFERENZIALI

EQUAZIONI DIFFERENZIALI Indice 1 EQUAZIONI DIFFERENZIALI 3 1.1 Equazioni fisicamente significative...................... 3 1.1.1 A cosa servono?............................. 3 1.1.2 Legge di Newton............................

Dettagli

ANALISI PICCO-PICCO. Diagramma picco-picco. Dinamica picco-picco. Diagramma dei tempi di ritorno. Calcolo del primo esponente di Liapunov

ANALISI PICCO-PICCO. Diagramma picco-picco. Dinamica picco-picco. Diagramma dei tempi di ritorno. Calcolo del primo esponente di Liapunov ANALISI PICCO-PICCO Diagramma picco-picco Dinamica picco-picco Diagramma dei tempi di ritorno Calcolo del primo esponente di Liapunov C. Piccardi e F. Dercole Politecnico di Milano - 28/2/2009 /2 DIAGRAMMA

Dettagli

TECNICHE DI SIMULAZIONE

TECNICHE DI SIMULAZIONE TECNICHE DI SIMULAZIONE Processi di Poisson Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Consideriamo eventi casuali come gli arrivi di lavori

Dettagli

Enrico Silva - diritti riservati - Non è permessa, fra l altro, l inclusione anche parziale in altre opere senza il consenso scritto dell autore

Enrico Silva - diritti riservati - Non è permessa, fra l altro, l inclusione anche parziale in altre opere senza il consenso scritto dell autore Particelle della presente identiche. opera. Principio di Pauli. 1 Particelle identiche: sommario Finora: proprietà di particella singola. Volendo ottenere il comportamento di più particelle, è necessario

Dettagli

Il modello preda predatore. Modelli Matematici Ambientali, 2015/16 Dinamiche di Crescita:

Il modello preda predatore. Modelli Matematici Ambientali, 2015/16 Dinamiche di Crescita: Modelli Matematici Ambientali, 2015/16 Dinamiche di Crescita: 2 popolazioni Il modello preda predatore Interazione di due popolazioni: il modello Preda-Predatore Il modello Preda-Predatore è stato sviluppato

Dettagli

Numeri complessi e frattali 1

Numeri complessi e frattali 1 Numeri complessi e frattali 1 Insiemi di Julia e di Mandelbrot 1) L 0 èilcerchio unitario 2) L c si deforma con continuità alvariare di c 3) J c =BdL c è una insieme frattale autosimile ricostruibile da

Dettagli

Capitolo 6. Variabili casuali continue. 6.1 La densità di probabilità

Capitolo 6. Variabili casuali continue. 6.1 La densità di probabilità Capitolo 6 Variabili casuali continue Le definizioni di probabilità che abbiamo finora usato sono adatte solo per una variabile casuale che possa assumere solo valori discreti; vediamo innanzi tutto come

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

Enrico Silva - diritti riservati - Non è permessa, fra l altro, l inclusione anche parziale in altre opere senza il consenso scritto dell autore

Enrico Silva - diritti riservati - Non è permessa, fra l altro, l inclusione anche parziale in altre opere senza il consenso scritto dell autore Indeterminazione Finora si sono considerate le proprietà ondulatorie, lavorando sulla fase di una (per ora non meglio specificata) funzione. Si sono ricavate o ipotizzate relazioni per: - lunghezza d onda

Dettagli

Collisioni cosmiche. Civico Planetario di Milano Ulrico Hoepli 12 febbraio 2013

Collisioni cosmiche. Civico Planetario di Milano Ulrico Hoepli 12 febbraio 2013 Collisioni cosmiche Civico Planetario di Milano Ulrico Hoepli 12 febbraio 2013 Sommario L incontro ravvicinato con 2012 DA14 Gli asteroidi: che cosa sono, dove sono Orbite e determinazione orbitale Incontri

Dettagli

Integrazione delle equazioni del moto

Integrazione delle equazioni del moto Giorgio Pastore - note per il corso di Laboratorio di Calcolo Integrazione delle equazioni del moto In generale, le equazioni del moto della meccanica newtoniana si presentano nella forma di sistemi di

Dettagli

EQUAZIONE LOGISTICA: MODELLO POLINOMIALE PER LA CRESCITA DEMOGRAFICA

EQUAZIONE LOGISTICA: MODELLO POLINOMIALE PER LA CRESCITA DEMOGRAFICA EQUAZIONE LOGISTICA: MODELLO POLINOMIALE PER LA CRESCITA DEMOGRAFICA L equazione logistica, anche nota come modello di Verhulst o curva di crescita logistica è un modello di crescita della popolazione,

Dettagli

1 di 5 12/02/ :23

1 di 5 12/02/ :23 Verifica: tibo5794_me08_test1 nome: classe: data: Esercizio 1. La traiettoria di un proiettile lanciato con velocità orizzontale da una certa altezza è: un segmento di retta obliqua percorso con accelerazione

Dettagli

LA GRAVITAZIONE. Legge di Gravitazione Universale 08/04/2015 =6, /

LA GRAVITAZIONE. Legge di Gravitazione Universale 08/04/2015 =6, / LA GRAVITAZIONE Definizione (forza di attrazione gravitazionale) Due corpi puntiformi di massa e si attraggono vicendevolmente con una forza (forza che il corpo A esercita sul corpo B), o (forza che il

Dettagli

il modello logistico

il modello logistico LOTTA PER LA SOPRAVVIVENZA ovvero il modello logistico Circa 50 anni dopo l introduzione del modello di Malthus, il demografo belga Adolphe J. Quetelet (1796,1874) nella sua opera Sull uomo e sullo sviluppo

Dettagli