ASINTOTI. Si chiama ASINTOTO di una funzione una retta alla quale la funzione si avvicina senza mai toccarla.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ASINTOTI. Si chiama ASINTOTO di una funzione una retta alla quale la funzione si avvicina senza mai toccarla."

Transcript

1 ASINTOTI Si chiama ASINTOTO di una funzione una retta alla quale la funzione si avvicina senza mai toccarla. Ad esempio: La funzione y=e x ha un asintoto orizzontale: l asse x, cioè la retta y=0. La funzione y=ln(x) ha un asintoto verticale: l asse y, cioè la retta x=0. Per trovare gli asintoti di una funzione occorre calcolare: 1) il DOMINIO e scriverlo con gli intervalli. Es: (-,c)u(c,+ 2) i iti per x che tende agli estremi finiti del Dominio (ad es per x c -,x c + ) 3) i iti per x che tende agli estremi infiniti del Dominio (per x -,x + ) A seconda dei risultati ottenuti si possono ottenere: TRE TIPI DI ASINTOTI VERTICALE ORIZZONTALE OBLIQUO x=c y=mx+q Tutorial di Barberis Paola y =!

2 ASINTOTO VERTICALE Sia y=f(x) definita in un Dominio D con x c. SE, per x che tende a c da sin/des (x c -,x c + ), f(x) tende a ± Allora c è asintoto verticale x=c In simboli: ASINTOTO VERTICALE x = c y x = c Come esempio considero una funzione omografica: x y = 3x + 1 x! 2 Calcolo iti attorno al valore finito 2 f (x) = " x!c ± 3x + 1 x!2 x " 2 = 7 0 = "# " " 3x + 1 x!2 x " 2 = 7 0 = +# + + Poiché il risultato è c è asintoto verticale: x=2 DA SAPERE: Nelle funzioni razionali fratte c è AsintotoVerticale x=c in corrispondenza dei valori che annullano il denominatore SE D:(-,2)U(2,+ )

3 Sia y=f(x) definita in D e sia un estremo del Dominio SE, per x che tende ad - /+ la funzione f(x) tende a allora c è asintoto orizzontale In simboli: ASINTOTO ORIZZONTALE y =! ASINTOTO ORIZZONTALE y =! SE! f (x) =! x!±" y y =! x Esempio: y = 3x + 1 x! 2 Calcolo iti a + D:(-,2)U(2,+ ) x!±" f (x)! 3x x = 3 Poiché il risultato è finito, c è asintoto orizz: y=3 DA SAPERE: Nelle funzioni razionali fratte c è Asintoto Orizzontale quando : - grado numeratore uguale al grado denominatore ( y =!) oppure - grado numeratore minore del grado denominatore (in tal caso l asintoto orizzontale è y=0 )

4 Sia y=f(x) definita in D e sia ± un estremo del Dominio. SE a) per x la funzione tende a infinito b) e per x il rapporto f(x)/x tende ad un valore finito m allora c è asintoto OBLIQUO y=mx+q In simboli: y ASINTOTO OBLIQUO y=mx+q ASINTOTO OBLIQUO x SE f (x) = " x!" ( ) f x m = x!" b) x Dopo aver trovato m, ricavo q q = f x x!" ( ) # mx $ % &' RISPOSTA : Asintoto obliquo y=mx+q Esiste m finito e non nullo DA SAPERE: Nelle funzioni razionali fratte c è asintoto obliquo solo se il grado del numeratore supera di 1 quello del denominatore. Solo in tal caso i termini del rapporto f(x)/x diventano di ugual grado per cui il ite per x ha risultato finito m a)

5 Schema Asintoti y=f(x) Trovo il Dominio e Calcolo i iti agli ESTREMI del D SE SE SE f (x) = " x!c ± x!±" f (x) =! f (x) = " x!±" E trovo Asintoto VERTICALE x=c Asintoto ORIZZONTALE m = x!" q = f x x!" f ( x) x ( ) # mx $% &' finito 0 y =! Asintoto OBLIQUO y=mx+q

6 ESEMPIO 1 (!",+4) # (+4,+") y = x! 10 x! 3 2) CALCOLO I LIMITI SINISTRO E DESTRO PER x CHE TENDE A +4 : x " 10 x!+3 x " 3 = "7 0 = +# " " x " 10 x!+3 x " 3 = "7 0 = "# + + 3) CALCOLO I LIMITI PER x CHE TENDE A ± x # 10 x!+" x # 4 = " " F.I.! x x!+" x = 1 x " 10 x!"# x " 4 = # # F.I.! x x!"# x = 1 Poiché il risultato è - e + c è Asintoto Verticale x=+4 uso il metodo del rapporto tra gli infiniti di ordine superiore ottengo ite finito 1 quindi c è As. Orizzontale y=1

7 ESEMPIO 2 (-,4)U(4,+ ) y = 7 x! 4 2) CALCOLO I LIMITI agli estremi del dominio Limiti attorno a 4 7 x!4 " x " 4 = 7 4 " " 4 = 7 0 = "# " 7 x!4 + x " 4 = " 4 = 7 0 = +# + Limiti per x-->± x!"# x!+" 7 x " 4 = 7 "# " 4 = 7 "# = 0" 7 x # 4 = 7 +" # 4 = 7 +" = 0+ Asintoto verticale x=4 Asintoto orizzontale y=0 rappresentazione grafica

8 ESEMPIO 3 (!",!8) # (!8,+") y = 3x x ) CALCOLO I LIMITI SINISTRO E DESTRO PER x CHE TENDE A -8 : x!+" x!#" x!"8 " x!"8 + 3x x x + 16 = "9 0 = +# " 3x x + 16 = "9 0 = "# + 3) CALCOLO I LIMITI PER x CHE TENDE A + e - 3x 2x + 16 = " " F.I.! x!+" 3x x 2x + 16 = " " F.I.! x!#" Poiché il risultato è - e + c è Asintoto Verticale x=-8 2x = 3 2 2x = 3 2 uso il metodo del rapporto tra gli infiniti di ordine superiore Poiché ottengo ite finito 3/2 c è Asintoto Orizzontale y=3/2

