Verifica di Matematica Classe Quinta
|
|
|
- Raffaele Ferraro
- 8 anni fa
- Visualizzazioni
Transcript
1 Verifica di Matematica Classe Quinta Valutazione Conoscenze. Fornisci la definizione di funzione continua in un punto x del dominio. Una funzione f(x) è continua in x 0 D se i iti destro e sinistro in x 0 esistono e sono coincidenti x x + 0 f(x) = x x 0 2. Calcola il valore dei seguenti iti precisando quando si tratta di una forma indeterminata e specificando il tipo di forma indeterminata ( 0 0, ) (a) (b) (c) x 2 6x+8 x 2 x 3 non è una forma indeterminata perchè il denominatore non si annulla per x = 2, basta sostituire 2 alla frazione e si ha f(x) x 2 6x+8 = = = 2 2 x 2 x = 0 = 0 il numeratore si annulla ma questo non da alcun problema. x 3 + 2x+8 x 5 2x+4 è una forma indeterminata del tipo perché al numeratore abbiamo e al denominatore abbiamo x3 + 2x+8 = x3 = x5 2x+4 = x5 = ma il denominatore è un infinito di ordine superiore, domina rispetto al numeratore e quindi lindeterminazione di eina facilmente x 3 + 2x+8 x 5 2x+4 = x3 + 2x+8 x5 2x+4 = x3 4 x + x+ x5 = x 3 x 5 = x 2 = 0 qui non abbiamo forme indeterminate, abbiamo una divisione per zero perché il numeratore è costante ed denominatore si annulla in corrispondenza di, lunico problema e capire se il ite destro sia + o. Basta analizzare il segno del denominatore considerando un valore che approssima per eccesso (è un ite destro!), prendiamo ad esempio 0.99 ed avremo x+ = = 0.0 > 0 per cui il denominatore è positivo nell intorno destro di. Il numeratore è 4, sempre positivo ed i rapporto di due quantità positive è un numero positivo per cui potremo scrivere x + 4 x+ = +
2 (d) x 6 (x+6) 2 qui non abbiamo forme indeterminate, abbiamo una divisione per zero perchè il denominatore si annulla in corrispondenza di 6 ed il numeratore è costante, lunico problema e capire se il ite sia + o. Il numeratore è pari a, sempre positivo, è presente un segno meno all esterno della frazione, il denominatore e un quadrato e quindi, indipendentemente dal segno che assume (x + 6) sarà sempre positivo. Il rapporto di due numeri positivi con un segno meno all esterno è negativo per cui avremo x 6 (x+6) 2 = (e) Si noti che sia il ite destro che quello sinistro danno sempre x5 +x+4 Non abbiamo forme indeterminate ed in questo caso avremo (f) (g) x5 +x+4 = x5 = se molitplichiamo per se stessa una quantità positiva un numero dispari di volte otterremo un numero positivo ma siccome ci sta il segno meno davanti avremo. x x 2 + 5x+6 e una forma indeterminata del tipo perché al numeratore abbiamo e al denominatore abbiamo x4 + 4 = x4 = + x2 + 5x+6 = x2 = + ma il numeratore e un infinito di ordine superiore e domina rispetto al denominatore e quindi lindeterminazione di eina facilmente x x 2 + 5x+6 = x4 + 4 x2 + 5x+6 = x4 x 2 x 0 x 4 x2 = x 4 x 2 = x2 = + qui non abbiamo forme indeterminate, abbiamo una divisione per zero perché il denominatore si annulla in corrispondenza di 0 ed il numeratore in corrispondenza di 0 vale 2, lunico problema è capire se il ite sia + o. Il numeratore per x = 0 e pari a 2, sempre negativo, il denominatore è un quadrato e quindi, indipendentemente dal segno della base sara sempre positivo. Il rapporto tra un numero negativo ed un numero positivo è negativo per cui avremo x 2 x 0 x 4 = 2