9 ESEMPIO 4 (!",0) # (0,+") y = x + 3 x 2 2) CALCOLO I LIMITI SINISTRO E DESTRO PER x CHE TENDE A 0 : x + 3 = +3 x!0 x 2 0 = +# + " x + 3 = +3 x!0 x 2 0 = +# + + 3) CALCOLO I LIMITI PER x CHE TENDE A ± x + 3 x!±" x 2 Poiché i iti hanno per risultato c è Asintoto Verticale x=0 = " " F.I.! x x!±" x = 1 2 x!±" x = 1 ±" = 0± uso il metodo del rapporto tra gli infiniti di ordine superiore Poiché il risultato dei iti è ZERO, valore finito, c è Asintoto Orizzontale y=0

10 ESEMPIO 5 (!",+") y = 7x x ) Non ci sono valori c finiti esclusi dal Dominio quindi non ci sono asintoti verticali 3) CALCOLO I LIMITI per x che TENDE a + e - : 7x2 + 4 x!+" 3x = " " F.I.! 7x2 x!+" 3x = x2 + 4 x!#" 3x = " " F.I.! 7x2 x!#" 3x = Poiché ottengo ite finito 7/3 C è Asintoto Orizzontale y=7/3.

11 ESEMPIO 6 (!",1) # (1, 3) # (3,+") y = x! 5 x 2! 4x + 3 2) LIMITI sinistro e destro PER x 1 x " 5 x!1 x 2 " 4x + 3 = "4 0 = "# + " x " 5 x!1 x 2 " 4x + 3 = "4 0 = +# " + Ci sono due Asintoti Verticali: x=-1 e x=3 3) CALCOLO I LIMITI PER x CHE TENDE A ± 2) LIMITI sinistro e destro PER x 3 : x " 5 x!3 x 2 " 4x + 3 = "4 0 = +# " " x " 5 x!3 x 2 " 4x + 3 = "4 0 = "# + + x + 3 x!±" x 2 = " " F.I.! x x!±" x = 1 2 x!±" x = 1 ±" = 0± Poiché ottengo ite finito 0 c è Asintoto Orizzontale y=0

12 ESEMPIO 7 (!",4) # 4,+" ( ) y = x2 + 3x x! 4 2) CALCOLO I LIMITI SINISTRO E DESTRO PER x CHE TENDE A 4 : x2 + 3x x!4 x " 4 = 28 0 = "# " " x2 + 3x x!4 x " 4 = 28 0 = +# + + 3) CALCOLO I LIMITI PER X CHE TENDE A + e - x2 + 3x x!±" x # 4 m = = x2 x!#" x = x x!±" 1 = ±" x2 + 3x x!"# x 2 " 4x = x2 x!"# x Poichè il risultato è, c è Asintoto Verticale x=4 Non c è asintoto orizzontale MA può esserci As. obliquo y=mx+q m finito e diverso da 0 = 1 2 quindi c è As. Obliquo. Trovo q q= x2 + 3x & x!"# $ % x " 4 " 1x ' ) ( = x!"# x2 " 3x " x 2 + 4x x " 4 = 1 ASINTOTO OBLIQUO y=1x+1

13 ESEMPIO 8 x2 + 1 x!±" x # 3 = x2 x!±" x = x = ±". (!",3)! 3,+" ( ) y = x x 2 + 1! 3 2) CALCOLO I LIMITI SINISTRO E DESTRO PER x CHE TENDE A 3 : x2 + 1 x!3 x " 3 = 10 0 = "# " " x2 + 1 x!3 x " 3 = 10 0 = +# + + Poichè il risultato è ±, c è asintoto Verticale x=3 3) CALCOLO I LIMITI PER X CHE TENDE A + e - m = f (x) x!+" x q= f x x!+" x!+" $ = ( ) # mx x2 + 1 x!+" x 2 # 3x = x2 x!+" x =1 2 $ % &' = x!+" x2 + 1# x 2 + 3x ( % x # 3 $ x2 + 1 ( % In questo caso non c è asintoto orizzontale MA può esserci l asintoto obliquo y=mx+q x # 3 # 1x 1 & ) ' = 3x + 1 x!+" x # 3 & ) ' = x!+" m finito e diverso da 0, quindi c è As. Obliquo ( ) x2 + 1# x x # 3 x # 3 = 3 As. OBLIQUO y= 1x+3 =

FUNZIONI LA FUNZIONE E UNA LEGGE CHE LEGA DUE VARIABILI X E Y IN MODO CHE PER OGNI VALORE DI X CORRISPONDA UNO ED UN SOLO VALORE DI Y

FUNZIONI LA FUNZIONE E UNA LEGGE CHE LEGA DUE VARIABILI X E Y IN MODO CHE PER OGNI VALORE DI X CORRISPONDA UNO ED UN SOLO VALORE DI Y FUNZIONI LA FUNZIONE E UNA LEGGE CHE LEGA DUE VARIABILI X E Y IN MODO CHE PER OGNI VALORE DI X CORRISPONDA UNO ED UN SOLO VALORE DI Y y=f(x) Prof. Paola Barberis [ progetto: Chiara Cicognini - V^TGA -2009

Dettagli

Studio di una funzione razionale fratta

Studio di una funzione razionale fratta Studio di una funzione razionale fratta Nella figura è rappresentata la funzione 1. Quale tra gli insiemi proposti è il suo CDE? 2. La funzione presenta un asintoto verticale di equazione... x = 0 x =

Dettagli

ESERCIZI SULLO STUDIO DI FUNZIONI

ESERCIZI SULLO STUDIO DI FUNZIONI ESERCIZI SULLO STUDIO DI FUNZIONI 0 novembre 206 Esercizi Esercizio n. Si consideri la funzione f(x) = 7 x 2 + 3 Dominio: R Intersezioni con gli assi: Intersezioni con l asse x: { y = 0 y = 7 x 2 + 3.

Dettagli

Matematica 2. Derivate Esercizi. y=sen( x 4 3x) y' =cos(x 4 3x)(4x 3 3) y=logsen( x x) y' = sen(x 4 +3x) cos(x4 +3x)(4x 3 +3)

Matematica 2. Derivate Esercizi. y=sen( x 4 3x) y' =cos(x 4 3x)(4x 3 3) y=logsen( x x) y' = sen(x 4 +3x) cos(x4 +3x)(4x 3 +3) Matematica 2 Derivate Esercizi y=sen( 4 3) y' =cos( 4 3)(4 3 3) y=logsen( 4 1 3) y' = sen( 4 +3) cos(4 +3)(4 3 +3) y=sen 2 ( 4 3) y' =2sen( 4 3 )cos( 4 3)(4 3 3) Funzioni ad una sola variabile y=f() è

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. 6 iti Per ricercare gli eventuali asintoti verticali dobbiamo calcolare i iti della funzione agli estremi finiti degli intervalli che costituiscono il dominio. In questo caso, quindi, dobbiamo calcolare

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esercizi sullo studio di funzione Seconda parte Come visto nella prima parte, per poter descrivere una curva, data la sua equazione cartesiana esplicita y f () occorre procedere secondo l ordine seguente:

Dettagli

R. Capone Analisi Matematica Limiti di una funzione reale di variabile reale ESERCIZI SUI LIMITI DI FUNZIONE ( )

R. Capone Analisi Matematica Limiti di una funzione reale di variabile reale ESERCIZI SUI LIMITI DI FUNZIONE ( ) Esercizio proposto N 1 Verificare che ESERCIZI SUI LIMITI DI FUNZIONE Si ricordi la definizione di ite finito in un punto: Pertanto, applicando la definizione al caso concreto, si ha: o, ciò che è lo stesso:

Dettagli

Massimi e minimi di una funzione razionale fratta Francesco Daddi - 18 maggio 2010

Massimi e minimi di una funzione razionale fratta Francesco Daddi - 18 maggio 2010 Francesco Daddi - 18 maggio 2010 Esempio 1. Studiare la funzione f x 4 x 8 x 2 3 x 3. R (si osservi che il denominatore non si annulla mai); la funzione ha uno zero in x 2. La funzione è positiva per x

Dettagli

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 1. Esercizi 3 1. Studiare la seguente funzione FINO alla derivata prima, con tracciamento di grafico ed indicazione

Dettagli

LIMITI - CONFRONTO LOCALE Test di autovalutazione

LIMITI - CONFRONTO LOCALE Test di autovalutazione LIMITI - CONFRONTO LOCALE Test di autovalutazione 1. Per 0 le funzioni 1 cos e sin (a) sono infinitesime dello stesso ordine (b) 1 cos è infinitesima di ordine inferiore (c) 1 cos è infinitesima di ordine

Dettagli

Esercizi sul dominio di funzioni e limiti

Esercizi sul dominio di funzioni e limiti Esercizi sul dominio di funzioni e iti Esercizio 1. Determinare il dominio D, studiare il segno e calcolare il ite ai suoi estremi delle seguenti funzioni: (a) y = e ; (b) y = 4 2 + 9; (c) y = 16 4 ; 2

Dettagli

Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni

Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni A cura di Sebastiano Cappuccio SCHEDA N 20 ARGOMENTO: Grafici di funzioni numeriche reali Asintoti orizzontali, verticali,

Dettagli

CLASSE QUARTA RECUPERO PRIMO QUADRIMESTRE ANN

CLASSE QUARTA RECUPERO PRIMO QUADRIMESTRE ANN CLASSE QUARTA RECUPERO PRIMO QUADRIMESTRE ANN0 011-01 FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA Si dice campo di esistenza (C.E.) di una funzione y= f(x), l'insieme di tutti i valori reali

Dettagli

Verifica di Matematica Classe Quinta

Verifica di Matematica Classe Quinta Verifica di Matematica Classe Quinta Valutazione Conoscenze. Fornisci la definizione di funzione continua in un punto x del dominio. Una funzione f(x) è continua in x 0 D se i iti destro e sinistro in

Dettagli

LIMITI DI FUNZIONI. arbitrariamente vicino a L, scegliendo x sufficientemente vicino a x 0, con x x 0.

LIMITI DI FUNZIONI. arbitrariamente vicino a L, scegliendo x sufficientemente vicino a x 0, con x x 0. 55. Limiti al finito (ossia per ) LIMITI DI FUNZIONI Limite finito per f ( ) L R Il ite di f () per tendente a è L se è possibile rendere il valore di f () vicino a L, scegliendo sufficientemente vicino

Dettagli

INDICAZIONI PER LA RICERCA DEGLI ASINTOTI VERTICALI

INDICAZIONI PER LA RICERCA DEGLI ASINTOTI VERTICALI 2.13 ASINTOTI 44 Un "asintoto", per una funzione y = f( ), è una retta alla quale il grafico della funzione "si avvicina indefinitamente", "si avvicina di tanto quanto noi vogliamo", nel senso precisato

Dettagli

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio Liceo Classico D. Alighieri A.S. 0-3 y Data la funzione: Studio di Funzione tracciatene il grafico nel piano cartesiano. Prof. A. Pisani Esempio ) Tipo e grado della funzione La funzione è analitica, data

Dettagli

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica Tutorial - Studio di una funzione reale di variabile reale f : x R y = f (x) R Una funzione può essere: - 1 - algebrica ( razionale o irrazionale, intera o fratta) Classificare la trascendentale ( esponenziale,

Dettagli

Esame di Matematica Generale 7 Febbraio Soluzione Traccia E

Esame di Matematica Generale 7 Febbraio Soluzione Traccia E Esame di Matematica Generale 7 Febbraio 013 - Soluzione Traccia E ESERCIZIO 1. Si consideri la funzione f : R R f(x) = x + 1 x. (a) Determinare il dominio di f ed eventuali simmetrie (3 punti). Dominio.