3 (h) x 2 6 x 0 x 3 x qui non abbiamo forme indeterminate, abbiamo una divisione per zero perché il denominatore si annulla in corrispondenza di 0 ed il numeratore in corrispondenza di 0 vale 6, lunico problema è capire se il ite sinistro sia + o. Il numeratore per x = 0 e pari a 6, sempre negativo, il denominatore va valutato per un valore di x che approssima 0 per difetto, ad es., 0.0 x 3 x = x(x 2 ) = ( 0.0) (( 0.0) 2 ) 0.0 < 0 ed è quindi negativo nell intorno sinistro di 0. Il rapporto tra un numero negativo ed un numero negativo è positivo per cui avremo x 2 6 x 0 x 3 x = + (i) x4 + 2x Non abbiamo forme indeterminate ed in questo caso avremo (j) x4 + 2x = x4 = + se molitplichiamo per se stessa una quantita negativa un numero pari di volte otterremo un numero positivo x 3 +x+2 4x 3 +x 2 +x+3 è una forma indeterminata del tipo perché al numeratore abbiamo e al denominatore abbiamo x3 +x+2 = x3 = 4x3 +x 2 +x+3 = 4x3 = + numeratore e denominatore hanno lo stesso ordine per cui il ite è il rapporto dei coefficienti di grado massimo al numeratore ed al denominatore x 3 +x+2 4x 3 +x 2 +x+3 = x3 +x+2 4x3 +x 2 +x+3 = x3 4x3 = x 3 4x 3 = 4 = 4 (k) x x+ 2x 2 + 4x+2 in questo caso abbiamo una forma indeterminata 0 0 perche il numeratore si annulla perx = e stessa cosa fa il denominatore 2x 2 + 4x+2 = 2 ( x 2 + 2x+ ) = 2 (x+) 2 = 2 ( +) 2 = 0 il denominatore è un quadrato di binomio e sulla frazione avremo x+ 2x 2 + 4x+2 = x+ 2 (x+) 2 = 2 (x+) 3
4 per cui largomento del ite si semplifica ed avremo x x+ 2x 2 + 4x+2 = x x + 2 (x+) = + 2 (x+) perché il denominatore è positivo nell intorno destro di e x 2 (x+) = (l) perché il denominatore è negativo nell intorno sinistro di x 0 x 3 +x x 3 2x in questo caso abbiamo una forma indeterminata 0 0 perche il numeratore si annulla per x = 0 e stessa cosa fa il denominatore. Semplichiamo allora numeratore e denominatore x 3 +x x 3 2x = x2 + x 2 2 per cui largomento del ite diventa x 0 x 3 +x x 3 2x = x 2 + x 0 x 2 2 = 2 3. Determina il dominio della seguenti funzioni dopo averle classificate a) y = x3 5x+5, D =R 3 b) y = 5+x x 4, D =R\4 { c) log(2x+), 2x+ > 0, D = x R : x > } 2 4
5 4. Dato il grafico della seguente funzione 0.2 y x completa: (a) Dominio: D = {x R : x 3} (b) Codominio: C =R (c) f(0) = 0.05 (d) f( 2) = (e) f() = 0 (f) la funzione interseca gli assi? Si, nei punti di coordinate (0, 0.05) e (, 0) (g) f(x) > 0 per x appartenente all intervallo (, 3) (h) f(x) < 0 per x appartenente all intervallo (, ) (3, + ) (i) f(x) = 0 nel punto x = (j) f(x) è crescente nell intervallo ( 2, 3) (3, + ) (k) f(x) è decrescente nell intervallo (, 2) (l) la funzione ha i seguenti asintoti: orizzontali di equazione y = 0; verticali di equazione x = 3; obliqui di equazione (NESSUNO). 5
6 5. Calcola il valore dei iti indicati, leggendo il grafico y x (a) (b) (c) (d) f(x) = + f(x) = 0 x 2 +f(x) = + x 2 f(x) = 6
Esame di Matematica Generale 7 Febbraio Soluzione Traccia E
Esame di Matematica Generale 7 Febbraio 013 - Soluzione Traccia E ESERCIZIO 1. Si consideri la funzione f : R R f(x) = x + 1 x. (a) Determinare il dominio di f ed eventuali simmetrie (3 punti). Dominio.