Dettagli

Traccia n.1 Studiare il comportamento della funzione: 3x + ex 3x e x. Svolgimento

Traccia n.1 Studiare il comportamento della funzione: 3x + ex 3x e x. Svolgimento Traccia n. Studiare il comportamento della funzione: Svolgimento f(x) = 3x + ex 3x e x Determinazione del campo di esistenza, E[f]. La funzione si presenta come rapporto di due funzioni; il campo di esistenza

Dettagli

dato da { x i }; le rette verticali passanti per

dato da { x i }; le rette verticali passanti per Schema riepilogativo per lo studio di una funzione reale di una var. reale. Studio grafico-analitico delle funzioni reali di variabile reale y = f ( Sequenza dei passi utili allo studio di una funzione

Dettagli

(1;1) y=2x-1. Fig. G4.1 Retta tangente a y=x 2 nel suo punto (1;1).

(1;1) y=2x-1. Fig. G4.1 Retta tangente a y=x 2 nel suo punto (1;1). G4 Derivate G4 Significato geometrico di derivata La derivata di una funzione in un suo punto è il coefficiente angolare della sua retta tangente Esempio G4: La funzione = e la sua retta tangente per il

Dettagli

CLASSE 5^ C LICEO SCIENTIFICO 12 Gennaio 2015 Studio di funzioni e continuità (Recupero per assenti) lim ++ =

CLASSE 5^ C LICEO SCIENTIFICO 12 Gennaio 2015 Studio di funzioni e continuità (Recupero per assenti) lim ++ = CLASSE 5^ C LICEO SCIENTIFICO 2 Gennaio 25 Studio di funzioni e continuità (Recupero per assenti). Determina i valori dei parametri reali a e b in modo che la funzione = passi per il punto 2;, abbia come

Dettagli

SOLUZIONE COMMENTATA TEST DI AUTOVALUTAZIONE

SOLUZIONE COMMENTATA TEST DI AUTOVALUTAZIONE SLUZINE CMMENTATA TEST DI AUTVALUTAZINE CRS DI MATEMATICA PER L ECNMIA III MDUL ) Individuare il campo di esistenza della seguente funzione polinomiale: = + 5+ 6 6, 6 Poiché la funzione data è polinomiale,

Dettagli

FUNZIONI ALGEBRICHE PARTICOLARI

FUNZIONI ALGEBRICHE PARTICOLARI FUNZIONI ALGEBRICHE PARTICOLARI (al massimo di secondo grado in x) Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4 B) September 9, 003 1. FUNZIONI

Dettagli

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI Autore: Enrico Manfucci - 6/05/0 LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI PREMESSA Per Studio di funzione si intende disegnare il grafico di una funzione data la sua espressione analitica. Questo significa

Dettagli

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2 Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in CTF - anno acc. 2013/2014 docente: Giulia Giantesio, gntgli@unife.it Esercizi 8: Studio di funzioni Studio

Dettagli

Le Funzioni. Modulo Esponenziali Logaritmiche. Prof.ssa Maddalena Dominijanni

Le Funzioni. Modulo Esponenziali Logaritmiche. Prof.ssa Maddalena Dominijanni Le Funzioni Modulo Esponenziali Logaritmiche Definizione di modulo o valore assoluto Se x è un generico numero reale, il suo modulo o valore assoluto è: x = x se x 0 -x se x

Dettagli

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006 Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 005/006 Antonella Ballabene SOLUZIONI -14 marzo 006- SCHEMA per lo STUDIO di FUNZIONI 1. Dominio della funzione f)..

Dettagli

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione Copyright c 2009 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione

Dettagli

La continuità di una funzione

La continuità di una funzione La continuità di una funzione Introduzione L'argomento legato ai limiti di una funzione porta in modo diretto al concetto di continuità e, conseguentemente, allo studio delle discontinuità di una funzione.

Dettagli

Recupero primo quadrimestre CLASSE QUARTA FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA

Recupero primo quadrimestre CLASSE QUARTA FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA Recupero primo quadrimestre CLASSE QUARTA FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA Si dice campo di esistenza (C.E.) di una funzione = f(), l'insieme di tutti i valori reali che assegnati

Dettagli

3. Segni della funzione (positività e negatività)

3. Segni della funzione (positività e negatività) . Segni della funzione (positività e negatività) Questo punto, qualora sia possibile algebricamente, ci permette di stabilire il segno che assume la variabile dipendente y (che esprime il valore della

Dettagli

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA PRIMA PARTE Intervallo limitato di numeri reali Dati due numeri reali a e b, con a

Dettagli

Anno 5 Asintoti di una funzione

Anno 5 Asintoti di una funzione Anno 5 Asintoti di una unzione 1 Introduzione In questa lezione impareremo a deinire e ricercare gli asintoti. Ma cosa sono gli asintoti? Come si ricercano? Al termine di questa lezione sarai in grado

Dettagli

G3. Asintoti e continuità

G3. Asintoti e continuità G3 Asintoti e continuità Un asintoto è una retta a cui la funzione si avvicina sempre di più senza mai toccarla Non è la definizione formale, ma sicuramente serve per capire il concetto di asintoto Nei

Dettagli

Anno 4 Grafico di funzione

Anno 4 Grafico di funzione Anno 4 Grafico di funzione Introduzione In questa lezione impareremo a disegnare il grafico di una funzione reale. Per fare ciò è necessario studiare alcune caratteristiche salienti della funzione che

Dettagli

Studio di una funzione. Schema esemplificativo

Studio di una funzione. Schema esemplificativo Studio di una funzione Schema esemplificativo Generalità Studiare una funzione significa determinarne le proprietà ovvero Il dominio. Il segno. Gli intervalli in cui cresce o decresce. Minimi e massimi

Dettagli

TEORIA SUI LIMITI DEFINIZIONE DI LIMITE FINITO DI UNA FUNZIONE PER X CHE TENDE AD UN VALORE FINITO

TEORIA SUI LIMITI DEFINIZIONE DI LIMITE FINITO DI UNA FUNZIONE PER X CHE TENDE AD UN VALORE FINITO TEORIA SUI LIMITI DEFINIZIONE DI LIMITE FINITO DI UNA FUNZIONE PER X CHE TENDE AD UN VALORE FINITO Si die he, per he tende a, la funzione y=f() ha per ite l e si srive: l = l I( ) ESEMPIO DI VERIFICA DI

Dettagli

y = x 3 infinitesimo per x 3 lim = l 0 allora f(x) è dello stesso ordine di g(x), ossia tendono a DEF. Una funzione y = f(x) si dice infinitesimo per

y = x 3 infinitesimo per x 3 lim = l 0 allora f(x) è dello stesso ordine di g(x), ossia tendono a DEF. Una funzione y = f(x) si dice infinitesimo per INFINITI ED INFINITESIMI. ASINTOTI DI UNA FUNZIONE. GRAFICO PROBABILE DI UNA FUNZIONE. TEOREMI SULLE FUNZIONI CONTINUE ESERCIZI SULLA CONTINUITA E SULLA CLASSIFICAZIONE DELLE DISCONTINUITA DI UNA FUNZIONE

Dettagli

I LIMITI. non è definita per valori della x uguali a + 5 e 5. In questo caso l insieme di variabilità della variabile x, che si chiama dominio, è

I LIMITI. non è definita per valori della x uguali a + 5 e 5. In questo caso l insieme di variabilità della variabile x, che si chiama dominio, è I LIMITI LIMITE INFINITO DI UNA FUNZIONE PER X CHE TENDE A UN VALORE FINITO. Tra i tanti obiettivi che l analisi matematica si prefigge vi è quello di tracciare i grafici delle funzioni nel piano cartesiano

Dettagli

Studio di funzione appunti

Studio di funzione appunti Studio di unzioni algebriche ratte Studio di unzione appunti 1. Ricerca del dominio (C.E.);. Intersezioni con gli assi cartesiani; 3. Ricerca degli intervalli di positività (Studio del segno S.D.S.); 4.

Dettagli

rapporto tra l'incremento della funzione e l' incremento corrispondente della

rapporto tra l'incremento della funzione e l' incremento corrispondente della DERIVATA Sia y f() una funzione reale definita in un intorno di. Si consideri un incremento (positivo o negativo) di : h; la funzione passerà allora dal valore f( ) a quello di f( +h), subendo così un

Dettagli

19. Lezione. f (x) =,

19. Lezione. f (x) =, IST. DI MATEMATICA I [A-E] mercoledì 30 novembre 2016 19. Lezione 19.1. Formula di Taylor e punti stazionari. Sia f (x 0 ) = 0 come decidere se x 0 è punto di minimo o di massimo? Con la formula di Taylor

Dettagli

Corso di Analisi Matematica Limiti di funzioni

Corso di Analisi Matematica Limiti di funzioni Corso di Analisi Matematica Limiti di funzioni Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 39 1 Definizione di ite 2 Il calcolo dei

Dettagli

ORDINAMENTO SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1

ORDINAMENTO SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1 www.matefilia.it ORDINAMENTO 2003 - SESSIONE SUPPLETIVA QUESTIONARIO QUESITO Tra i rettangoli aventi la stessa area di 6 m 2 trovare quello di perimetro minimo. Indicate con x ed y le misure della base

Dettagli

Funzioni elementari. Tutorial di Barberis Paola - agg grafici con GEOGebra - software open source

Funzioni elementari. Tutorial di Barberis Paola - agg grafici con GEOGebra - software open source Funzioni elementari Proporzionalità diretta e inversa Retta, funzione identità e funzione costante Parabola, funzione quadratica e cubica Funzione omografica Funzione esponenziale e logaritmica Funzioni

Dettagli

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 CAPITOLO 8. LE FUNZIONI. 1. Generalità sulle funzioni.. Le rappresentazioni di una funzione.. Funzioni iniettive, suriettive e biiettive.. Le funzioni

Dettagli

Analisi Matematica I Primo Appello ( ) - Fila 1

Analisi Matematica I Primo Appello ( ) - Fila 1 Analisi Matematica I Primo Appello (4-11-003) - Fila 1 1. Determinare la retta tangente alla funzione f() = (1 + ) 1+ in = 0. R. f(0) = 1, mentre la derivata è f () = ( e (1+) log(1+)) ( ) = e (1+) log(1+)

Dettagli

Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste

Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste CONCAVITA E CONVESSITA DI UNA FUNZIONE. FLESSI. SCHEMA GENERALE PER LO STUDIO DI FUNZIONE. FUNZIONI RAZIONALI E IRRAZIONALI INTERE E FRATTE. TEOREMA DI DE L HOSPITAL CON APPLICAZIONI AI LIMITI. 1 Concavit{

Dettagli

Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti

Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti Limiti e continuità Teorema di unicità del ite Teorema di permanenza del segno Teoremi del confronto Algebra dei iti 2 2006 Politecnico di Torino 1 Se f(x) =` ` è unico Per assurdo, siano ` 6= `0 con f(x)

Dettagli

In un piano, riferito ad uni sistema cartesiano ortogonale Oxy, si considerino le parabole di equazione:

In un piano, riferito ad uni sistema cartesiano ortogonale Oxy, si considerino le parabole di equazione: Maturità scientifica 966/967 Sessione estiva In un piano, riferito ad uni sistema cartesiano ortogonale Oy, si considerino le parabole di equazione: y m m essendo m un parametro diverso da zero. (a) Si

Dettagli

ORDINAMENTO SESSIONE SUPPLETIVA QUESITO 1

ORDINAMENTO SESSIONE SUPPLETIVA QUESITO 1 www.matefilia.it ORDINAMENTO 7 - SESSIONE SUPPLETIVA QUESITO 1 Si calcoli il ite della funzione x cosx x sen x, quando x tende a. x cosx x x sen x = [F. I. ] x x cosx x (1 sen x x ) x cosx 1 sen x x =

Dettagli

CONCETTO DI ASINTOTO. Asintoto verticale Asintoto orizzontale Asintoto obliquo

CONCETTO DI ASINTOTO. Asintoto verticale Asintoto orizzontale Asintoto obliquo CONCETTO DI ASINTOTO Asintoto e' una parola che deriva dal greco: a privativo che significa no e sympìptein che significa congiungere cioe' significa che non tocca, in pratica si tratta di una retta che

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

FUNZIONI REALI DI UNA VARIABILE REALE

FUNZIONI REALI DI UNA VARIABILE REALE FUNZIONI REALI DI UNA VARIABILE REALE INTERVALLI Per definire il campo di esistenza (o dominio) di una funzione reale di variabile reale y=f()si devono indicare talvolta insiemi di numeri reali che su

Dettagli

Gli asintoti di una funzione sono rette, quindi possono essere: rette verticali o rette orizzontali o rette oblique.

Gli asintoti di una funzione sono rette, quindi possono essere: rette verticali o rette orizzontali o rette oblique. Asintoti Gli asintoti di una funzione sono rette, quindi possono essere: rette verticali o rette orizzontali o rette oblique. Asintoti verticali Sia 0 punto di accumulazione per dom(f). La retta = 0 è

Dettagli

Temid esamesvolti-1. Analisi delle funzioni

Temid esamesvolti-1. Analisi delle funzioni Temi d esame svolti - 1 1 Temid esamesvolti-1 Analisi delle funzioni (91003) 1 Si consideri la funzione definita a tratti su tutto R: ½ + sin 1 f() =, 6= 0 k, =0 (a) Per quale valore di k la funzione è

Dettagli

Argomento 7. Studio di funzione

Argomento 7. Studio di funzione Argomento 7 Studio di funzione Studiare una funzione significa ottenere, mediante strumenti analitici (iti, derivate, ecc.) informazioni utili a disegnare un grafico qualitativo della funzione data. I

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

I Limiti di una funzione ANNO ACCADEMICO 2009-2010

I Limiti di una funzione ANNO ACCADEMICO 2009-2010 Prof. M.Ferrara I Limiti di una funzione ANNO ACCADEMICO 2009-2010 2010 Studio del Grafico di una Funzione Il campo di esistenza e gli eventuali punti singolari; Il segno della funzione; I limiti della

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE

ISTITUTO ISTRUZIONE SUPERIORE ISTITUTO ISTRUZIONE SUPERIORE Federico II di Svevia Indirizzi: Liceo Scientifico Classico Linguistico Artistico e Scienze Applicate Via G. Verdi, 1 85025 MELFI (PZ) Tel. 097224434/35 Cod. Min.: PZIS02700B

Dettagli

STUDIO DEL GRAFICO DI UNA FUNZIONE

STUDIO DEL GRAFICO DI UNA FUNZIONE STUDIO DEL GRAFICO DI UNA FUNZIONE PROF.SSA ROSSELLA PISCOPO 2 di 35 Indice 1 SCHEMA PER LO STUDIO DEL GRAFICO DI FUNZIONE... 4 2 ESEMPI... 11 2.1 2.2 2.3 2.4 2.5 2.6 FUNZIONE ESPONENZIALE... 11 FUNZIONE

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f è crescente nell intervallo (a, b) se

Dettagli

SOLUZIONI COMPITO A. 3. Imponendo la condizione iniziale y(0) = 1 e, si ricava C = 0, quindi la soluzione cercata sarà. y(x) + 1 = exp(e x x2 2 1)

SOLUZIONI COMPITO A. 3. Imponendo la condizione iniziale y(0) = 1 e, si ricava C = 0, quindi la soluzione cercata sarà. y(x) + 1 = exp(e x x2 2 1) SOLUZIONI COMPITO A Esercizio Utilizzando lo sviluppo di Mc Laurin al terzo ordine per il sin t, con t = x 4/, e quello al primo ordine per il log( + t), con t = x, otteniamo e quindi il ite proposto diviene

Dettagli

DERIVATA DI UNA FUNZIONE REALE. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR.

DERIVATA DI UNA FUNZIONE REALE. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR. DERIVATA DI UNA FUNZIONE REALE 1. Definizioni. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR. DEFINIZIONE 1. Sia x 0 un elemento di I. Per ogni x (I \ {x 0 }) consideriamo

Dettagli

Linee guida da seguire per lo svolgimento dello studio di funzione Studiare la seguente funzione: Insieme di definizione: f(x) < 0

Linee guida da seguire per lo svolgimento dello studio di funzione Studiare la seguente funzione: Insieme di definizione: f(x) < 0 Linee guida da seguire per lo svolgimento dello studio di funzione Studiare la seguente funzione: Insieme di definizione: f(x) > 0 f(x) = 0 f(x) < 0 Limiti significativi per f: Equazione degli asintoti

Dettagli

Istituto d Istruzione Superiore A. Tilgher Ercolano (Na)

Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) LO STUDIO DI FUNZIONE Lo studio di funzione è una delle parti più interessanti dell analisi perché permette di utilizzare le numerose conoscenze acquisite nel corso degli anni in un unico elaborato. Se