Gli asintoti. Richiami ed esempi
Gli asintoti Richiami ed esempi Scheda asintoti Definizioni generali di asintoto orizzontale, verticale e obliquo Scrivere l equazione di una funzione di una variabile dotata di due asintoti, uno orizzontale
Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006
Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 005/006 Antonella Ballabene SOLUZIONI -14 marzo 006- SCHEMA per lo STUDIO di FUNZIONI 1. Dominio della funzione f)..
Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni
Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni A cura di Sebastiano Cappuccio SCHEDA N 20 ARGOMENTO: Grafici di funzioni numeriche reali Asintoti orizzontali, verticali,
ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012
ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 1. Esercizi 3 1. Studiare la seguente funzione FINO alla derivata prima, con tracciamento di grafico ed indicazione
Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2
Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in CTF - anno acc. 2013/2014 docente: Giulia Giantesio, [email protected] Esercizi 8: Studio di funzioni Studio
ESERCIZI SULLO STUDIO DI FUNZIONI
ESERCIZI SULLO STUDIO DI FUNZIONI 0 novembre 206 Esercizi Esercizio n. Si consideri la funzione f(x) = 7 x 2 + 3 Dominio: R Intersezioni con gli assi: Intersezioni con l asse x: { y = 0 y = 7 x 2 + 3.
Massimi e minimi di una funzione razionale fratta Francesco Daddi - 18 maggio 2010
Francesco Daddi - 18 maggio 2010 Esempio 1. Studiare la funzione f x 4 x 8 x 2 3 x 3. R (si osservi che il denominatore non si annulla mai); la funzione ha uno zero in x 2. La funzione è positiva per x
Traccia n.1 Studiare il comportamento della funzione: 3x + ex 3x e x. Svolgimento
Traccia n. Studiare il comportamento della funzione: Svolgimento f(x) = 3x + ex 3x e x Determinazione del campo di esistenza, E[f]. La funzione si presenta come rapporto di due funzioni; il campo di esistenza
SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7
SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 Esercizio. Funzione da studiare: log( 3).. Dominio: dobbiamo richiedere che il denominatore non si annulli e che il logaritmo sia ben definito. Quindi le condizioni
Esame di MATEMATICA CORSO BASE del
Esame di MATEMATICA CORSO BASE del Cognome Matricola Nome Esercizio. Si consideri il seguente sistema x 3y + z =5 x ky +z = k kx y z = Si trovino il numero delle soluzioni al variare del parametro k e
CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI
CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI Notiamo che lo studio delle funzioni assegnate f,..., f 4 si riduce a considerare
Studiamo adesso il comportamento di f(x) alla frontiera del dominio. Si. x 0 lim f(x) = lim. x 2 +
Esercizi del 2//09. Data la funzione f(x) = ln(x 2 2x) (a) trovare il dominio, gli eventuali asintoti e gli intervalli in cui la funzione cresce o decresce. Disegnare il grafico della funzione. (b) Scrivere
ASINTOTI. Si chiama ASINTOTO di una funzione una retta alla quale la funzione si avvicina senza mai toccarla.