Dettagli

Studi di funzione. D. Barbieri. Studiare comportamento asintotico e monotonia di. f(x) = 1 x x4 + 4x e x

Studi di funzione. D. Barbieri. Studiare comportamento asintotico e monotonia di. f(x) = 1 x x4 + 4x e x Studi di funzione D. Barbieri Esercizi Esercizio Esercizio Studiare comportamento asintotico e monotonia di f(x) = x + x4 + 4x Studiare il comportamento asintotico di f(x) = + x x + + e x Esercizio 3 Determinare

Dettagli

G5. Studio di funzione - Esercizi

G5. Studio di funzione - Esercizi G5 Studio di funzione - Esercizi Tracciare il grafico delle seguenti funzioni I grafici delle seguenti funzioni sono al termine degli esercizi Per gli esercizi con l asterisco non è richiesta, date le

Dettagli

Le funzioni reali di una variabile reale

Le funzioni reali di una variabile reale Le funzioni reali di una variabile reale Prof. Giovanni Ianne DEFINIZIONE DI FUNZIONE REALE DI UNA VARIABILE REALE Dati due insiemi non vuoti A, B R, una funzione f da A in B è una relazione fra A e B

Dettagli

19 LIMITI FONDAMENTALI - II

19 LIMITI FONDAMENTALI - II 19 LIMITI FONDAMENTALI - II 3. Il ite che permette il calcolo di forme indeterminate in cui sono presenti funzioni logaritmiche è: log1 + = 1. La dimostrazione di questo ite si ha subito dal ite Esempio.

Dettagli

STUDIO DI UNA FUNZIONE INTEGRALE. Z x. ln t ln t 2 2 dt. f(x) =

STUDIO DI UNA FUNZIONE INTEGRALE. Z x. ln t ln t 2 2 dt. f(x) = STUDIO DI UNA FUNZIONE INTEGRALE Studiamo la funzione f di una variabile reale, a valori in R, definitada. Il dominio di f. f() = Z Denotiamo con g la funzione integranda. Allora g(t) = numeri reali tali

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

Studiamo adesso il comportamento di f(x) alla frontiera del dominio. Si. x 0 lim f(x) = lim. x 2 +

Studiamo adesso il comportamento di f(x) alla frontiera del dominio. Si. x 0 lim f(x) = lim. x 2 + Esercizi del 2//09. Data la funzione f(x) = ln(x 2 2x) (a) trovare il dominio, gli eventuali asintoti e gli intervalli in cui la funzione cresce o decresce. Disegnare il grafico della funzione. (b) Scrivere

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

Elenco moduli Argomenti Strumenti / Testi Letture / Metodi. partecipazione degli alunni. 2 Completamento equazioni e disequazioni.

Elenco moduli Argomenti Strumenti / Testi Letture / Metodi. partecipazione degli alunni. 2 Completamento equazioni e disequazioni. Pagina 1 di 5 DISCIPLINA: MATEMATICA E LABORATORIO INDIRIZZO: IGEA CLASSE: IV FM DOCENTE : Cornelio Terreni Elenco moduli Argomenti Strumenti / Testi Letture / Metodi 1 Matematica RIPASSO e COMPLETAMENTO:

Dettagli

tele limite è unico. Ciò significa che se non può accadere che una funzione abbia limiti diversi per x. Se per assurdo si avesse che lim f ( x)

tele limite è unico. Ciò significa che se non può accadere che una funzione abbia limiti diversi per x. Se per assurdo si avesse che lim f ( x) Calcolo dei iti (C. DIMAURO) Per il calcolo dei iti ci serviamo di alcuni teoremi. Tali teoremi visti nel caso in cui, valgono anche quando Teorema dell unicità del ite: se una funzione ammette ite per

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. CLASSE quarta INDIRIZZO SIA UdA n. 5 B Titolo: COSTI E GUADAGNI Utilizzare le strategie del pensiero razionale negli aspetti dialettici ed algoritmici per affrontare situazioni problematiche, elaborando

Dettagli

Intorni Fissato un punto sull' asse reale, si definisce intorno del punto, un intervallo aperto contenente e tutto contenuto in

Intorni Fissato un punto sull' asse reale, si definisce intorno del punto, un intervallo aperto contenente e tutto contenuto in Intorni Fissato un punto sull' asse reale, si definisce intorno del punto, un intervallo aperto contenente e tutto contenuto in Solitamente si fa riferimento ad intorni simmetrici =, + + Definizione: dato

Dettagli

Limiti di funzioni di due variabili

Limiti di funzioni di due variabili Limiti di funzioni di due variabili Definizione 1 Sia f : A R 2 R e x 0 = (x 0, y 0 ) punto di accumulazione di A. Diciamo che se e solo se Diciamo che se e solo se f(x) = f(x, y) = L x x 0 (x,y) (x 0,y

Dettagli

Una funzione pari ha il grafico simmetrico rispetto all'asse x. Calcola il dominio e l'immagine della funzione rappresentata nella seguente figura:

Una funzione pari ha il grafico simmetrico rispetto all'asse x. Calcola il dominio e l'immagine della funzione rappresentata nella seguente figura: Vero o falso: [0,1] ha minimo 1 e massimo 0 (0,100 ] non ha minimo ma ha massimo 100 (0,5) è un intorno di 2 y=x 2 è invertibile y=x 2 è pari y=x 3 è pari Posto g( x)= x 2 e f (x )=x+1 allora g( f ( x))=(

Dettagli

4. Derivata di una funzione

4. Derivata di una funzione 1 4 Derivata di una funzione La derivata in un punto Per studiare in maniera più dettagliata l'andamento di una funzione, ci serve un modo per descrivere la velocità con cui cambiano i valori della funzione

Dettagli

FUNZIONI RAZIONALI. Esempi: f(x) = ( 3x 3 - x 2 +2)/(x 4-2x 2-1); f(x) = 2/x ; f(x) = (x 3-1) /(x+1)