ASINTOTI Si chiama ASINTOTO di una funzione una retta alla quale la funzione si avvicina senza mai toccarla. Ad esempio: La funzione y=e x ha un asintoto orizzontale: l asse x, cioè la retta y=0. La funzione
10 - Applicazioni del calcolo differenziale
Università degli Studi di Palermo Facoltà di Economia CdS Sviuppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 10 - Applicazioni del calcolo differenziale Anno Accademico 2015/2016
f(x) = 1 x 2 Per determinare il dominio di f(x) dobbiamo imporre che il determinante sia diverso da zero
. Data la funzione approssimarne il grafico. f() = 2 Per determinare il dominio di f() dobbiamo imporre che il determinante sia diverso da zero 2 0 = 2 = ± perciò il dominio ` D = R \ {, } =], [ ], [ ],
Continuità e derivabilità. Calcola la derivata delle seguenti funzioni
ESERCIZI SUL CALCOLO DIFFERENZIALE Continuità e derivabilità Si studi la continuità e la derivabilità delle seguenti funzioni nel punto indicato a fianco { Si trovi, se possibile, a e b in modo che le
STUDIO DI UNA FUNZIONE INTEGRALE. Z x. ln t ln t 2 2 dt. f(x) =
STUDIO DI UNA FUNZIONE INTEGRALE Studiamo la funzione f di una variabile reale, a valori in R, definitada. Il dominio di f. f() = Z Denotiamo con g la funzione integranda. Allora g(t) = numeri reali tali
LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI
Autore: Enrico Manfucci - 6/05/0 LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI PREMESSA Per Studio di funzione si intende disegnare il grafico di una funzione data la sua espressione analitica. Questo significa
Esercitazioni di Analisi Matematica FUNZIONI CUBICHE. Effettuare lo studio completo delle seguenti funzioni di terzo grado intere:
FUNZIONI CUBICHE Effettuare lo studio completo delle seguenti funzioni di terzo grado intere: 1) y = fx) = x 3 + 2x 2 + x 2) y = fx) = x 3 + x 2 + x + 2 3) y = fx) = x 3 + 2x 2 + x 4 4) y = fx) = x 3 +
Chi non risolve esercizi non impara la matematica.
6 iti Per ricercare gli eventuali asintoti verticali dobbiamo calcolare i iti della funzione agli estremi finiti degli intervalli che costituiscono il dominio. In questo caso, quindi, dobbiamo calcolare
Matematica 2. Derivate Esercizi. y=sen( x 4 3x) y' =cos(x 4 3x)(4x 3 3) y=logsen( x x) y' = sen(x 4 +3x) cos(x4 +3x)(4x 3 +3)
Matematica 2 Derivate Esercizi y=sen( 4 3) y' =cos( 4 3)(4 3 3) y=logsen( 4 1 3) y' = sen( 4 +3) cos(4 +3)(4 3 +3) y=sen 2 ( 4 3) y' =2sen( 4 3 )cos( 4 3)(4 3 3) Funzioni ad una sola variabile y=f() è
Corso di Analisi Matematica 1 - professore Alberto Valli
Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 07/8 Corso di Analisi Matematica - professore Alberto Valli 7 foglio di esercizi - 8 novembre 07
Analisi Matematica I Primo Appello ( ) - Fila 1
Analisi Matematica I Primo Appello (4-11-003) - Fila 1 1. Determinare la retta tangente alla funzione f() = (1 + ) 1+ in = 0. R. f(0) = 1, mentre la derivata è f () = ( e (1+) log(1+)) ( ) = e (1+) log(1+)
Secondo parziale di Matematica per l Economia (esempio)
Corso di Laurea in Economia e Management Secondo parziale di Matematica per l Economia (esempio) lettere E-Z, a.a. 206 207 prof. Gianluca Amato Regole generali Si svolga il primo esercizio e, a scelta
Corso di Analisi Matematica 1 - professore Alberto Valli
Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 08/9 Corso di Analisi Matematica - professore Alberto Valli 7 foglio di esercizi - 7 novembre 08
Linee guida da seguire per lo svolgimento dello studio di funzione Studiare la seguente funzione: Insieme di definizione: f(x) < 0
Linee guida da seguire per lo svolgimento dello studio di funzione Studiare la seguente funzione: Insieme di definizione: f(x) > 0 f(x) = 0 f(x) < 0 Limiti significativi per f: Equazione degli asintoti
Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio
Liceo Classico D. Alighieri A.S. 0-3 y Data la funzione: Studio di Funzione tracciatene il grafico nel piano cartesiano. Prof. A. Pisani Esempio ) Tipo e grado della funzione La funzione è analitica, data
Conoscenze. L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la regola di Ruffini, il teorema. del resto.
Classe: TERZA (Liceo Artistico) Pagina 1 / 2 della Matematica La scomposizione dei polinomi in fattori primi L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la
Esercizi di Matematica. Studio di Funzioni
Esercizi di Matematica Studio di Funzioni CONSIDERAZIONI GENERALI Ad ogni funzione corrisponde un grafico, quindi studiare una funzione significa determinare il suo grafico. Per le conoscenze fin qui acquisite,
Studi di funzione. D. Barbieri. Studiare comportamento asintotico e monotonia di. f(x) = 1 x x4 + 4x e x
Studi di funzione D. Barbieri Esercizi Esercizio Esercizio Studiare comportamento asintotico e monotonia di f(x) = x + x4 + 4x Studiare il comportamento asintotico di f(x) = + x x + + e x Esercizio 3 Determinare
G5. Studio di funzione - Esercizi
G5 Studio di funzione - Esercizi Tracciare il grafico delle seguenti funzioni I grafici delle seguenti funzioni sono al termine degli esercizi Per gli esercizi con l asterisco non è richiesta, date le
Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)
Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f è crescente nell intervallo (a, b) se
LIMITI. Sia c D. Sia y=f(x) funzione definita in un dominio D. Tutorial di Paola Barberis - agg Ord =limite
LIMITI Ord =ite Sia =f() funzione definita in un dominio D. Sia c D c Cercare il LIMITE della funzione per c ( che tende a c) significa trovare, man mano che la TENDE a c, l ORDINATA a cui SI AVVICINA
Esercizi svolti sui limiti
Esercizi svolti sui iti Esercizio. Calcolare sin(). Soluzione. Moltiplichiamo e dividiamo per : sin() sin() sin() a questo punto, ponendo y, dato che otteniamo y sin y y sin() y sin y y. Esercizi svolti
CLASSE QUARTA RECUPERO PRIMO QUADRIMESTRE ANN
CLASSE QUARTA RECUPERO PRIMO QUADRIMESTRE ANN0 011-01 FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA Si dice campo di esistenza (C.E.) di una funzione y= f(x), l'insieme di tutti i valori reali
ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA
ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA Prova scritta del 6 giugno 2004: soluzioni ESERCIZIO - Data la funzione f) 3 2 4 + 27 + 9 2 ) /3 4 + 27, + 9 si chiede
APPUNTI DI MATEMATICA: I limiti e la continuità Le derivate. Prof. ssa Prenol R.
APPUNTI DI MATEMATICA: I iti e la continuità Le derivate Prof. ssa Prenol R. INTERVALLI e INTORNI Definizione di intervallo: è un sottoinsieme di numeri reali e può essere - ilitato: graficamente viene
Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2
Studio di funzione Copyright c 2009 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione
Programma svolto a.s. 2017/2018 Classe 1H Materia: Matematica Docente: De Rossi Francesco
Classe 1H Materia: Matematica Docente: De Rossi Francesco - Matematica multimediale. bianco Vol 1 Autori: M. Bergamini, G. Barozzi Casa Editrice: Zanichelli codice ISBN 978888334671 Capitolo 1 Insiemi
Esercizi su studio di funzione
Esercizi su studio di funzione i. Studiare la seguente funzione 6 ) Dominio 6 ( ) { } ; R \ f Dom ) Intersezione con gli assi 6 6 ; 6 6 6 ; ; ) Positività 6 > < 6 6 asintoto verticale 6 6 asintoto verticale
Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)
Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se
(1;1) y=2x-1. Fig. G4.1 Retta tangente a y=x 2 nel suo punto (1;1).