FUNZIONI RAZIONALI. Esempi: f(x) = ( 3x 3 - x 2 +2)/(x 4-2x 2-1); f(x) = 2/x ; f(x) = (x 3-1) /(x+1) FUNZIONI RAZIONALI Si chiama funzione razionale una funzione esprimibile come rapporto tra due polinomi f(x)=[a n x n +a n-1 x n-1 + +a 0 ]/[b m x m +b m-1 x m-1 + +b 0 ] m,n N a n, a n-1,, a 0, b m, b

Dettagli

Soluzioni degli esercizi sulle FUNZIONI DI DUE VARIABILI

Soluzioni degli esercizi sulle FUNZIONI DI DUE VARIABILI Soluzioni degli esercizi sulle FUNZIONI DI DUE VARIABILI 1. Insiemididefinizione: (a) x + èdefinita se il denominatore è diverso da zero, cioè perx 6= : graficamente x significa rimuovere dal piano la

Dettagli

Progettazione modulare Percorso di istruzione di 3 livello, Servizi Socio Sanitari Modulo n.1: Insiemi numerici e funzioni MATEMATICA

Progettazione modulare Percorso di istruzione di 3 livello, Servizi Socio Sanitari Modulo n.1: Insiemi numerici e funzioni MATEMATICA Progettazione modulare Modulo n.1: Insiemi numerici e funzioni DURATA PREVISTA Ore in presenza 12 Ore a distanza 5 Totale ore 17 individuare le caratteristiche di un insieme numerico; classificare le funzioni,

Dettagli

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [;

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [; ESERCIZIO - Data la funzione f (x) + x2 2x x 2 5x + 6, si chiede di: a) calcolare il dominio di f ; (2 punti) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire se f ha asintoti

Dettagli

UNO STUDIO DI FUNZIONE CON DERIVE a cura del prof. Guida. 4 x

UNO STUDIO DI FUNZIONE CON DERIVE a cura del prof. Guida. 4 x UNO STUDIO DI FUNZIONE CON DERIVE a cura del prof. Guida Con questa guida si vuol proporre un esempio di studio di funzione con Derive. La versione che ho utilizzato per questo studio è la 6.0. Consideriamo

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

MATEMATICA CORSO A CORSO DI LAUREA IN SCIENZE BIOLOGICHE I PROVA IN ITINERE COMPITO PROVA 1

MATEMATICA CORSO A CORSO DI LAUREA IN SCIENZE BIOLOGICHE I PROVA IN ITINERE COMPITO PROVA 1 MATEMATICA CORSO A CORSO DI LAUREA IN SCIENZE BIOLOGICHE I PROVA IN ITINERE COMPITO PROVA 1 1- Il volume di un corpo di qualsiasi forma è proporzionale al cubo di una qualunque delle sue dimensioni lineari.

Dettagli

FUNZIONI REALI DI UNA VARIABILE REALE

FUNZIONI REALI DI UNA VARIABILE REALE FUNZIONI REALI DI UNA VARIABILE REALE Vogliamo ora limitare la nostra attenzione a quelle funzioni che hanno come insieme di partenza e di arrivo un sottoinsieme dei numeri reali, cioè A, B R. Es6. Funzione

Dettagli

PRIMA SIMULAZIONE - 10 DICEMBRE QUESITI

PRIMA SIMULAZIONE - 10 DICEMBRE QUESITI www.matefilia.it PRIMA SIMULAZIONE - 0 DICEMBRE 05 - QUESITI Q Lanciando una coppia di dadi cinque volte qual è la probabilità che si ottenga un punteggio totale maggiore di sette almeno due volte? Calcoliamo

Dettagli

Analisi Matematica 1+2

Analisi Matematica 1+2 Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-700 Savona Tel. +39 09 264555 - Fax +39 09 264558 Ingegneria Gestionale Analisi Matematica +2 A.A 998/99 - Prove parziali

Dettagli

Istituzioni di Matematica I

Istituzioni di Matematica I Istituzioni di Matematica I Le soluzioni proposte costituiscono solo una traccia di possibili soluzioni (lo studente deve giustificare i vari risultati), possono esserci altri modi, altrettanto corretti,

Dettagli

f(x) = 1 x 2 Per determinare il dominio di f(x) dobbiamo imporre che il determinante sia diverso da zero

f(x) = 1 x 2 Per determinare il dominio di f(x) dobbiamo imporre che il determinante sia diverso da zero . Data la funzione approssimarne il grafico. f() = 2 Per determinare il dominio di f() dobbiamo imporre che il determinante sia diverso da zero 2 0 = 2 = ± perciò il dominio ` D = R \ {, } =], [ ], [ ],

Dettagli

INTRODUZIONE ALL ANALISI MATEMATICA

INTRODUZIONE ALL ANALISI MATEMATICA INTRODUZIONE ALL ANALISI MATEMATICA Intervalli e intorni Funzioni in R e classificazione Proprietà delle funzioni: pari e dispari monotone periodiche Intervallo Un intervallo di estremi a e b è un insieme

Dettagli

ESAME DI MATEMATICA PER LE APPLICAZIONI ECONOMICHE 14 GIUGNO 2016 FILA A

ESAME DI MATEMATICA PER LE APPLICAZIONI ECONOMICHE 14 GIUGNO 2016 FILA A ESAME DI MATEMATICA PER LE APPLICAZIONI ECONOMICHE 4 GIUGNO 206 FILA A Durata della prova: 2 ore e mezza. NOTA: Spiegare con molta cura le risposte. NOTAZIONE: log = ln = log e. Esercizio 5 punti) Sia

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

10 - Applicazioni del calcolo differenziale

10 - Applicazioni del calcolo differenziale Università degli Studi di Palermo Facoltà di Economia CdS Sviuppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 10 - Applicazioni del calcolo differenziale Anno Accademico 2015/2016

Dettagli