G4 Derivate G4 Significato geometrico di derivata La derivata di una funzione in un suo punto è il coefficiente angolare della sua retta tangente Esempio G4: La funzione = e la sua retta tangente per il
PENDENZA (ripasso classe II)
PENDENZA (ripasso classe II) Vediamo di definire quantitativamente il concetto di pendenza. Già ritroviamo la pendenza indicata in percentuale nei cartelli di pericolo nelle strade di montagna. La definizione
Recupero primo quadrimestre CLASSE QUARTA FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA
Recupero primo quadrimestre CLASSE QUARTA FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA Si dice campo di esistenza (C.E.) di una funzione = f(), l'insieme di tutti i valori reali che assegnati
ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA
ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA PRIMA PARTE Intervallo limitato di numeri reali Dati due numeri reali a e b, con a
Corso di Analisi Matematica 1 - professore Alberto Valli
Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 07/8 Corso di Analisi Matematica - professore Alberto Valli 6 foglio di esercizi - 5 ottobre 07
francesca fattori speranza - versione febbraio 2018 { y > 0 4) DETERMINAZIONE DEL TIPO DI FUNZIONE (PARI, DISPARI, PERIODICA)
STUDIO DI FUNZIONE francesca fattori speranza - versione febbraio 2018 1) DOMINIO O CONDIZIONE DI ESISTENZA 2) INTERSEZIONE CON GLI ASSI y f (x) intersezione asse x : { y 0 y f (x) intersezione asse y
PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico
PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico 2015-2016 I numeri naturali rappresentazione dei numeri naturali, le quattro operazioni, multipli e divisori di un numero. Criteri di divisibilità, le
Istituzioni di Matematica I
Istituzioni di Matematica I Le soluzioni proposte costituiscono solo una traccia di possibili soluzioni (lo studente deve giustificare i vari risultati), possono esserci altri modi, altrettanto corretti,
Chi non risolve esercizi non impara la matematica.
6 studio di funzione. esercizi Chi non risolve esercizi non impara la matematica. Traccia, se possibile, il grafico di una funzione che soddisfi le seguenti proprietà: a. è definita in R \ {, } b. ha come
~ 1 ~ CALCOLO DEI LIMITI
~ ~ CALCOLO DEI LIMITI ) Limiti che si presentano nella forma l. Pur non essendo forme indeterminate (il risultato è indicato convenzionalmente con i, nel senso che la funzione tende, in valore assoluto,
CLASSE terza SEZIONE E A.S PROGRAMMA SVOLTO
CLASSE terza SEZIONE E A.S. 2015-16 PROGRAMMA SVOLTO RIPASSO ARGOMENTI PROPEDEUTICI L insieme dei numeri razionali. Equazioni e disequazioni di primo grado Sistemi di equazioni e disequazioni di primo
Esercitazioni di Matematica
Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +
FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA
FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA Si dice campo di esistenza (C.E.) di una funzione f(x), l'insieme di tutti i valori reali che assegnati alla variabile indipendente x permettono
STUDIO DEL GRAFICO DI UNA FUNZIONE
STUDIO DEL GRAFICO DI UNA FUNZIONE PROF.SSA ROSSELLA PISCOPO 2 di 35 Indice 1 SCHEMA PER LO STUDIO DEL GRAFICO DI FUNZIONE... 4 2 ESEMPI... 11 2.1 2.2 2.3 2.4 2.5 2.6 FUNZIONE ESPONENZIALE... 11 FUNZIONE
a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.
1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre
Analisi Matematica 1+2
Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-700 Savona Tel. +39 09 264555 - Fax +39 09 264558 Ingegneria Gestionale Analisi Matematica +2 A.A 998/99 - Prove parziali
La continuità di una funzione
La continuità di una funzione Introduzione L'argomento legato ai limiti di una funzione porta in modo diretto al concetto di continuità e, conseguentemente, allo studio delle discontinuità di una funzione.
